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Eight things you need to know about interpreting correlations: 

 A correlation coefficient is a single number that represents the degree of association between 
two sets of measurements. It ranges from +1 (perfect positive correlation) through 0 (no correlation at 
all) to -1 (perfect negative correlation). Correlations are easy to calculate, but their interpretation is 
fraught with difficulties because the apparent size of the correlation can be affected by so many 
different things. The following are some of the issues that you need to take into account when 
interpreting the results of a correlation test. 

 

 1. Correlation does not imply causality: 

 This is the single most important thing to remember about correlations. If there is a strong 
correlation between two variables, it's easy to jump to the conclusion that one of the variables causes 
the change in the other. However this is not a valid conclusion. If you have two variables, X and Y, it 
might be that X causes Y; that Y causes X; or that a third factor, Z (or even a whole set of other 
factors) gives rise to the changes in both X and Y. 
 For example, suppose there is a correlation between how many slices of pizza I eat (variable 
X), and how happy I am (variable Y). It might be that X causes Y - so that the more pizza slices I eat, 
the happier I become. But it might equally well be that Y causes X  - the happier I am, the more pizza 
I eat. Or it might be that a third factor (price of pizzas) affects both X and Y, so that changes in the 
price of pizza  affect both how much pizza I eat, and how happy I am . (When pizza is expensive, I eat 
little of it and I am miserable).  
 Sometimes the direction of causality is fairly obvious. For example, the more miles I drive, the 
greater my CO2 emissions: it makes no sense to think that my CO2 emissions cause my mileage. But 
in many cases, the causal relationship is ambiguous. That's why we do experiments, because a well-
designed experiment is able to establish cause and effect relationships.  
 
 
 2. The size of a correlation can be influenced by the size of your sample: 

 Correlations are usually worked out on the basis of samples from populations. If I am 
interested in whether there is a correlation between how many times a week someone reads the 
"Daily Mail" and their score on a Fascism scale, I can't manage to get to the whole population of  
"Daily Mail" readers to find out. There are (sadly) too many of them. Therefore I would have to be 
content with taking a random sample of "Daily Mail" readers; asking each one how many times a 
week they read it and obtaining their Fascism score; and then calculating the correlation between 
these two samples of measurements. We generally want to infer what the true population correlation 
is, on the basis of this correlation calculated from our sample. How well does a sample correlation 
reflect the true state of affairs in the parent population? It depends on the size of your sample. All 
other things being equal, the larger the sample, the more stable (reliable) the obtained correlation. 
 Correlations obtained with small samples are quite unreliable. This can be shown as follows. 
Suppose we take two variables that we know are not correlated at all with each other in the parent 
population (Pearson's r = 0). Now suppose we take two samples of measurements from these 
variables and perform a correlation test on them. What happens? Most of the time, the r derived from 
the samples will be similar to the true value of r in the population: our correlation test will produce a 
value of r that is 0, or close to 0. Now suppose we repeat this procedure many times over. Because 
samples vary randomly, from time to time we will get a sample correlation coefficient that is much 
larger or smaller than the true population figure. In other words, on occasion we will get freakily large 
values of r that have really occurred by chance but which might fool us into thinking that there was a 
strong correlation in the parent population. The smaller the sample size, the greater the likelihood of 
obtaining a spuriously-large correlation coefficient in this way. 
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  Look at the following table. It shows the limits within which 80% of Pearson's r values are 
likely to fall, if you performed many separate correlation tests between samples from a population in 
which there was really no correlation at all between the two variables concerned. For example, 
suppose you performed lots of correlations with a sample size of 5 measurements for each variable. 
Remember that the true relationship, in the population, is that r = 0. However, approximately 80% of 
the time, the sample correlation will be somewhere between -.69 to .69. This in turn means that 22% 
of correlations will be even more extreme values: 11% of the time, you are likely to get a correlation 
bigger than .69, and 11% of the time you are likely to get a correlation bigger than -.69 - purely by 
chance! 

 As sample size goes up, so correlation coefficients fluctuate less around the "true" figure for 
the population r. Notice that it's only once you get up to a sample size of 100 or so that the sample 
correlation coefficients start to consistently resemble the true population correlation coefficient. In 
short, the message is - be very wary of correlations based on small sample sizes. You need a large 
sample before you can be really sure that your sample r is an accurate reflection of the population r. 

