
The fans united will always be connected: building a
practical DTN in a football stadium

Ian Wakeman, Stephen Naicken, Jon Rimmer, Dan Chalmers and Ciaran Fisher
University of Sussex

Brighton, UK
[ianw|stephenn|jonr|d.chalmers|crf22]@sussex.ac.uk

ABSTRACT
Football stadia present a difficult environment for the de-
ployment of digital services, due to their architectural de-
sign and the capacity problems from the numbers of fans.
We present preliminary results from deploying an Android
app building an ad hoc network amongst the attendees at
matches at Brighton and Hove Albion’s AMEX stadium, so
as to share the available capacity and supply digital services
to season ticket holders. We describe the protocol, how we
engaged our users in service design so that the app was at-
tractive to use and the problems we encountered in using
Android.

Categories and Subject Descriptors
H.3.5 [Online Information Services]: Data Sharing

General Terms
Delay tolerant network

Keywords
Delay tolerant network, in-the-wild deployment, user study

1. INTRODUCTION
Successful deployments of delay tolerant networks (DTNs)

in real world scenarios with real user-generated traffic, where
current infrastructure networks struggle, are not common.

In this paper we describe such a deployment, and the
lessons learnt.

We have, near our campus, a fairly typical football sta-
dium with a seating capacity of 30,750. It is constructed out
of reinforced concrete with a metal framed roof, situated in
a valley near transport connections (road and rail). When
visiting the ground on a non-match day, mobile phone signal
is generally acceptable - however, in some parts (particularly
the concourses and rear of stands) reception is poor or un-
available. The stadium houses the club offices, as well as

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHANTS 2013, Florida USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Figure 1: Bandwidth Trace During Match To The
Web, Via Mobile Phone Network, Illustrating Con-
nectivity Problems

hosting events such as concerts, weddings and meetings, so
there is a daily occupancy. During the football season, the
stadium is in full use on average once a week, bringing many
more people than are there most of the time to this small
area.

For these few hours the mobile phone network capacity
is exceeded, resulting in intermittent connectivity for voice,
text and data even where a signal can be obtained – as can
be seen in figure 1. Smart phone penetration is high amongst
regular attendees and anecdotally we were aware of frustra-
tion with being unable to communicate – to arrange to meet
friends, to comment on social networks, to obtain updates
from other concurrent matches, and to find out about trans-
port times after the match.

The financial case for improving the phone capacity for
such occasional use is poor and does not solve the architec-
tural challenges. The financial case for installing and oper-
ating an open 802.11 data network for this volume of users
is also poor: the capital cost is high and the reward to the
club is largely through user satisfaction. From our own ex-
perience in attending football matches, it appeared that the
likely desired data services – e.g. updates from other ongo-
ing matches, access to social networks, travel information,
services supplied by the club – could be satisfied by a smart-
phone app providing a small set of web-based services, and
that our users wouldn’t desire access to the wider Internet

A delay tolerant ad-hoc network providing a distributed
HTTP cache was thus a possible solution. Connectivity
could be obtained indoors and in blocked areas of the stands;
the few infrastructure connections could be shared so capi-
tal outlay is not required; movement of users would be suf-
ficiently slow to allow connections to form but at half-time

there would be enough movement to physically carry data
out of the network dark spots in the concourse to connec-
tivity outside; and a common interest amongst users could
be used to good effect in sharing data and so improving ef-
ficiency. Our initial network simulations confirmed that the
protocol seemed viable in a modelled stadium. The design
of a protocol exploiting these properties is described in sec-
tion 2 and the realities of implementing such a protocol on
the smart phone of “the man in the street” are described in
section 4.

Most users are season ticket holders, with an obvious emo-
tional connection to the club. When we engage such users
in a study, it can be assumed that they have a level of trust
in the club and with their fellow fans which facilitate the
sharing of resources; to be successful a DTN requires a crit-
ical mass of users to run the application and access data so
engagement of users in app design, choice of services and
achieving the necessary density for initial deployment re-
quired active engagement on our part. Issues in design and
deployment are described in section 3. Results, both from
the network and user engagement, arising from initial de-
ployment are described in section 5.

2. THE INITIAL PROTOCOL
The protocol challenge is twofold: first, to arrange for

a web-view that uses this data and accommodates the de-
lays of such a protocol without breaking the assumptions
of web interactions, e.g. idempotent POST and interactiv-
ity; second (see subsection 2.3), to arrange for phones to
communicate with each other to pass data to the external
internet, storing and delaying forwarding where appropriate
and caching to improve efficiency.

