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Introduction

This text is notes of a series of lectures given first in the Morningside Center in February and
March 2014 in Beijing and then at Jacques-Louis Lions laboratory in May and June 2014. 1
thank very warmly the audience of this two series of lectures for their interest and for their
remarks. I want to thank espaccially Professor Ping Zhang for a rereading of the notes and a
lot of suggestions of improvements.

The purpose of theses lectures was the description, up to an extraction, of lack of com-
pacness of the Sobolev embeddings as acieved in the work [18] of P. Gérard. We apply this
result to the describtion of the possible blow up in the three dimensionnal incompressible
Navier-Stokes.

More precisely, the first chapter will be devoted to the proof of a refined Sobolev inequality
which is in particular invariant under translation in Fourier space (i.e. multiplication by an
oscillating function). This involves some particular classes of Besov spaces we shall define and
study.

The second chapter is devoted to the statement and the detailled proof of the P. Gérard’s
result which provides a precise describtion, up an extraction, of a sequence of function which
is bounded in the homogenenous Sobolev H*(R?). It claims that in some sense, it is the sum
of dilation and translation of some given fuction in H*(R?). For a given sequence (Ap)nen,
the concept of (\,)nen-oscillating sequence is defined. Together with some particular class of
Besov spaces, this tunrs out to be the crucial tool of the proof.

In the third chapter, we first recall some basic results about incomressible Navier-Stokes
system. Then we prove some result about bounded sequences of initial data in the spirit of
the work by I. Gallagher (see [14]. And we apply this resulst to prove the celebrated result
by L. Escauriaza, G. Serégin, V. Sverak (see [12]) which claims that if a solution u to the
incompressible three dimensionnal Navier-Stokes equation develops a singularity at time 7%,
then we have

lim sup [u()]l ;1 = oo

We follow the approach developed by C. Kenig and G. Koch in [20].






Contents

1 Sobolev embeddings revisited
1.1 Sobolev spaces and Sobolev embedding . . . . . . .. ... ... ... ..
1.2 Interpretation in terms of Besov spaces and oscillations . . . . .. ... .. ..
1.3 The link with Besovnorms . . . . . . .. .. ... .. .. . o .

2 The theory of profiles
2.1 The fundamental theorem about bounded sequences . . . .. ... ... ....
2.2 The extraction of the scales . . . . . . . . .. ... oL
2.3 The extraction of the cores for 1-oscillating sequences . . . . ... ... .. ..

3 Some basic facts about the Navier-Stokes equation
3.1 The concept of solutions and some historical results . . . . ... ... ... ..
3.2 The Kato method; the case (;f H?2 initial data . . . . ... .. ... ... ...
3.3 Global stability results in H2 . . . . . . . . . . ...
3.4 The Kato theory in the L? framework . . . . . .. .. .. ... ... ......
3.5 A stability result in the L? framework . . . . . ... ... ... ... ......

4 Applications of profile decomposition to the Navier-Stokes equations
4.1 Bounded sequences of initial data . . . . . . ... ... ... oL
4.2 A first application to the structure of theset G . . . . . . . .. ... ... ...
4.3 Describtion of bounded sequences of solutions . . . . . .. .. ... ... ....
4.4 Ablowuptheorem . . . . . . . ...

11

13
13
14
20






Chapter 1

Sobolev embeddings revisited

1.1 Sobolev spaces and Sobolev embedding

Definition 1.1.1. Let s be a real number. The homogeneous Sobolev space H*(R?) is the set

of tempered distributions u the Fourier transform of which u belongs to L}Oc(Rd) and satisfies

def

Juliy, [ lePelae)as < .

The following interpolation inequality is of constant use. We left as an exercise to the
reader the proof that H*(R?) is a Hilbert space in the case when s is less than d/2.

Proposition 1.1.1. Ifu belongs to H®* N H*2, for any s between s1 and sa, u belongs on H®

and
0

e llul =0 with s=0s, + (1—6)ss.

[l o < llull 1oz

Proof. Let us simply apply Holder inequality for the fonction |£[2%51 and |£[20=)%2 for the
measure [1(€)|2d¢ and this gives the result. O

Let us state the classical Sobolev inequality and its dual version.
Theorem 1.1.1. If s belongs to [O,%[, then the space H*(R?) is continuously embedded
in L%(Rd). If p belongs to |1,2], then the space LP(R?) is continuusly included in the
space Hde_%).