Limits within which 80% of sample r's will fall, when the true (population) correlation is 0: 

 Sample size: 80% limits for r: 

5 -.69  to  +.69 

15 -.35  to  +.35 

25 -.26  to  +.26 

50 -.18  to  +.18 

100 -.13  to  +.13 

200 -.09  to  +.09 

 

 

 3. Linearity of the relationship: 

 It's important to keep in mind what a correlation test actually does. Pearson's r measures the 
strength of the linear relationship between two variables: for a given increase (or decrease) in variable 
X, is there a constant corresponding increase (or decrease) in variable Y? If there is, then the values 
on a scatterplot of the relationship between X and Y will fall on (or close to) a straight line. You will get 
something like this: 
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 This graph shows a perfect positive correlation between X and Y (r = +1): as X increases, so 
too does Y, by a constant amount. 

 

 This graph shows a perfect negative correlation between X and Y (r = -1): as X increases, Y 
decreases by a constant amount. 

 Spearman's rho measures something different: it is an indicator of monotonicity. It reflects 
the extent to which an increase (or decrease) in X is associated with some kind of increase (or 
decrease) in Y, but the amount of increase does not have to constant over the whole range of values.  

 

Examples of monotonic relationships between two variables: in all three cases, X increases as Y 
increases, but the rate of increase in Y differs depending on the value of X (e.g. in the first graph, Y 
doesn't increase by much when values of X are small; however Y increases a great deal when values 
of X are large). 

 If the data show a monotonic but non-linear relationship, as in the figures above, Pearson's r 
will underestimate the true strength of the relationship. In fact, in this situation, Spearman's rho will be 
larger than Pearson's r, because these data show a monotonic relationship and that's what rho tests 
for.  This is why you should always look at the scatterplot of the data before calculating a correlation 
coefficient. The scatterplot will show you what the relationship between X and Y really looks like. In 
the following example there is a really clear relationship between X and Y. However it is neither linear 
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nor monotonic: it's curvilinear and so both rho and r will be very small. If you only looked at the 
correlation test result, you might be misled into thinking that there was no relationship between X and 
Y in this situation. 

 

 

 

 

 

 

 

 

 3. Range of talent (variability): 

 The smaller the amount of variability in X and/or Y, the lower the apparent correlation.  

 

 

 

 

 

 

 

 

 This phenomenon often crops up in correlational research. For example, if you look at the 
relationship between IQ and educational attainment in the general population, you'll find that the 
correlation appears to be stronger than it is within a subset of that population (e.g. university students). 
That's partly because the amount of variability in both IQ and educational attainment is greater in the 
general population than in amongst students. Therefore, in assessing a correlation, you often need to 
think about the range of scores on the two variables being correlated. If you have two tests, and one 
or other of them produces consistently high or consistently low scores, then this will reduce the 
apparent size of the correlation between the two sets of scores. 

 

 4. Homoscedasticity (equal variability): 

 Pearson's r describes the average strength of the relationship between X and Y. Hence 
scores should have a constant amount of variability at all points in their distribution. In the following 
graph, the data lack homoscedasticity. For small values of X and Y, there is a strong relationship: the 
points are all very close to the regression line. However for large values of X and Y, the relationship is 
much weaker. This makes r pretty meaningless as a summary of the relationship between the two 
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variables: for small values of X and Y, r underestimates the strength of the relationship, whereas for 
large values of X and Y, r overestimates it.  

 

  

 

 5. Effects of discontinuous distributions: 

 A few outliers can distort things considerably. if you consider the bulk of the scores here, at 
the bottom left of the graph, there is clearly no correlation between X and Y. If the outliers at the top 
right of the figure are included, you increase the size of the correlation coefficient, making it seem as if 
there is a relationship between X and Y. Even if these were not outliers, it would still be misleading to 
cite the value of r in this case. That's because it's implicit in the use of r that the relationship applies 
across the whole range of values for X and Y. Here, we have no information at all about what 
happens when X and Y have intermediate values: we only know what happens when the values of X 
and Y are either low or high. Since r is an estimate of the average strength of the relationship, it would 
be misleading to use it in this case. 
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6. Deciding what is a "good" correlation: 

 We saw earlier that an apparently strong correlation could occur purely by chance, especially 
if our sample is quite small. Any observed correlation can occur for one of two reasons: 

(a) because of sampling variation (so that it's just a fluke); or 

(b) because there is a genuine association between the two variables concerned. 