DTN protocols rely on node mobility to transfer messages.
A DTN protocol assumes that the total route to the desti-
nation node is unlikely to be known or doesn’t exist at a
moment in time so instead a message is sent to part or all of
the network and stored when a node cannot pass it on any
further, termed ”Store-Carry-Forward”. As a node moves
and comes into contact with other nodes the message may
be passed on until it eventually reaches its intended recipi-
ent or expires through some sort of time-out. If the standard
TCP protocol was used over a highly partitioned DTN net-
work, TCP would quickly time out due to the lack of ACKs
in a short time frame so often DTN protocols work by trans-
ferring large messages node to node which would usually be
encapsulated in multiple packets in TCP, an example of this
is the Bundle Protocol [18].

There are a variety of modes of connectivity and nodes in
the network, as illustrated in figure 2 – the key functions are
outlined below and specified in detail in a patent application.
Access to the network is via an app, which handles the user
interaction issues, security, presentation of available data
and underlying DTN connectivity.

To address security and idempotency requirements we de-
ploy a venue cache server – an Internet connected server
holding the cache of data for a venue. This set of data is
the union of all data requested by the users and anticipated
by the administrators. This will be the “origin server” in
HTTP terminology. It handles app instance registration and
keys for encryption, allowing user data to pass over poten-
tial malicious participant nodes without exposing data. We
omit further discussion of data security and integrity here
for brevity, but these issues are designed in.

Mobile phone internet access

Venue
Cache
Server

User Not in Crowd

User Crowd

cellular phone tower
unable to serve
all users in crowd

Venue

Venue
Data and

Commerce
Services

External Information Services

Bold lines
indicate DTN
protocol we
define

All mobile
devices run
digital stadium
cache client
application

Infrastructure wifi
access with

connection to
cache server

Figure 2: System Overview

2.1 GET
The app does not support general internet access, but a

subset of the web – the set of valid GET requests is re-
stricted to those URIs which are supported by the venue
cache server. All GETs must be idempotent, preferably
working over a uniform URI space that clearly delineates
service usage. A GET may return a “bundle” of data, a set
of assets either for that user or for all users. Taking as our
example a “twitter” application, the following URLs would
constitute the service:

http://digital-stadium.net/club/twtr/ Provide the de-
fault up to date bundle for users who are not logged-in,
e.g. a club feed.

http://digital-stadum.net/club/twtr/u/23943 Provide the
up to date bundle for the specified user, utilising their
OAuth credentials if available.

. . . /club/twtr/u/23943/since/8273 Provide the time-line
since tweet 8273, to allow efficient updates.

Each node has a local cache. If the cache holds the data
required by a GET, the display is immediate and no further
communication is necessary. If there is a cache miss then the
request must pass through the underlying protocol. Eventu-
ally the cache will be populated and the view updated, but
in the mean time the app will allow further interaction.

2.2 POST
When the app is temporarily disconnected from a direct

connection to the Internet, we would still like the app to be
able to make HTTP POST calls back to the origin server.

The HTTP 1.1 definition [5] makes no provision for deal-
ing with POST commands which are broken or reset after
the request is received by the origin server but generate no
response. When dealing with a disconnected network, one
must assume that a direct response to the POST request
will not be forthcoming. We modify POST processing to
work in the following fashion:

1. On receiving a POST request, the app must attempt
a direct connection to the origin server. If this is pos-
sible, then the POST request executes in a normal
HTTP connection.

2. If there is no direct connection to the end-point, then
the app queues the POST request.

3. When a connection to another cache, including the
DTN cache server, becomes available the request is
forwarded.

4. Each POST request will have a unique identifier that
will be included in the set of parameters encoded within
the POST request, and to be included in the accom-
panying request headers.

5. There will be no direct response to the POST. If a
response is required, then the web client must generate
a GET request to a resource associated with the unique
identifier.

The origin server must only process a POST request once
and reject any subsequent repeat requests with the same
identifier. The venue cache server will have recorded the
POST request identifier in a “Confirmed POST List (see
section 2.3) and thus both the request and the confirma-
tion of its execution can follow multiple paths to / from the
originating user but only having the request actioned once.