Proof. The second part is easily deduced from the first one proceeding by duality. Let us
write that

lallzs = sup  (a,¢).
II‘PHH*S(]Rd)Sl

1 1 1 1
Ass:d<—> :d<1——>,Wehavebytheﬁrstpart
2 p p 2

lellzz < Cllell 7-s

1 1
where p is the conjugate of p defined by — + — = 1 and thus
p P
lallgs < C sup (a, )
||¢’HL5§1

< Clallze
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This concludes the proof of the second part.

There are many different proofs of the first part. We shall use a frequency cut off argument
which gives for free a refined version of this inequality which will be crucial in the second
chapter. Let us introduce the following definition.

Definition 1.1.2. Let 6 be a function of S (Rd) such that 6 be compactly supported, has
value 1 near 0 and satisfies 0 < 6 < 1. For u in S'(RY) and o > 0, we set

def d—
ull p-o = sup p AT 7|O(A-) * ul| Lo

The fact that B~? is a Banach space is an exercice left to the reader. We shall see later on
that the space is independant of the choice of the function 6. Let us observe that if u belongs
to H®, then 7 is locally in L' and the function §(A_1-)ﬂ is in L'. The inverse Fourier theorem
implies that

2m)~9(A™")al
_.@ﬂ%/ﬁm*maﬂwm@we
R

|A%0(A-) * ul| oo

IN

N

Using the fact that 9 is compactly supported, Cauchy-Schwarz inequality implies that

C d
d d_
[A%0(A-) x uf| oo < ——— A27"||uf o
(5—9)2
This means exactly that the space H® is continuously included in B~ By multiplication,

we can assume that ||u|| ..—g = 1. Then let us estimate |u||Lr. We decompose the function u

in low and high frequencies. More precisely, let us write

~

U=1upA+upa With wups= .7:_1( (A_l-)’l/i\) (1.1)
where 6 is the function of Definition 1.1.2. The triangle inequality implies that
(|u\ > )\) - (‘U&A| > )\/2) U (|uh7,4\ > )\/2)-

By definition of || - || . 4, we have ||ug al/r~ < A%, From this, we deduce that

5,,

)\ P
A= AA‘Ef(§) — u(jugal > A/2) = 0.

We deduce that -
nw$SpA N ((uay| > A/2) d

Using that
[N

M(‘Uh,AJ > )\/2) <4 v

we get

o0
|w;§@/ N3 a2 A
0

8



Because the Fourier transform is (up to a constant) an isometry onALQ(]Rd) and the function 6
has value 1 near 0, we thus get for some ¢ > 0 depending only on 0,

lull?, < 4p (27)~ / AP 3/ (&) d€ dA (1.2)
\§|>CA>\
for some positive constant ¢. Now, by definition of Ay, we have

d
€] > cAy = A< e (’i‘)”

Fubini’s theorem thus implies that

Ce
p —d p—3 2
fulf, < /R(/ SN fa(e) e
2 |£| o er
< et 2 [ () P as

1 1
As s = d<§ — 7>, the theorem is proved. O
p

1.2 Interpretation in terms of Besov spaces and oscillations

In fact the above proof tells more than the classical Sobolev theorem, namely the following
theorem.

Theorem 1.2.1. Let s be in |0,d/2[. There exists a constant C depending only on d and 6

such that o , , o
1_7 D .
lullee < ——lull . Pallull?,  with p= :
(p—2)7 B2 d—2s

Let us see what type of improvement it is compared with the classical inequality. Let ¢
be a given function in the Schwartz class S(RY) and w a unit vector of RY. Let us consider
the family of functions defined by

ue(z) = €'
Let us prove that for any o in ]0,d] we have
uell g0 S €7 (1.3)

~

By Hoélder’s inequality, we have
AY0(A) % bellpoe < [10]l 1| poe-
From this we deduce that, if Ac > 1 then we have
AT0(A) * pel e < €7)0]| ]| oo (1.4)

If Ae <1, we perform integrations by parts. More precisely, using that



and Leibniz formula, we get

Y1

AO(A) +0(@) = (i)' [ o (A~ o) e dy

= (i)' <Z> AF((—01)*0) (A-) % (€12 88 F ) (x).

k<d

Using Holder’s inequalities, we get that
k k il ad—k k d—k
A (oo « (@ oi )| <okl glof ol gy

Thus, we get A%||0(A-) x ¢c||r~ < C(Ae)?. As we are in the case when Ae < 1, we get, for
any o < d,
AY[O(A) * pe| Lo < C(Ac)”.

Together with (1.4), this concludes the proof of Inequality (1.3).

