

Non-directional hypothesis: Height of 14 year old boys will be different from height of 10 year old boys.

Directional hypothesis: Height of 14 year old boys will be greater than 10 year old boys.

We have agreed that we are willing to tolerate being wrong 5% of the time, which corresponds to 5% of the total area under the curve.

	Subject gr	oup 1	Subject gr	oup 2
		X ₁		X ₂
	Participant 1	13.0	Participant 1	11.1
	Participant 2	16.5	Participant 2	13.5
	Participant 3	16.9	Participant 3	11.0
	Participant 4	19.7	Participant 4	9.1
	Participant 5	17.6	Participant 5	13.3
	Participant 6	17.5	Participant 6	11.7
	Participant 7	18.1	Participant 7	14.3
	Participant 8	17.3	Participant 8	10.8
	Participant 9	14.5	Participant 9	12.6
	Participant 10	13.3	Participant 10	11.2
aning of a summation	on sign $\rightarrow \sum X_1 =$	= 164.4	$\sum X_2 =$	= 118.6

Tests for comparing three or more groups or conditions:

(a) Nonparametric tests: Independent measures: Kruskal-Wallis. Repeated measures: Friedman's.

(b) Parametric tests: Analysis of Variance (ANOVA). ANOVA is a whole family of tests: includes independent measures and repeated measures versions.

Suppose we have 3 groups. We will have to compare:

group 1 with group 2 group 1 with group 3 group 2 with group 3

> Each time we perform a test there is (small) probability of rejecting the null hypothesis which is true. These probabilities add up. So we want a single test. Which is ANOVA.

Logic behind ANOVA:

Variation in a set of scores comes from two sources:

Random variation from the subjects themselves (due to individual variations in motivation, aptitude, etc.)

Systematic variation produced by the experimental manipulation.

ANOVA compares the amount of systematic variation to the amount of random variation, to produce an *F*-ratio:

F = systematic variation random variation ('error') (c) ANOVA can be used to compare groups that differ on two, three or more independent variables, and can detect *interactions* between them.

Anothe 4 grou followe	e <mark>r example:</mark> ps - each ge ed by a mem	Effects of o ts a differe lory test.	caffeine on l ent dosage o	memory of caffeine, Syste	ematic ation
Random	Group A	Group B	Group C	Group D	
variation	(0 mg)	(1 mg)	(5 mg) 🖌	(10 mg)	
(4	7	11	14	
×	3	9	15	12	
	5	10	13	10	
	6	11	11	15	
	2	8	10	14	
	total = 20	total = 45	total = 60	total = 65	
	mean = 4	mean = 9	mean = 12	mean = 13	
	s.d. = 1.58	s.d. = 1.58	s.d. = 2.00	s.d. = 2.00	
	<u> </u>	·			

$$F = \frac{systematic variation}{random variation ('error')}$$

Large value of *F*: a lot of the overall variation in scores is due to the experimental manipulation, rather than to random variation between subjects.

Small value of *F*: the variation in scores produced by the experimental manipulation is small, compared to random variation between subjects.

One-way Independent-Measures ANOVA:

Use this where you have: (a) *one* independent variable (which is why it's called "one-way");

(b) *one* dependent variable (you get only one score from each subject);

(c) each subject participates in only *one* condition in the experiment (which is why it is independent measures).

A one-way independent-measures ANOVA is equivalent to an independent-measures *t*-test, except that you have more than two groups of subjects.

CALCULATIONS

In practice, ANOVA is based on the *variance* of the scores. The variance is the standard deviation squared:

variance = $\frac{\sum (X - \overline{X})^2}{N}$

We want to take into account the number of subjects and number of groups. Therefore, we use only the top line of the variance formula (the "Sum of Squares", or "SS"):

sum of squares = $\sum (X - \overline{X})^2$

We divide this by the appropriate "*degrees of freedom*" (usually the number of groups or subjects minus 1).

Effects of caffeine on memory:

4 groups - each gets a different dosage of caffeine, followed by a memory test.

Group A	Group B	Group C	Group D
(0 mg)	(1 mg)	(5 mg)	(10 mg)
4	7	11	14
3	9	15	12
5	10	13	10
6	11	11	15
2	8	10	14
total = 20	total = 45	total = 60	total = 65
mean = 4	mean = 9	mean = 12	mean = 13

	Within	groups SS	
Group A	Group B	Group C	Group D
(0 mg)	(1 mg)	(5 mg)	(10 mg)
4	(7)	(11)	14
3	(9)	(15)	(12)
5	(10)	13	(10)
6	(11)	(11)	(15)
2	8	10	14
<u> </u>			

	Betweer	n groups S	S	
Group A	Group B	Group C	Group D	
(0 mg)	(1 mg)	(5 mg)	(10 mg)	
4	(7)	(11)	14	ПП
3)	(9)	(15)	(12)	− Γ
5	(10)	13	(10)	Ē
6	(11)	(11)	(15)	٦F
2)	(8)	(10)	(14)	⊣⊨

The ANOVA summary table:											
Source: Between groups	SS 245.00	df 3	MS 81.67	F 25.13							
Within groups	52.00	16	3.25								
Total	297.00	19									

Total SS: a measure of the total amount of variation amongst all the scores.