In building a service that can process POST requests, if
the service requires the client side to receive a response then
the service must provide a URI upon which the client can
call GET, using either a direct connection or the DTN cache,
to receive a valid response when the response code is 20*.
If the POST call has a unique identifier of x, then the GET
service may be constructed as http://digital-stadium.

net/club/response/x

This pairing of POST/GET will allow the pairing of two
AJAX calls to confirm the POST request, with the GET
polling being executed using the normal exponential back-
off approach, as recommended in the HTTP specification.
Issuing a request should not block interactions with other
aspects of the application, or other applications, while the
request is serviced. Note that the protocol below guarantees
eventual execution of the POST.

2.3 Cache Maintenance Protocol
The following data lists are used to manage the protocol:

• asset list is the set of URLs and their last modified
date that have been asked for by any of the participat-
ing nodes.

• unconfirmed POST list (UPL) is the list of POST
requests that have been made by any of the participat-
ing nodes, including the unique identifier header and
the necessary entity bodies. The UPL head is just the
list of unique ids on the list.

• confirmed POST list (CPL) is the list of POST
identifiers that are known to have been exchanged with
the server.

The cache protocol works on the epidemic dissemination and
updates of the asset list, the CPL and the UPL.

When a node can make a direct connection to the Internet,
it will first POST the requests on the UPL, removing the
items from the UPL and updating the CPL, and then enter
into a GET/if-modified update of the URLs listed on the
asset list.

When the node can make a direct connection to other
participating nodes in the DTN, it will undergo the following
exchanges with its peers:

1. Exchange the CPLs with each other. Merge the CPLs,
and then prune any entries from the UPL as required.

2. Exchange UPL heads. Request UPL entries that are
not currently on the UPL.

3. Exchange asset lists. Request assets that are new, or
have a more recent last-modified date.

2.4 DTN over Android WiFi
In this section we describe the operation of the DTN cache

protocol over the current Android implementation of WiFi
DirectTM, and other WiFi capable nodes. WiFi Direct ca-
pable phones in Android version Ice Cream Sandwich and
above can act as access points for legacy systems such as
those phones running Gingerbread. The venue cache serve
acts as a repository for access point ids, and their associated
WPA2 keys.

A node is designated APCapable when it can run its WiFi
as an access point for other phones to connect. A node
is designated in APMode when it is currently running as
a WiFi access point. A node is designated legacy when it
cannot run an access point, but is able to connect to an
access point on another phone.

Upon starting the protocol and whenever the AP details
changed, an APCapable node will upload its access point
id, and its WPA2 key to the repository1. All participating
nodes will download the set of APCapable nodes’ AP ids and
keys when they have a direct connection to the Internet.

Android will always attempt to use a WiFi connection in
preference to a 3G/4G connection, even if the WiFi connec-
tion has no gateway to the Internet. A node will therefore
only attempt to connect to the DTN on the following con-
ditions:

1. The application is currently running in the foreground.
When the application leaves the foreground, it must
disconnect from the DTN.

2. If the screen or audio device is being used and the
application is not at the foreground, then the node
must not connect to the DTN.

3. If the screen is off and and the audio device is free,
and the node is in the right temporal context (around
a match time), then it should attempt to connect to
the DTN.

1Our initial tests in the protocol worked with a Galaxy
Nexus which never changed its AP details. As detailed in
Section 4, the need to deal with changing AP keys reduced
the protocol coverage for Gingerbread devices.

Our aim in the protocol is to provide both spatial and tem-
poral distribution. We thus continually reconstruct the wifi
network, so that each node will connect to all of its possible
neighbours in turn, thus disseminating the various request
lists and assets, and adapt the number of APs to maximise
coverage.

When starting to connect to the network, the APCapable
node will enter APMode for a period selected from a dis-
tribution based on the APModePeriod variable. We adapt
this APModePeriod to as to maintain a constant set of ac-
cess points visible. The node will then check to see whether
an infra-structure access point is available, thus allowing for
the application be seeded with APs provided by the infra-
structure, or if the 3G/4G connection is available. It will
then connect and executed the DTNCache exchanges that
are possible. On exiting APMode the node will then con-
nect to an access point at random, for a period drawn from
a legacy timer distribution. Upon termination of the con-
nection to the access point, either due to a timeout or be-
cause the access point connection is lost due to change of
mode or movement, the node will draw a new timeout from
APModePeriod and start the cycle again.