How can we tell which of these possibilities is the correct interpretation for our observed value of r or 
rho? 

 We rely on the fact that although sampling variation can throw up large correlation coefficients 
by chance, in practice it is unlikely to do so. The bigger the value of a correlation coefficient, the less 
likely it is to have occurred merely by chance, and the more likely it is that it has occurred because it 
represents a genuine relationship between the two variables in question. In fact, the probabilities of 
obtaining various sizes of correlation between two actually-uncorrelated variables are normally 
distributed: 

Distribution of r's obtained using samples drawn from two uncorrelated populations of scores: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

So if there is really no relationship between X and Y, but we keep taking samples of X and Y and work 
out the correlation between them each time, this is what we are likely to get. If the sample size is 
reasonably large, then most of the time we will obtain a small correlation between the two variables 
(representing the true state of affairs in the population). Spuriously large positive or negative 
correlations will occur, but not very often - and the larger the correlation, the less likely it is to occur by 
chance.  
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 In practice, we make a somewhat arbitrary decision: 

 (a) If our sample correlation is so large that it is likely to occur by chance only 5 times in a 
hundred tries (it has a p < .05), we will assume that it reflects a genuine correlation in the population 
from which the sample came. 

 (b) If a correlation like ours is likely to occur by chance more often than this, we assume it has 
arisen merely by chance, and that it is not evidence for a correlation in the parent population. 

 To make this judgement, the size of our sample needs to be taken into account. As 
mentioned earlier, large correlation coefficients are more likely to occur purely by chance if the 
sample size is small. Therefore, we need to be more cautious in deciding that our observed value of 
the correlation coefficient represents a "real" relationship when the sample size is small than when it 
is large. For example, a correlation of .20 could quite easily occur by chance with a sample size of 5, 
but is much less likely to occur by chance with a sample size of 200.  
 SPSS will take sample size into account when telling you whether or not a given correlation is 
statistically significant (i.e. whether or not it is likely to have occurred by chance). For Spearman's rho, 
the convention is to report N, the number of pairs of scores, as well as the value of rho itself. For 
Pearson's r, you report the "degrees of freedom", which is the number of pairs of scores minus 2 (so if 
you had 20 pairs of scores, you would have 18 d.f.; if you had 11 pairs of scores, you would have 9 
d.f.; and so on). This enables the reader to get an idea of the sample size on which your correlation 
test was based. 
 The more old-fashioned way of assessing the strength of a correlation is to calculate it by 
hand, and then compare your obtained correlation coefficient to those in a table of "critical values". 
There are tables of this sort in the back of many statistics books and on my website. 
  There are different tables for r and for rho. For r, you need to know the d.f. in order to use the 
table, while for rho you need to know N. Essentially, in both cases, the table shows you various 
possible values of the correlation coefficient and how likely these are to have occurred by chance. 
You compare your obtained correlation to the ones in the table. If your obtained value is bigger than 
the value in the table, then by implication your obtained correlation is even less likely to have occurred 
by chance. 
 An illustration of how to use these tables with Pearson's r: 

 Suppose we take a sample of 20 people and measure their eye-separation and back 
hairiness. Our sample r is .75. Does this reflect a true correlation between eye-separation and 
hairiness in the parent population, or has our r arisen merely by chance (i.e. because we have a 
freaky sample)? 

Step 1: 

Calculate the "degrees of freedom"  (d.f. = the number of pairs of scores, minus 2). Here, we have 20 
pairs of scores, so d.f. = 18. 