Considering that [luc|| ;. < €7°, then we can check that

1-2 2 4 ) (1-2)-z
HUEHBSf%HUaHES 58(2 S) P P ~ 1.

This shows that the refined inequality of Theorem 1.2.1 is invariant under translation in
Fourier spaces (i.e. multiplication by oscillating functions).

The spaces defined in Definition 1.1.2 have a universal property: they are the biggest
normed spaces which are translation invariant and which have the same scaling. More precisely
we have the following proposition.

Proposition 1.2.1. Let E be a norm space continuously included in the space of tempered
distribution. Let us assume that the space E is globally invariant under dilations and trans-
lations and that a constant C' and a positive real number o exists such that

lu(r- =)z < CA||ul|z.
Then the space E is continuously embedded in B~°.
Proof. As E is continuously included in &', then we have

[(u, 0)] < Cllul|&-

Because of the hypothesis on E, we get

[(w(A™" - +2),0)] < [[u(A7" - +2)|p < CA7|lu| .

As we have
(A" +),0) = AYO(A) xu)(x),

we get the result. O
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1.3 The link with Besov norms

The following proposition is an exercise about partition of unity.

Proposition 1.3.1. Let C be the annulus {¢ € R /3/4 < |¢| < 8/3}. There exist two radial
functions x and ¢ valued in the interval [0, 1], belonging respectively to D(B(0,4/3)) and
to D(C), and such that

VEERY, x(6) + ) w277 =1, (1.5)
720
Ve e RI\{0}, D p(277¢) =1, (1.6)
JEL
5 4’| > 2= Supp @(27/)NSupp (277" =1, (1.7)
j = 1= Supp x NSupp p(277-) =9, (1.8)

the set CNd:efB(O, 2/3) + C is an annulus and we have

j—j|>5=2'Cn2Cc=0. (1.9)
Besides, we have
1 .
d 2 2/09—
VEERT, S <X+ (2T <, (1.10)
7>0
1 .
d 20—
vEE R0}, 5 < ze;p (277¢) < 1. (1.11)
J

Let us state the following definition.

Definition 1.3.1. Let s be a real number, and (p,r) be in [1,c0]?>. The homogeneous Besov
space B, . is the subset of distributions u of S; such that

1
def . . T
lell;, = (Zz”SHAjuuzp) < 0.

JET

Let us point out that in the case when p = r = 2, this is homogeneous Sobolev spaces and
in the case when r = oo, this definition coincides with Definition 1.1.2.

Proposition 1.3.2. The H® norm and the H® norm are equivalent. For any positive o, the
two norms B~7 and By, norm are equivalent. Moreover, we have, for s less than d/2,

lallg; _ S el ooy < el g

Proof. It is possible to use Proposition 1.2.1. Let us give here a direct proof of this inequality.
Let us write that
AYO(A) >l poe < (2m)O(ATE ) 1.

Because the Fourier transform of 6 is compacly supported, we have



Thus, we get

Ao xullp S ST 10(ATF (A u)ll

2<A

S S YA
2i<A

. d

< J\5—S .

S ()l
2<A

a_
< ATl

This proves the proposition. O

In order to figure out the difference between the norm H*® = 3572 and the norm Bgvoo, let
us consider the following example which based on the idea of lacunar series. Let us consider
a function x in S such that its Fourier transform is supported in a (small) ball of center 0
and radius . Let us consider, for a vector w of R? of Euclidian norm 3/2, the sequence of
functions (f,,)nen defined by

\/’Z2 js]+1 223(z\w)X(x)'

jzn
As the support of the Fourier transform of the function e’ (I+) x is included in 27w+ B(0, &),
we get

ullrs Y- g~ 1 and Wl S

_]>n

Si-
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Chapter 2

The theory of profiles

2.1 The fundamental theorem about bounded sequences

Let us state the following definition
Definition 2.1.1. We say that a sequence (X}, x%)(j’n)eNz 0f )0, co[x R3 is a sequence of scales
and cores if it satisfies

J

o (5)

The following theorem has been proved by P. Gérard in [18] and describes, up to extraction,
the defect of compactness of Sobolev embeddings.