Legacy nodes will scan for available participating access
points, and connect to a random access point for a period
drawn from the legacy timer period. Upon termination of
the connection to the access point, it will then attempt to
make an Internet connection as described above. It will then
scan for access points, and start the cycle again.

We used the ONE simulator [9] to test the efficiency of
this protocol. We designed a map based upon a stand in the
stadium, with a movement model which reflected the move-
ment of people around the game - gradual arrival, move-
ment to and from seats around the start and end of the
halves, gradual dispersal - and built the protocol. The num-
bers demonstrated that this was a feasible approach, but we
were to find out that persuading Android to implement our
protocol perverted much of our original design.

3. ENGAGING WITH THE STADIUM AND
THE FANS

From the project’s outset the authors adopted a strong
user-centric design approach to the software’s development.
The problems associated with, and extent to which, connec-
tivity within the AMEX stadium were an issue for visitors
were thoroughly explored. A link to an online survey was
sent out to Season ticket holders as part of the Club’s reg-
ular mailshot to supporters. This enabled the authors to
gather fans’ experiences of connectivity on match days and
the kinds of technology and services they use, or would like
to use, on the way to, from and at the Stadium.

1,628 fans responded and the survey reported 95% of them
using smartphones and almost all reporting connectivity is-
sues (only 6% reporting none). Just over half responded
from the West Stand and this is where we targeted our re-
cruitment efforts. We wanted to attract regular visitors to
the stadium to participate in our research and we wanted
to know where they would be within the stadium on match
days - so ideally season ticket holders that had their own
dedicated seat.

As we wanted to test the DTN within a real-world sce-
nario and not simply the laboratory, it was vital that we
provided useful services that provided users with appropri-

Figure 3: The app in action

ate motivation to want to use the software. We were given
passes to the Stadium that granted us full access on match
days and we attended every home game until the end of
the season. We held a series of meetings with various Club
departments (such as marketing, transport and security) in
order to explore the types of information they held and the
interactions they had with fans. We also held focus groups
with West Stand fans before games in order to understand
their match day experiences and reveal opportunities for
software services development. We carried out ’accompa-
nied journeys’ with fans from their homes to the stadium,
experienced all modes of organized and private transport,
and constant ’participant-observation’ throughout the day
of each match. From these kinds of user-engagement ses-
sions we were able to appreciate their activities, understand
the variety of processes involved, the types of physical and
digital artifacts used, and needs of both the stadium and the
fans.

From the insights gained we began developing prototypes
with the users’ continual input. The key services identified
that complimented the stadium experience were a version of
Twitter so that they could keep up-to-date with club news
and views, a live league table to show where the club was in
relation to the competition in real-time, live scores at other
matches, and importantly live departure boards for modes of
public transport. In order for the DTN to work, fans using
the developed services had to share their data connection
with other service users. It was important that they were
able to control shared data limits (especially as some were
restricted by limits by their mobile network provider). They
were not penalized for reducing their sharing and would still
be able to piggyback off others.

One of the key themes emergent in our user research was
the notion of ’topophilia’ (literally defined as ’love of place’).
The football stadium is often a setting that evokes strong
emotions of affection and it was important that any technol-
ogy we developed would not get in the way of these feelings,
distract or become a ’buzz-kill’ [16]. The Club’s fans are a
tight-nit community with a strong sense of brand loyalty, al-
legiance to the team and there is a great deal of camaraderie
amongst fellow fans. We too nurtured our relationship with
the small group of West Stand ’beta-buddies’ piloting our
prototypes, maintaining regular contact, with updates, news
and competitions, as well as personally meeting them at
matches. It was this sense of community amongst the fans,
their trust and willingness to share the app-data with each
other that enhanced the success the project achieved.

4. ANDROID 1, DESIGNERS 2
There were a number of impediments to implementing

a delay tolerant networking architecture on Android. The
issues were generally device-dependent and some were exas-
perated by poor documentation and inconsistent functional-
ity of API calls across versions of Android. In this section,
we document some of these difficulties and the solutions re-
quired to overcome them.

