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Introduction
We consider a stationary flow of an incompres-
sible fluid through a region with an artificial
boundary (for example the outflow), such as the
pipe flow. In order to complete the correspon-
ding system of equations, one needs to introduce
some boundary condition at the outflow, which
is a priori unknown. The use of the popular “do-
nothing” boundary condition has its downsides
- see [H] for details.
We, on the other hand, study the possibility of
selecting the outflow boundary condition in such
a way that the resulting flow minimizes given
functional. This functional may represent the
dissipation of energy, for example. Then, once
the existence of that minimum is proved, one
automatically gets boundary condition which is
both physically and mathematically reasonable.
The boundary conditions obtained in this way
are implicit in general but at least for the Stokes
system we show that they imply some familiar
explicit boundary conditions.

Mathematical formulation
Let Ω ⊂ Rd. Then let Γ ⊂ ∂Ω be the part
of the boundary, where the Dirichlet boundary
condition is prescribed. The remaining part will
be denoted by Γa and it may represent artificial
boundaries such as inflow or outflow.
Let Dv := 1

2 (∇v + (∇v)T ). The stationary flow
of an incompressible fluid is described by

div(v ⊗ v)− divDv = −∇p in Ω
div v = 0 in Ω

v = v0 on Γ, (1)

where vin is such that there exists its divergence
free extension in H1

Γ(Ω) (the construction can
be found in [L, Chapter I, Problem 2.1]).
Instead of prescribing a boundary condition on
Γa, we require that v minimizes

F (v) :=
∫

Ω
|Dv|2, or G(v) :=

∫
Ω
|∇v|2

over the (non-empty) set of solutions to (1).
Then the following questions arise:

1) Is there a solution to this problem? (Does
the minimum exist?)

2) Does this requirement imply some explicit
boundary condition on Γa?

Existence of the minimum
We are able to prove the existence of minimum
for system (1) and also for more general systems
describing a flow of some non-Newtonian fluids
defined via an implicit relation G(Td, (Dv)d),
where Ad = A− 1

3 trA I. We need coercivity of
G to prove the boundedness of a minimizer, mo-
notonicity of G to identify the weak limits and
finally we use the weak lower semi-continuity of
F and G to show that the infimum is attained
in the set of solutions to (1). Also, due to the
presence of Dv in F , one needs to prove an ap-
propriate version of Korn’s inequality, namely

‖ϕ‖1,2 ≤ c ‖Dϕ‖2 ∀ϕ ∈H1
Γ(Ω).

Implicit boundary condition
Suppose that v solves (1) and that it is also a minimum of F . We want to find ϕε such that v +εϕε

solves (1). This means that ϕε has to satisfy ϕε ∈H1
Γ,div(Ω) and

div(v ⊗ v) + ε div(v ⊗ϕε + ϕε ⊗ v) + ε2 div(ϕε ⊗ϕε)− divDv − ε divDϕε = −∇πε. (2)

Since v solves (1), by dividing by ε 6= 0 and redefining πε, we obtain that (2) is equivalent to

div(v ⊗ϕε + ϕε ⊗ v) + εdiv(ϕε ⊗ϕε)− divDϕε = −∇πε. (3)

Then, if ϕε ⇀ ϕ ∈H1
Γ,div(Ω) for a subsequence, we eventually get

div(v ⊗ϕ + ϕ⊗ v)− divDϕ = −∇π (4)
for certain pressure π.
The optimality condition can be written as

0 ≤ F (v + εϕε)− F (v) = 2ε
∫

Ω
Dv · Dϕε + ε2

∫
Ω
|Dϕε|2.

If we divide by ε 6= 0 and then we let ε→ 0±, we finally obtain∫
Ω
Dv · Dϕ = 0 for all ϕ ∈H1

Γ,div(Ω) satisfying (4). (5)

Explicit boundary condition
For the Stokes system, we can show that implicit condition (5) can be reduced to an explicit one.
Indeed, in this case (5) reads as∫

Ω
Dv · Dϕ = 0 for all ϕ ∈H1

Γ,div(Ω) such that − divDϕ = −∇π. (6)

Therefore, for all such ϕ, we get∫
Γa

Tn ·ϕ =
∫

Ω
divT ·ϕ +

∫
Ω
T · Dϕ = 0,

where T := −pI + Dv (the trace of Tn exists in the distribution sense since T is an integrable
solenoidal function). Since there is no restriction on the trace of ϕ at Γa (there is a solution
to the Stokes system for any boundary condition w satisfying

∫
∂Ω w · n = 0, see [T, Chapter I,

Theorem 2.4]), we obtain∫
Γa

Tn ·w = 0 for all w ∈ C∞0 (Γa),
∫

Γa

w · n = 0. (7)

From that, by considering the normal and tangential part of Tn separately, we finally obtain that

Tn = cn on Γa (8)

for some constant c ∈ R. Thus, we have shown that for the Stokes system, the implicit boundary
condition (6) reduces to the modification of the “do-nothing” boundary condition with the symmetric
velocity gradient. If we consider the functional G instead of F , we can proceed as before and obtain

−2pn + (∇v)n = cn on Γa. (9)

If Γa has multiple components with prescribed flow rates, the constant c may vary on each of these
(to allow non-trivial flow).
For the Navier-Stokes system, so far I was able to deduce certain explicit boundary condition only
under additional hypotheses. Namely, if ∇n = 0 on the components of Γa, then the flow minimizing
the energy dissipation over the set of all solutions to the NS system with zero tangential part of the
velocity on Γa satisfies

div(v ⊗ v)− divDv = −∇p in Ω
div v = 0 in Ω

v = v0 on Γ
vτ = 0 on Γa

2(Dv)n · n = p+ 3
2 |v|

2 + ci on Γa.
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