Step 2: 

Find a table of "critical values for Pearson's r". Here's part of such a table. 
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 Level of significance (two-tailed) 

d.f. .05 .01 .001 

17 .4555 .5751 .6932 

18 .4438 .5614 .6787 

19 .4329 .5487 .6652 

20 .4227 .5368 .6524 

 

 Step 3:  

 Move along the row of values for 18 d.f., from left to right, comparing our obtained r with the 
ones in the table. With 18 d.f., a correlation of .4438 or larger will occur by chance with a probability 
of .05: i.e., if we took 100 samples of 20 people, about 5 of those samples are likely to produce an r 
of  .4438 or larger (even though there is actually no correlation in the population). Our sample r of .75 
is larger than .4438, and so even less likely to occur by chance than this. 

 With 18 d.f., a correlation of .5614 or larger will occur by chance with a probability of .01: i.e., 
if we took 100 samples of 20 people, about 1 of those 100 samples is likely to give an r of .5614 or 
larger (again, even though there is actually no correlation in the population). Our r of .75 is larger 
than .5614, and so even less likely to occur by chance than this. 

 With 18 d.f., a correlation of .6787 or larger will occur by chance with a probability of .001: i.e., 
if we took 1000 samples of 20 people, about 1 of those 1000 samples is likely to give an r of .6787 or 
larger (again, even though there is actually no correlation in the population). Our r of .75 is larger 
than .6787, and so even less likely to occur by chance than this. 

 We can therefore consider the two possible interpretations of our obtained value of r. The first 
(the "null hypothesis") is that there is really no relationship between eye-separation and back-
hairiness in the population: our obtained value of r has arisen merely by chance, as a sampling "fluke". 
This interpretation might be true, but the probability of obtaining a value of r as large as ours, purely 
by chance, is less than one in a thousand (p < .001). It seems more plausible to accept the 
"alternative hypothesis", that the value of r that we have obtained from our sample represents a real 
relationship between eye-separation and back-hairiness in the population. You always have to bear in 
mind that any sample correlation could in principle occur due to chance or because it reflects a true 
relationship in the population from which the sample was taken. We can never be certain which of 
these two interpretations is the correct one, because freaky results can occur merely by chance. 
However, in this case, because our r of .75 is so unlikely to occur by chance, we can safely assume 
that there almost certainly is a genuine relationship between eye-separation and back-hairiness. 
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 7. How to report the results of a correlation test: 

 For the above example, you might write something as follows.  

"There was a strong positive correlation between eye-separation and back-hairiness, r(18) = .75, p 
< .001". 

You report Spearman's rho similarly, except that you report N instead of d.f. : 

"There was a negative correlation between Daily Mail reading and intelligence, rs(98) = .21, p < .05". 

 

 8. Statistical significance versus importance: 

 Do not confuse statistical significance with practical importance. They are quite different 
issues. We have just assessed "statistical significance" - the likelihood that our obtained correlation 
has arisen merely by chance. Our r of .75 is "highly significant" (i.e., highly unlikely to have arisen by 
chance). However, a weak correlation can be statistically significant, if the sample size is large 
enough. Suppose that actually we tested 102 people, and that the relationship between eye-
separation and back-hairiness gave rise to an r  of .19. With 100 d.f., this r would be statistically 
"significant" in the sense that it is unlikely to have arisen by chance (r's bigger than this will occur by 
chance only 5 in a 100 times).  

 In order to assess practical importance, square the correlation coefficient to get R2, the 
coefficient of determination. This shows how much of the variation in one of the variables is 
associated with variation in the other. An r of .19 produces an R2 value of only 3.61% (.19 * .19 
= .0361, which as a percentage = 3.61%). R2 shows that this is not a strong relationship in a practical 
sense; knowledge of one of the variables would account for only 3.61% of the variance in the other. 
This would be completely useless for predictive purposes, as 96.39% of the variation in back-
hairiness occurs for reasons that are unconnected with that variable's relationship to eye-separation! 

 R2 is an example of a measure of effect size. Other statistical tests, such as t-tests and 
ANOVA, also have their own measures of effect size. It is becoming increasingly common in 
psychology for researchers to report effect size alongside more conventional measures of statistical 
significance. This is because researchers want to convey some idea of the size of an effect, as well 
as the likelihood of it occurring merely by chance. 

  

 

 

 

 

 

 

 

 

 