The delay tolerant network is implemented upon Wi-Fi
Direct, which is available in Android 4.0 and above. Unfor-
tunately, it is not possible to form P2P Wi-Fi Direct connec-
tions without requiring user intervention (Wi-Fi Protected
Setup PBC or PIN) and there are also known issues in the
Wi-Fi Direct group owner negotiation algorithm between
Jelly Bean (4.1 - 4.2.2, JB) phones that can cause the con-
nection to fail2. To avoid these issues and to allow Android
Gingerbread devices (which have no Wi-Fi Direct support)
to participate in the network, we make use of the WifiMan-

ager.createGroup API call to explicitly create a Wifi-Direct
P2P group. The call to WifiManager.createGroup effec-
tively creates an access point (AP) that is not tethered and
can accept connections from both Wi-Fi Direct and non-Wi-
Fi Direct capable devices. To distribute the configuration
information so that devices can connect to an AP, two al-
ternatives were considered, a rendezvous service and a local
discovery mechanism built upon Bluetooth.

When a Wi-Fi Direct group is explicitly created, the AP
configuration must be distributed to devices so that they
may connect to the AP. In the existing implementation of
this work, this is achieved through the use af a rendezvous
service. APs upload their AP configuration details to a
server over a mobile data or infrastructure Wi-Fi connection
when available. Devices can connect to APs upon download-
ing configurations from the rendezvous and adding them to
list of active configurations of their device. Clearly, this solu-
tion has obvious disadvantages in an environment where con-
nectivity is limited. To further complicate matters, for An-
droid versions 4.0 - 4.1.2, the AP configuration changes each
time the AP is activated (i.e. the AP name and password is
randomly generated each time the AP is created), therefore
configurations are only valid for the lifetime of the instantia-
tion of the AP (i.e from the time WifiManager.createGroup

is called to the time WifiManager.removeGroup is called). If
an AP is unable to access the rendezvous service, it cannot
upload its AP details and consequently will not receive con-

2https://code.google.com/p/android/issues/detail?id=43004

nections from others. Equally, a device wishing to connect to
an AP can not do so without first contacting the rendezvous.

Given the disadvantages of the rendezvous mechanism, an
alternative using Bluetooth was also investigated. The pro-
posed scheme uses insecure RFCOMM to exchange AP con-
figurations between devices, however, insecure RFCOMM
connections between certain devices may result in a pair-
ing dialog being shown to the user after a random amount
of time after the connection has been established3. Having
replicated this issue in lab testing, it was concluded that
such a prompt was undesirable and this feature was not de-
ployed.

To resolve the bootstrapping issue, we plan to implement
the following:

• Native P2P WiFi-Direct connections between Ice Cream
Sandwich and Jelly Bean devices with explicit AP/group
creation on Jelly Bean devices only. This should mit-
igate the group negotiation algorithm issue referenced
above by bypassing the group negotiation algorithm.

• As it is possible to implement Wi-Fi Direct dialog in-
terception in Android 4.2.2, only these devices become
APs. Both ICS and JB clients do not show prompts
to the user when connecting to a Wi-Fi Direct AP.

• As Gingerbread declines in market share, the long-
term plan is to drop support for this OS.

Device dependent issues also hindered our development
efforts. Wi-Fi Direct groups should remain active after the
last connected device disconnects from the AP. Whilst this
is the case for Nexus devices, it is not true for the Samsung
S3 and possibly others. It was also observed that the Galaxy
Nexus Wi-Fi driver would fail after a number of Wi-Fi Direct
commands and only a reboot would restore the Wi-Fi to a
working state.

5. RESULTS
Our software was trialled in the final five home games of

Brighton and Hove Albion, from April 2013. Each game
was used to provide new services and to refine the protocol
implementation of the app. After the initial installation,
the app would automatically download a new version, which
would invariably be on the morning of the match after a
hard night of coding. By the final two games, our software
was stable, and the DTN worked for the majority of our
users. We present results below from the Wolves match,
which took place on at 12:45, 4th May when the season
reached a climax with the final promotion and relegation
places being decided. Over the course of the match, we
moved over 40 MB across the DTN. In Figure 4, we show
which and how many service requests were made by our users
over the course of the match. Given the changes in position
of clubs over the ebb and flow of the matches, the live scores
service was obviously most popular. The measured round
trip times for requests satisfied over 3G vs the DTN are
compared in Figure 5, which show that the DTN had median
rtts as a couple of minutes, which satisfied our users. We are
in the process of running focus groups to refine the services

3http://stackoverflow.com/questions/14804304/when-
does-android-show-a-pairing-dialog-when-using-insecure-
rfcomm-bluetooth-soc

0

50

100

150

10:00 11:00 12:00 13:00 14:00 15:00
Time (GMT)