J _ ok
=400 or M =X and lim M:oo. (2.1)

j # k= either hIn A

Theorem 2.1.1. Let (up)pnen be a bounded sequence of H* with s less than d/2. Then
there exists a sequence of scales and cores ()‘naxn)(',n)eNQ in the sense of Definition 2.1.1,

a sequence (¢7)jen in H® and a sequence (rﬁl)( myenz of functions which satisfies, up to an
extraction on (un)nen, the following properties:

J :
1 s — )
VJEN,unng : J ‘ +rd(z),
o) =2 o= () e
lim limsup ||r;| . ¢« =0 and
—00 n—oo Boogo

J
vIEeN, Jingo(nunui =Yl - udu%) = 0.
j=0

Remarks The functions ¢’ are called the profiles and they satisfies

lim (/\ZL)%_sun()\% . +xfl) — )

n—00

in the sense of distributions. In particular ¢ is the weak limit of (Un)nen-
Moreover, the refined Sobolev embeddings proved in Theorem 1.2.1 on page 9 implies that

2d
hm limsup [|7)||z» =0 with p=

—00 n—00 d*25

The above theorem has the following corollary.

13



Corollary 2.1.1. Let us consider a bounded sequence (up)nen of H* such that for any
sequence (An, Tp)nen of |0, 00[x R%, we have

d_g

2d
— 2s

Then the infimum limit of ||uy||re is 0 for p = 7

2.2 The extraction of the scales

Let us state some definitions.

Definition 2.2.1. A scale is simply a sequence of positive real numbers. We say that two
scales (An)nen and (A))nen are orthogonal (denotes by (Ap)nen L (A, )nen) if
: An
Jm s (5 )| = oo

The following proposition describes some effects of orthogonality or not orthogonality of
scales.

Proposition 2.2.1. Let (\,)nen and (X),)nen be two scales. If they are orthogonal, then
VR>1, 3ng/ n>nr= (X,)"'Cr Cc \;'C4
where, as in all that follows, Cr % {¢ € RY / |¢| € [R™1, R]}.
If (An)nen and (N)))nen are not orthogonal, an extraction ¢ exists such that
1M

—_ /
C 7 Ao

<C.

Proof. Let us observe, for any R greater than 1 and any n,

AR
X'

M€ <R+

< Anfé] < (2.2)

1o
R~ MRS

As the scales (A, )nen and (\),)pen are assumed to be orthogonal, it exists ng such that

/

n>np = max{i—,ai—} > R%

A
Using (2.2), we observe that )\—7 > R?, then

n

<Nl = Mlé| > R

==

and if =2 > R?, then
1
MNIEI<R= M\, —
el 6 <+
and the first assertion is proved.

14



The fact that the scales (A, )nen and (A),)pen are not orthogonal exactly means that
hmlnf’log( )‘ =C(C < o0.

Thus an extraction ¢, exists such that, for any n large enough
Ag

" < o,
¢(n)
The proposition is proved. O

c2 <

Let us define the concept of sequence which is oscillatory or unrelated with respect to a
scale.

Definition 2.2.2. Let (f,)nen be a bounded sequence of functions in L? and (A, )nen a scale.
The sequence ( fn)nen is said to be (A\,)pen-oscillatory if

lim hmsup/ | Fn(€)]2de = 0.
Anlcs

R—00 n—oo

The sequence ( fp)nen is said (Ap)nen-unrelated if

VR>1, lim | fn(€)[2d = 0.

n—oo -1
An CR

A first remark is that, if (f,)nen 1S (An)nen-oscillatory, then the sequence (gn)nen de-

fined by
def
x)

is 1-oscillating. Let us notice that a typical example of a 1-oscillating sequence in a convergent
sequence in L?(R%).

Now the following proposition translates in terms of orthogonality the properties of being
oscillating or unrelated.

Proposition 2.2.2. If (f,)nen Is a (Ay)nen oscillating sequence and (gn)nen a (An)nen un-
related sequence, then

7lh_g)lo(fn|gn)L2 =0.
Proof. Let us write that

enl(falnez| = | [ Fu©0Fa (6]

\/1a £, %Mﬂ/l% (€)1

< an||L2(,\;10;%)H9n||L2 + anHLQHQnHm()\;lcR)-

IN

Let £ be a positive real number; because (fy,)nen i8S (An)nen-oscillating, a radius R, exists
such that

. ~ €

fmsup [ |e)Pd < 5

n—00 )\;1(316%6 2

As (gn)nen 18 (An)nen-unrelated we have nh—>I20 HEHHLQ(A#cRg) = 0. Thus
Ve > 0, limsup|(fn|gn)r2| < e

n—00

and the result is proved. O

15



The following corollary will be useful.

