Non-parametric tests 2:

One IV, with multiple levels:
Levels can differ
(a) qualitatively/categorically -
e.g. effects of managerial style (laissex-faire, authoritarian, egalitarian) on worker satisfaction.
effects of mood (happy, sad, neutral) on memory. effects of location (Scotland, England or Wales) on happiness ratings.
(b) quantitatively -
e.g. effects of age (20 vs 40 vs 60 year olds) on optimism ratings. effects of study time ($\mathbf{1 , 5} \mathbf{5}$ or 10 minutes) before being tested on recall of faces.
effects of class size on 10 year-olds' literacy.
effects of temperature (60,100 and 120 deg.) on mood.

Non-parametric tests for comparing three or more groups or conditions:
(a) Kruskal-Wallis test:

Similar to the Mann-Whitney test, except that it enables you to compare three or more groups rather than just two.
Different subjects are used for each group.
(b) Friedman's Test:

Similar to the Wilcoxon test, except that you can use it with three or more conditions.
Each subject does all of the experimental conditions.

Why have experiments with more than two levels of the IV?
(a) Increases generality of the conclusions:
e.g. comparing young (20) and old (70) subjects tells you nothing about the behaviour of intermediate age-groups.

(b) Economy:

Getting subjects is expensive - may as well get as much data as possible from them.
(c) Can look for trends:

What are the effects on performance of increasingly large doses of cannabis (e.g. 100mg, 200mg, 300mg)?

Kruskal-Wallis test, step-by-step:

Does it make any difference to students' comprehension of statistics whether the lectures are given in English, Serbo-Croat or Cantonese?

Group A: lectures in English;
Group B: lectures in Serbo-Croat;
Group C: lectures in Cantonese.
DV: student rating of lecturer's intelligibility on

Step 2:

Find "Tc", the total of the ranks for each group.
Tc1 (the total for the English group) is 20.
Tc2 (for the Serbo-Croat group) is $\mathbf{4 0 . 5}$.
Tc3 (for the Cantonese group) is $\mathbf{1 7 . 5}$.

Rank the scores, ignoring which group they belong to.
Lowest score gets lowest rank.
Tied scores get the average of the ranks they would otherwise have obtained.

English (raw score)	English (rank)	Serbo-Croat (raw score)	Serbo-Croat (rank)	Cantonese (raw score)	Cantonese (rank)
20	3.5	25	7.5	19	1.5
27	9	33	10	20	3.5
19	1.5	35	11	25	7.5
23	6	36	12	22	5

Step 3:
Find H .

$$
H=\left[\frac{12}{N(N+1)} * \sum \frac{T c^{2}}{n_{c}}\right]-3 *(N+1)
$$

N is the total number of subjects;
Tc is the rank total for each group;
nc is the number of subjects in each group.

$$
\begin{aligned}
& H=\left[\frac{12}{N(N+1)} * \Sigma \frac{T c^{2}}{n_{c}}\right]-3 *(N+1) \\
& \Sigma \frac{T c^{2}}{n_{c}}=\frac{20^{2}}{4}+\frac{40.5^{2}}{4}+\frac{17.5^{2}}{4}=586.62 \\
& H=\left[\left(\frac{12}{12 * 13}\right) * 586.62\right] \cdot(3 * 13)=6.12
\end{aligned}
$$

Step 4:

Degrees of freedom are the number of groups minus one. d.f. = 3-1 = 2 .

Step 5:
H is statistically significant if it is larger than the critical value of Chi-Square for these d.f.
Here, H is 6.12 . This is larger than 5.99 , the critical value of Chi-Square for 2 d.f.

The three groups differ significantly; the language in which statistics is taught does make a difference to the lecturer's intelligibility $(\mathrm{H}(2)=6.12, p<.05)$.

NB: the test merely tells you that the three groups differ; inspect group medians to decide how they differ.

Using SPSS for the Kruskal-Wallis test:
Analyze > Nonparametric tests $\boldsymbol{>} \boldsymbol{k}$ independent samples

Using SPSS for the Kruskal-Wallis test :

Friedman's test, step-by-step:

Effects on worker mood of different types of music:
Five workers. Each is tested three times, once under each of the following conditions:
condition 1: silence.
condition 2: "easy-listening" music.
condition 3: marching-band music.
DV: mood rating ("0" = unhappy, "100" = euphoric).
Ratings - so use a nonparametric test.
NB: to avoid practice and fatigue effects, order of presentation of conditions is varied across subjects.