Fr
eq
ue
nc
y

About

Bus

CurrentMatch

Feedback

Fixtures

LeagueTable

LiveScores

News

Placeholder

Player

Preferences

Results

Status

Store

TrafficInfo

Trains

Figure 4: What was requested when

and app for the coming season, but one quote shows the
general level of satisfaction4:

The app was a godsend on the final day of the
season. It’s hit-and-miss as to whether you can
get a signal at the Amex, but the app meant
I knew the ever-changing scores and league posi-
tions throughout the afternoon. (Simon, Patcham)

Battery consumption was a major worry with the deploy-
ment of the app. We allowed the user to configure the bat-
tery level at which the app shut down, and we had con-
cerns that the DTN would gradually close down as the bat-
tery levels declined. Figure 6 shows the battery usage over
the course of the match. The power consumed is relatively
heavy, but not out of the ordinary for the use of a smart-
phone. Our logging was not able to disentangle how much
battery was consumed by the use of the display versus the
DTN, but these preliminary results show that battery con-
sumption should not be an issue in the deployment of ad
hoc networks on limited occasions.

We still had issues connecting Gingerbread devices, mostly
down to bootstrapping the AP details. We are thankful that
with the typical two year cycle of phone renewal in the UK,
Gingerbread devices are now in a steep decline.

6. RELATED WORK
DTNs emerged as a research area in the work of Vahdat,

Fall and others [4, 20] and standards such as [2]. Such pro-
tocols based on social interactions, aka “opportunistic net-
works” or “pocket switched networks” , where the delivery
of messages is dependent upon mobile nodes coming into
contact with each other, exchanging bundles of data, and
then moving apart are described in e.g. [6], have been ex-
amined in the literature but rarely deployed to carry human
generated traffic over standard smart phones.

4http://www.sussex.ac.uk/affiliates/
digitalStadium/press.html

0.00

0.25

0.50

0.75

1.00

103 105 107

Time (ms)

P
(X
≤x
) Network

dtn

mob

Figure 5: Cumulative density function of round trip
times for requests satisfied over 3G and over the
DTN

30

40

50

60

70

11:00 12:00 13:00 14:00
Time (GMT)

B
at

te
ry

 L
ev

el

Figure 6: Battery used over the course of the match

Research efforts leading towards such a general purpose
system include: the investigation of using personal mobile
phones and PDAs with limited deployment and supporting
application semantics rather than particular protocols[19],
similarly Haggle [17] replaces the network stack; protocols
exchanging between buses [1] and animals [8, 11] rather than
human movement; a system using deployed gateway nodess
[10] to occasionally connect users using a DTN protocol [18]
and application gateways, which is conceptually similar to
our application interface but rather different in the network
and user mobility aspects; and various simulations using
real-world mobility data e.g. [7].

In recent years, opportunistic networks have been mod-
eled as a distributed content cache [12, 15] and progress has
been made in developing optimal exchange approaches [13,
3, 1]. There have been attempts by Jörg Ott and in recent
internet-drafts on utilising HTTP over an opportunistic net-
work [14].

There has been little other work on building specialised
applications on smartphones for stadia. The only work of
which we are aware is the estadium initiative of Edward
Coyle [21], which focused on enhancing the stadium with
wireless access points, and then building specific applica-
tions to work over wifi, rather than an opportunistic network
between phones.

7. CONCLUSIONS
This paper describes successful initial deployments within

an ongoing funded project – metaphorically we are winning,
but at half time in the first game of the season. Elements

of the protocol and traffic are particularly suited to this
environment, but the challenges we are responding to can
be found in sports and entertainment venues around the
world. Development is ongoing and wider scale deployments
are anticipated in the next football season, with additional
services, more users and a wider range of phones.

8. ACKNOWLEDGMENTS
This work was supported by the Engineering and Physical

Sciences Research Council, grant EP/K012762/1

9. REFERENCES
[1] A. Balasubramanian, B. Levine, and A. Venkataramani.

DTN routing as a resource allocation problem. SIGCOMM
Comput. Commun. Rev., 37(4):373–384, Aug. 2007.

[2] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst,
K. Scott, K. Fall, and H. Weiss. Delay-Tolerant Networking
Architecture. RFC 4838, 2007.

