Energy conservation for
the Euler-Korteweg equations
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ONSAGER’S CONJECTURE

Consider the incompressible Euler system

Oru + div(u @ u) + Vp = 0, divu = 0. (1)
It is easy to show that for a smooth solution u the energy
1
E(t) = / “u(t, x)|?dx (2)
Q 2

is conserved. In 1949 Lars Onsager [11] conjectured the following:
o If uis a weak solution with Holder regualarity o > 3, then the energy is conserved.
e Forany a < # there exists a weak solution u € C* which does not conserve the energy.

The first part of the conjecture has been proven by Constantin, E. and Titi in 1994 [3].
The second part has been resolved only recently by Isett [10] and Buckmaster, De Lellis, Székelyhidi Jr. and Vicol [2].

EULER-KORTEWEG EQUATIONS

We consider the isothermal Euler-Korteweg system

By(pu) + div(pu © u) = —pV, (h'<p> 50 g e divw(p)vxp) |

2 (3)
Op + div(pu) = 0,
where p > 0 is the scalar density of a fluid, u is its velocity, h = h(p) is the energy density and « = k(p) > 0 is the coefficient of capillarity.
In conservative form
O (pu) + div(pu ® u) = div S, @)

Orp + div(pu) = 0,
where S is the Korteweg stress tensor

S = [—p(p) — pﬁs’(p);L K(p)

[ denotes the d-dimensional identity matrix and the local pressure is defined as p(p) = ph'(p) — h(p).

Vapl? + div(pr(p)Vep)]l = (p)Vaep © Vap

e The terms on the righ-hand side model capillary effects.
e Known model to describe liquid-vapor flows. In particular the behaviour of a mixture at the interface.
e Contains as a special case the equations of quantum hydrodynamics (QHD).

e In[1] well-posedness and stability of local-in-time smooth solutions is shown. Existence and non-uniqueness of global weak solutions was considered in
[5]. In [8] weak-strong uniqueness property is established.
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Theorem. Let (p,u) be a solution of (3) with constant capillarity c, in the sense of distributions. Assume (6]

in the sense of distributions on (0,T) x T¢. 9]