Output from SPSS for Kruskal-Wallis test :

Test Statistics ${ }^{\mathbf{a}, \mathbf{b}}$	
	intelligibility
Chi-Square	6.190
df	2
Asymp. Sig.	.045

a. Kruskal Wallis Test
b. Grouping Variable: language

Silence (raw score) Silence (ranked score) Easy (raw score) Easy (ranked score)Band (raw score)	Band (ranked score)					
Wkr 1:	4	1	5	2	6	3
Wkr 2:	2	1	7	2.5	7	2.5
Wkr 3:	6	1.5	6	1.5	8	3
Wrkr 4:	3	1	7	3	5	2
Wrkr 5:	3	1	8	2	9	3

Step 1:
Rank each subject's scores individually.
Worker 1's scores are 4, 5, 6: these get ranks of 1, 2, 3.
Worker 4's scores are 3, 7, 5: these get ranks of 1, 3, 2 .

	Silence (raw score)	Silence (ranked score)	Easy (raw score)	Easy (ranked score)	Band (raw score)	Band (ranked score)
Wkr 1:	4	1	5	2	6	3
Wkr 2:	2	1	7	2.5	7	2.5
Wkr 3:	6	1.5	6	1.5	8	3
Wrkr 4:	3	1	7	3	5	2
Wrkr 5:	3	1	8	2	9	3

Step 2:
Find the rank total for each condition, using the ranks from all subjects within that condition.

Rank total for "Silence" condition: 1+1+1.5+1+1 = 5.5. Rank total for "Easy Listening" condition = 11.
Rank total for "Marching Band" condition = 13.5
(a) square each rank total:
$5.5^{2}=30.25 .11^{2}=121.13 .5^{2}=182.25$.
(b) Add together these squared totals.
$30.25+121+182.25=333.5$.

Step 3:
Work out χ r 2

$$
\chi r^{2}=\left[\left(\frac{12}{N * C *(C+1)}\right) * \Sigma T c^{2}\right]-3 * N *(C+1)
$$

C is the number of conditions.
N is the number of subjects.
$\Sigma T c^{2}$ is the sum of the squared rank totals for each condition.

Step 5:

Assessing the statistical significance of χr^{2} depends on the number of subjects and the number of groups.

(a) Less than 9 subjects:

Use a special table of critical values (as on my website).
(b) 9 or more subjects:

Use a Chi-Square table (on my website).
Compare your obtained $\chi \mathrm{r}^{2}$ value to the critical value of Chi-Square for your d.f.
If your obtained $\chi \mathrm{r}^{2}$ is bigger than the critical Chi-Square value, your conditions are significantly different.

The test only tells you that some kind of difference exists; look at the median score for each condition to see where the difference comes from.

We have 5 subjects and 3 conditions, so use Friedman table for small sample sizes:

Obtained $\chi \mathrm{r}^{2}$ is 6.7.
For $N=5$, a $\chi \mathrm{r}^{2}$ value of 6.4 would occur by chance with a probabilty of 0.024 .
Our obtained value is bigger than 6.4.
Conclusion: the conditions are significantly different.
Music does affect worker mood.

Using SPSS to perform Friedmans test:
Analyze > Nonparametric Tests $\boldsymbol{>} \boldsymbol{k}$ related samples

Using SPSS to perform Friedmans test:

Analyze > Nonparametric Tests >k related samples

Using SPSS to perform Friedmans test:

Analyze > Nonparametric Tests >k related samples

Descriptive Statistics							
	N	Mean	Std. Deviation	Minimum	Maximum		
silence		5	3.6000	1.51658	2.00		
easy		5	6.6000	1.14018	5.00		
marching		5	7.0000	1.58114	5.00		

Ranks

	Mean Rank
silence	1.10
easy	2.20
marching	2.70

Test Statistics ${ }^{\mathbf{a}}$

N	5
Chi-Square	7.444
df	2
Asymp. Sig.	.024
a. Friedman Test	

NB: slightly different value from 6.7 worked 6.7 worked
out by hand
a. Friedman Test

Which nonparametric test?

Differences in fear ratings for 3,5 and 7year olds in response to sinister noises from under their bed.

Effects of cheese, brussel sprouts, wine and curry on vividness of a person's dreams on four separate nights.

Number of people spearing their eardrums after enforced listening to Britney Spears, Beyonce, Robbie Williams and Boyzone.

Pedestrians rate the aggressiveness of owners of different types of car. Group A rate Micra owners; group B rate 4×4 owners; group C rate Subaru owners; group D rate Mondeo owners).

Independent measures, three
groups:
Kruskal-Wallis.

Repeated measures, four groups: Friedman's.

Frequency data:
Chi-Square.
ndependent measures, four groups:
Kruskal-Wallis.