[3] V. Erramilli, M. Crovella, A. Chaintreau, and C. Diot.
Delegation forwarding. In Proc. 9th ACM intl. symposium
on Mobile ad hoc networking and computing, MobiHoc ’08,
pages 251–260. ACM, 2008.

[4] K. Fall. A delay-tolerant network architecture for
challenged internets. In Proc. 2003 conf. on Applications,
technologies, architectures, and protocols for computer
communications, SIGCOMM ’03, pages 27–34. ACM, 2003.

[5] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and
T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1.
RFC 2068 (Proposed Standard), Jan. 1997. Obsoleted by
RFC 2616.

[6] P. Hui, A. Chaintreau, J. Scott, R. Gass, J. Crowcroft, and
C. Diot. Pocket switched networks and human mobility in
conference environments. In Proc. 2005 ACM SIGCOMM
workshop on Delay-tolerant networking, WDTN ’05, pages
244–251. ACM, 2005.

[7] P. Hui, J. Crowcroft, and E. Yoneki. Bubble rap:
social-based forwarding in delay tolerant networks. In
Proceedings of the 9th ACM international symposium on
Mobile ad hoc networking and computing, pages 241–250.
ACM, 2008.

[8] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and
D. Rubenstein. Energy-efficient computing for wildlife
tracking: design tradeoffs and early experiences with
zebranet. SIGOPS Oper. Syst. Rev., 36(5):96–107, Oct.
2002.

[9] A. Keränen, J. Ott, and T. Kärkkäinen. The ONE
Simulator for DTN Protocol Evaluation. In SIMUTools ’09:
Proceedings of the 2nd International Conference on
Simulation Tools and Techniques, New York, NY, USA,
2009. ICST.

[10] A. Lindgren and A. Doria. Experiences from deploying a
real-life DTN system. In 4th Consumer Communications
and Networking Conference CCNC, pages 217–221. IEEE,
2007.

[11] T. Liu, C. M. Sadler, P. Zhang, and M. Martonosi.
Implementing software on resource-constrained mobile
sensors: Experiences with impala and zebranet. In Proc.
2nd intl. conf. on Mobile systems, applications, and
services, pages 256–269. ACM, 2004.

[12] A. Moghadam and H. Schulzrinne. Interest-aware content
distribution protocol for mobile disruption-tolerant
networks. In IEEE intl. symp. on a World of Wireless,
Mobile and Multimedia Networks Workshops (WoWMoM),
pages 1–7, june 2009.

[13] M. Musolesi and C. Mascolo. Car: Context-aware adaptive
routing for delay-tolerant mobile networks. IEEE trans. on
Mobile Computing, 8(2):246–260, 2009.

[14] G. Ott and D. Kutscher. Bundling the web: Http over dtn.
In WNEPT 2006 Workshop on Networking in Public
Transport, Ontario, Canada, 2006.

[15] J. Reich and A. Chaintreau. The age of impatience:
optimal replication schemes for opportunistic networks. In
Proc. 5th intl. conf. on Emerging networking experiments
and technologies, CoNEXT ’09, pages 85–96. ACM, 2009.

[16] J. Rimmer, I. Wakeman, S. Naicken, and D. Chalmers.
Digital stadium: Designing for topophilia. In Geographic
HCI 2013 Workshop, Paris, France, April 2013. ACM CHI.

[17] J. Scott, J. Crowcroft, P. Hui, C. Diot, et al. Haggle: A
networking architecture designed around mobile users. In
3rd comf. on Wireless On-demand Network Systems and
Services (WONS), pages 78–86, 2006.

[18] K. Scott and S. Burleigh. Bundle Protocol Specification.
RFC 5050 (Experimental), Nov. 2007.

[19] J. Su, J. Scott, P. Hui, J. Crowcroft, E. De Lara, C. Diot,
A. Goel, M. H. Lim, and E. Upton. Haggle:. In Proc. 9th
intl. conf. on Ubiquitous computing, UbiComp ’07, pages
391–408. Springer-Verlag, 2007.

[20] A. Vahdat and D. Becker. Epidemic routing for
partially-connected ad hoc networks. Technical Report
CS-200006, Duke University, 2000.

[21] X. Zhong, H.-H. Chan, T. Rogers, C. Rosenberg, and
E. Coyle. The development and estadium testbeds for
research and development of wireless services for large-scale
sports venues. In 2nd intl. conf. on Testbeds and Research
Infrastructures for the Development of Networks and
Communities (TRIDENTCOM), 2006.