Between-groups SS: a measure of the amount of variation between the groups. (This is due to our experimental manipulation).

Within-groups SS: a measure of the amount of variation within the groups. (This *cannot* be due to our experimental manipulation, because we did the *same* thing to *everyone* within each group).

(Total SS) = (Between-groups SS) + (Within-groups SS)

Source: Between groups Within groups Total	SS 245.00 51.98 297.00	df 3 16 19	MS 81.67 3.25	F 25.13									
Total degrees of freedom: the number of subjects, minus 1.													
Between-groups degrees of freedom: the number of groups, minus 1.													
Within-groups degree	es of freedom	:											
Obtained by adding t	ogether												
the number of subjec	ts in group A	, minus 1	;										
the number of subjec	ts in group B	, minus 1	; etc.										
(between-groups df)	+ (within-gro	oups df)	= (total df)										

Here, look up the critical		1	2	3	4
F-value for 3 and 16 d.f.	1	161.4	199.5	215.7	224.6
	2	18.51	19.00	19.16	19.25
Columns correspond to	3	10.13	9.55	9.28	9.12
between-groups d.f.;	4	7.71	6.94	6.59	6.39
ows correspond to	5	6.61	5.79	5.41	5.19
ithin-groups d.f.	6	5.99	5.14	4.76	4.53
	7	5.59	4.74	4.35	4.12
Here, go <i>along</i> 3 and	8	5.32	4.46	4.07	3.84
<i>lown</i> 16: critical <i>F</i> is at	9	5.12	4.26	3.86	3.63
he intersection.	10	4.96	4.10	3.71	3.48
)ur obtained E 25.12 is	11	4.84	3.98	3.59	3.36
$\frac{1}{2}$	12	4.75	3.89	3.49	3.26
igger than 3.24; it is	13	4.67	3.81	3.41	3.18
herefore significant at	14	4.60	3.74	3.34	3.11
<.05. (Actually it's bigger	15	4.54	3.68	3.29	3.06
nan 9.01, the critical	16	4.49	3.63	3.24	3.01
alue for a <i>p</i> of 0.001).	17	4.45	3.20	3.20	2.96

Assessing the significance of the F-ratio:

The bigger the F-ratio, the less likely it is to have arisen merely by chance.

Use the between-groups and within-groups d.f. to find the critical value of F.

Your F is significant if it is *equal to or larger* than the critical value in the table.

Interpreting the Results:

A significant F-ratio merely tells us is that there is a statistically-significant difference between our experimental conditions; it does not say *where* the difference comes from.

In our example, it tells us that caffeine dosage does make a difference to memory performance.

BUT suppose the difference is ONLY between: Caffeine VERSUS No-Caffeine

AND There is NO difference between: Large dose of Caffeine VERSUS Small Dose of Caffeine

To pinpoint the source of the difference we can do:

(a) *planned comparisons* - comparisons between (two) groups which you decide to make *in advance* of collecting the data.

(b) *post hoc tests* - comparisons between (two) groups which you decide to make *after* collecting the data: Many different types - e.g. Newman-Keuls, Scheffé, Bonferroni.

Using SPSS for a one-way independent-measures ANOVA on effects of alcohol on time taken on a motor task.

Three groups:

Group 1: two drinks Group 2: one drink Group 3: no alcohol

(Analyze > compare means > One Way ANOVA)

Assumptions underlying ANOVA:

ANOVA is a parametric test (like the t-test)

It assumes:

- (a) data are interval or ratio measurements;
- (b) conditions show homogeneity of variance;

(c) scores in each condition are roughly normally distributed.

