Analysis of Variance: repeated measures

Logic behind ANOVA:

ANOVA compares the amount of systematic variation (from our experimental manipulations) to the amount of random variation (from the participants themselves) to produce an F-ratio:

Tests for comparing three or more groups or conditions:
(a) Nonparametric tests:

Independent measures: Kruskal-Wallis.
Repeated measures: Friedman's.
(b) Parametric tests:

One-way independent-measures Analysis of Variance (ANOVA).

One-way repeated-measures ANOVA.
$F=\quad$ systematic variation
random variation ("error")

Large value of F : a lot of the overall variation in scores is due to the experimental manipulation, rather than to random variation between participants.

Small value of F : the variation in scores produced by the experimental manipulation is small, compared to random variation between participants.

ANOVA is based on the variance of the scores.
The variance is the standard deviation squared:

$$
\text { variance }=\frac{\sum(X-\bar{X})^{2}}{N}
$$

In practice, we use only the top line of the variance formula (the "Sum of Squares", or "SS"):

$$
\text { sum of squares }=\sum(X-\bar{X})^{2}
$$

We divide this by the appropriate "degrees of freedom" (usually the number of groups or participants minus 1).

One-way Repeated-Measures ANOVA:

Use this where you have:
(a) one independent variable (with 2 or more levels);
(b) one dependent variable;
(c) each participant participates in every condition in the experiment (repeated measures).

A one-way repeated-measures ANOVA is equivalent to a repeated-measures t-test, except that you have more than two conditions in the study.

Effects of sleep-deprivation on vigilance

 in air-traffic controllers:No deprivation vs. 12 hours' deprivation:
One Independent Variable, 2 levels - use repeated-measures t-test.

No deprivation vs. 12 hours vs. 24 hours:

One Independent Variable, 3 levels (differing quantitatively) use one-way repeated-measures ANOVA

Effects of sleep deprivation on vigilance:
Independent Variable: length of sleep deprivation (0,12 hours and 24 hours). Dependent Variable: 1 hour vigilance test (number of planes missed).
Each participant does all 3 conditions, in a random order.

Participant	0 hours	12 hours	24 hours
1	3	12	13
2	5	15	14
3	6	16	16
4	4	11	12
5	7	12	11
6	3	13	14
7	4	17	16
8	5	11	12
9	6	10	11
10	3	13	14

hours:
Mean $=4.6$
standard deviation $=1.43$.

12 hours:
Mean = 13.0
standard deviation $=2.31$.

24 hours:
Mean = 13.3
standard deviation $=1.83$.

"Partitioning the variance" in a one-way repeated-measures ANOVA:

Total SS		
Between Subjects SS	Within Subjects	
	SS	
	1	
(usually	SS Experimental	SS Error
uninteresting: if	(systematic	(unsystematic
it's large, it just	within-subjects	within-subjects
shows that	variation that	variation that's
subjects differ	reflects our	not due to our
from each other	experimental	experimental
overall)	manipulation)	manipulation)

	The ANOVA summary table:			
	SS			
Source:	df	MS	F	
Between subjects	48.97	9	5.44	
Within subjects	534.53	20		
Experimental	487.00	2	243.90	92.36
Error	47.53	18	2.64	
Total				

Total SS: reflects the total amount of variation amongst all the scores.
Between subjects SS: a measure of the amount of unsystematic variation between the subjects.

Within subjects SS
Experimental SS: a measure of the amount of systematic variation within the subjects. (This is due to our experimental manipulation).

Error SS: a measure of the amount of unsystematic variation within each participant's set of scores.

Total SS = Between subjects SS + Within subjects SS

Another look at the table: Effects of sleep deprivation on vigilance

between subjects within subjects variability / variability				
Participant	0 nours		24	0 hours:
1	3	12	13	Mean $=4.6$
2	5	15		standard deviation $=1.43$.
3	6	16	16	
4	4	11	12	12 hours:
5	7	12	11	Mean = 13.0
6	3	13	14	standard deviation $=2.31$.
7	4	17	16	
8	5	11	12	24 hours:
9	6	10	11	Mean = 13.3
10	3	13	14	standard deviation $=1.83$.