		🛃 "Untitled	1 [DataSet0] -	SPSS Data Editor						
	Relicitos Adicel	Ele Edit V	jew Data Ir	ansform <u>A</u> nalyze	Graphs	Litities Ac	id-ons <u>W</u> indov	v <u>H</u> elp		
		😕 🖬 🔒	📴 👆 👼	揓 🕵 🔐 🚧	📲 💼	🔡 🥸 🥅	👒 💊 🍋			
	0	31 : VAR00002								
Data	Curkline Sone		VAR00001	VAR00002						
Entra	Player altern	1	13.00	1.00						
Entry		2	16.50	1.00						
	.	3	16.90	1.00						
	Addise Reader	4	19.70	1.00						
		5	17.60	1.00						
	L	6	17.50	1.00						
	A second second		18.10	1.00						
		8	17.30	1.00						
		9	14.50	1.00						
		10	13.30	2.00						
		12	13.60	2.00						
		13	11.00	2.00						
	2	14	9.10	2.00						
	Altrana.	15	13.30	2.00						
	programe	16	11.70	2.00						
		17	14.30	2.00						
	and the second second	18	10.80	2.00						
		19	12.60	2.00						
	and the second second	20	11.20	2.00						
	1	21	10.00	3.00						
	Danocia Rin	22	12.30	3.00						
		23	9.50	3.00						
		24	7.30	3.00						
		25	11.10	3.00						
		26	10.00	3.00						
		27	12.10	3.00						
	All of the second strends	28	18.80	3.00						
		29	9.50	3.00						
		30	8.20	3.00						

			RUNNING SPSS
٠	🛃 "Untitled	1 [DataSet0] - SPSS Da	ata Editor
Robolus Adust	Elle Edit y	jew Data Iransform	Analyze Graphs Utilities Add-gns Window Help
	📂 🖬 👜	📴 👆 🔿 🔚 🖬 🛛	Regorts + 😽 🔕 🐿
0	31 : VAR00002		Dgscriptive Statistics +
22		VARIODO VARIO	Tables + una una var var var var var
Rover altern	1	13.00	Compare Means M Means
_	2	16.50	General Linear Model
_ <mark>.</mark>	3	16.90	Generalized Linear Models 🔸 🤷 Independent-Samples T Test
Adulte Reader	4	19.70	Miged Models • 44 Paired-Samples T Test
	5	17.60	Correlate Qne-Wity ANOVA
1	6	17.50	Begression +
2	7	18.10	Logineer +
	8	17.30	Classity
	9	14.50	Data Reduction
	10	13.30	Scgle
	11	11.10	Nonparametric Tests
	12	13.50	Time Series
	13	11.00	Sourceal No. 1
	14	9.10	😂 Missing Value Analysis
Manu	15	13.30	Myapie Response
Stafigue	16	11.70	Complex Samples
	17	14.30	Guary control P
	18	10.80	D Roc curge
	19	12.60	200
The second second	20	11.20	200
2	21	10.00	3.00
	22	12.30	3.00
	23	9.50	3.00
	24	7.30	5.00
	25	10.00	3.00
	20	10.00	300
	2/	12.10	200
	20	0.60	200
	20	8.00	300
	0.	0.20	5.05

4	1															
× .	📕 🔛 *Untit	led1 [Data9	iet0] ·	SPSS Data	a Editor											
Robotics Ad	Ele Edit	⊻iew <u>D</u>	to <u>I</u>	ransform	Analyze	Graphs	Litities	Add-ons	Window	Help						
andendern	⊳ ⊌8	à 📴 🕈		2 W U	? <i>(</i> A)	*1 📩	H 🗗 🛙	3 😵	90							
0	31 : VAR00	1002														
QuickTime 1		VARC	0001	VAR000	02											
Player at	tem 1		13.00	1	1.00											
	2		16.50	1	1.00											
	3		16.90	1	1.00											
Adoles Reader	4		19.70	1	1.00											
	5	_	17.60	1	1.00											
人	6	_	17.50	1	1.00											
	7	_	18.10	1	1.00											
100000000000	8		17.30	1	1.00											
	9		14.60		1.00			CB (no Way	ANIONA						
	10	_	13.30		1.00				ne way	anova						
	42	_	11.10	4	2.00						_	Dependent List		Contrasts		
	12		11.00		0.00							VARUUUU1		Post Hoc	1	
87	14		9.10		2.00									Ontions	-	
Alerma .	15		13 30	2	2.00									There is a	_	
programs	16		11.70	2	2.00											
	17		14.30	2	2.00											
	18		10.80	2	2.00							Eactor:				
1276-2	19		12.60	2	2.00				_			VAR00002	2			
	20		11.20	2	2.00					OK	Paste	Reset	Cancel H	telp		
	21		10.00	3	3.00							-	-		_	
	22		12.30	3	8.00											
Recycle Bri	23		9.50	3	3.00											
Contraction of the	24		7.30	3	3.00											
in the second	25		11.10	3	3.00											
	26		10.00	3	3.00											
and the second second	27		12.10	3	3.00											
Street on Avenue	28		18.80	3	3.00											
	29		9.50	3	3.00											
	30		8.20	3	3.00											

Conclusions:

One-way independent-measures ANOVA enables comparisons between 3 or more groups that represent different levels of one independent variable.

A parametric test, so the data must be interval or ratio scores; be normally distributed; and show homogeneity of variance.

ANOVA avoids increasing the risk of a Type 1 error.