Assessing the significance of the F-ratio (by hand): The bigger the F-ratio, the less likely it is to have arisen merely by chance.

Use the between-subjects and within-subjects degrees of freedom to find the critical value of F.

Your F is significant if it is equal to or larger than the critical value in the table.

Here, look up the critical F value for 2 and 18 degrees of freedom	1		23	
	1	161.448	199.5	215.707
	2	18.513	19	19.164
	3	10.128	9.552	9.277
Columns correspond to	4	7.709	6.944	6.591
EXPERIMENTAL degrees of	5	6.608	5.786	5.409
freedom	6	5.987	5.143	4.757
	7	5.591	4.737	4.347
Rows correspond to ERROR	8	5.318	4.459	4.066
degrees of freedom	9	5.117	4.256	3.863
	10	4.965	4.103	3.708
	11	4.844	3.982	3.587
Here, go along 2 and down 18:	12	4.747	3.885	3.49
critical F is at the intersection	13	4.667	3.806	3.411
	14	4.6	3.739	3.344
	15	4.543	3.682	3.287
Our obtained F, 92.36, is bigger	16	4.494	3.634	3.239
than 3.55; it is therefore	17	4.451	3.592	3.197
significant at $\boldsymbol{p}<$.05. (Actually	18	4.414	3.555	3.16
it's bigger than the critical	19	4.381	3.522	3.127
value for a p of 0.0001)	20	4.351	3.493	3.098

Interpreting the Results:

A significant F-ratio merely tells us that there is a statistically-significant difference between our experimental conditions; it does not say where the difference comes from.

In our example, it tells us that sleep deprivation affects vigilance performance.

To pinpoint the source of the difference:

(a) planned comparisons - comparisons between groups which you decide to make in advance of collecting the data.
(b) post hoc tests - comparisons between groups which you decide to make after collecting the data: Many different types - e.g. Newman-Keuls, Scheffé, Bonferroni.

Using SPSS for a one-way repeated-measures ANOVA on effects of fatigue on vigilance

```
Data $0% Untilled1 [DataSet0] - SPSS Data Editor
```


Go to: Analyze > General Linear Model > Repeated Measures. .

11:				
	VAR00003	VAR00004	VAR00005	VAR00006
1	1.00	3.00	12.00	13.00
2	2.00	5.00	15.00	14.00
3	3.00	6.00	16.00	16.00
4	4.00	4.00	11.00	12.00
5	5.00	7.00	12.00	11.00
6	6.00	3.00	13.00	14.00
7	7.00	4.00	17.00	16.00
8	8.00	5.00	11.00	12.00
9	9.00	6.00	10.00	11.00
10	10.00	3.00	13.00	14.00

Tell SPSS about your within-subjects Independent Variable (i.e. number of levels; and which columns the levels of the independent variable are in):

Then click continue and OK

The SPSS output (ignore everything except what's shown here!):

SPSS ANOVA results:

Tests of Within-Subjects Effects

Measure: MEASURE_1						
Source		Type III Sum of Squares	df	Mean Square	F	Sig.
deprivation	Sphericity Assumed	487.800	2	243.900	92.360	. 000
	Greenhouse-Geisser	487.800	1.181	413.186	92.360	. 000
	Huynh-Feldt	487.800	1.254	388.985	92.360	. 000
	Lower-bound	487.800	1.000	487.800	92.360	000
Error(deprivation)	Sphericity Assumed	47.533	18	2.641		
	Greenhouse-Geisser	47.533	10.625	4.474		
	Huynh-Feldt	47.533	11.286	4.212		
	Lower-bound	47.533	9.000	5.281		

Use Sphericity Assumed F-ratio if Mauchly's test was NOT significant. Significant effect of sleep deprivation ($F 2,18=92.36, p<.0001$)
OR, (if Mauchly's test was significant) use Greenhouse-Geisser (F 1.18, $10.63=92.36, \mathrm{p}<.0001$).