Corollary 2.2.1. Let ( J M) be an element of (L2x]0,00))N" such that for any J, the
sequence (fi)nen is (M )nen-oscillating and for any j different from j' two scales (N,)nen
and (M, )nen are orthogonal. Then, for any J,

J J
112 .
g&(\\i} Sall 2 = 2;‘“”%’%2) -
J= J=

Proposition 2.2.3. Let (f,,)nen be a bounded sequence of L? and (A\,)nen and (X))nen two
scales. Let us assume that (fy)nen 1S (An)nen oscillating.
If the scales (Ap)nen and (N),)nen are orthogonal then (fy,)nen is (M) nen unrelated.
Conversely, if hnlgio%f || frllz2 is positive and the sequence (fn)nen is (A, )nen-unrelated,

then the scales (An)nen and (A),)nen are orthogonal.

Proof. Let R be a real number greater than 1 and a positive real number €. Proposition 2.2.1
implies that

VR>1, 3ng/n>np = Fueka< [
(M,)~1Cr

n

o ()P, (233)

As (fn)nen is (An)nen-oscillating, a real number R. (which can be choosen greater than R)
exists such that

n—0o0

limsup/ ) ]ﬁ({)\Qdf <e.
Antes

This means that an interger n. (which can be choosen greater than npg) exists such that
oz [ IR(OPd <=
Antes,

Using (2.3) allows to conclude that (f,)nen is (A, )nen -unrelated.

Now let us argue by contraposition. If (A,;)nen and (X)),en are not orthogonal, Proposi-
tion 2.2.1 claims that an extraction ¢ exists such that Ay = )\;(n). For the scale (Ag(n))nen,
the sequence (fg(,))nen is oscillating and unrelated. Proposition 2.2.2 implies that || fy,) |22

tends to 0 when n tends to infinity.
O

The following proposition describes the relation between scales and Besov spaces.

Proposition 2.2.4. Let (fa)nen be a bounded sequence of L?. Then the sequence (fp)nen
tends to 0 in Bg,oo if and only if the sequence (fy,)nen is unrelated to any scale (A\,)pen.

Proof. Let us assume that the sequence (f,)nen is unrelated to any scale (\,)nen. Let us
observe that

limsup || full 5 = limsup sup [|Ag fnll 2

n—00 (2)700 n—oo kezZ
= sup lim [|Ag, fallr2-
(kn)€ZN "7 !

16



Let us consider any sequence (ky,)nen of elements of Z. Let us define A, = 27k By definition
of the operator Aj, we have, for some R large enough,

1Ak, f12 < / Fu(©)de.

2’“”63

As (fn)nen is (An)nen-unrelated then ||Ag, fnl|lz2 tends to 0.

Now let us assume that (f,)nen is not (A)nen-unrelated for some scale (Ap)nen. By
rescaling, we can assume that (fy,)pen is not l-unrelated. This means that

lim inf/c |70 (€)[2de

n—o0

is positive. As we have

/C Fu(©)2de <Cr sup 1A full 2

Jr<I<ir
we have liminf || f,|| 50 > 0 and the proposition is proved. O
n—oo 2,00

The main theorem of this section of the following one.

Theorem 2.2.1. Let (fn)nen be a bounded sequence of L?. It exists an extraction ¢, a
sequence (gi, T, )‘%)(j,n)GNQ of L? x L?x]0, o[ such that we have the following decomposition
of fy(n)- For any integer J, we have

<

Vn>J, fem) —ZQ%:T}{
=0

with the following properties:

e for any couple (j,j') with j different from j', the two scales ()\%)HGN and ()\%/)neN are
orthogonal,

e for any j, the sequence (g%)neN is (/\%)neN—oscﬂlatory,

e The sequence (r%)(j7n)EN2 tends to 0 in the sense that

lim limsup ||[rl]|z =0, (2.4)
J—00 n—oo 2,00

e for any couple (j',j) such that j' is less than or equal to j, the sequence (r%)neN
is (M, )nen-unrelated which implies that

J
VI EN, Tim (| fom3 - > il = I I2:) = o.
]:
Proof. The proof is based on the repeated application of the following lemma.
Lemma 2.2.1. Let us consider (f,)nen a bounded sequence of L? such that

limsup || fullgo =L >0.

0
n—oo 2,00

Then a scale (Ay)nen, a sequence (gn)nen and an extraction ¢ exist such that

17



e the sequence (gn)nen 1S (A )nen-oscillating,

e the sequence (fg(n)—9gn)nen is (An)nen-unrelated and for any scale (A )nen such that the

sequence (fn)neN 1s (A% )nen-unrelated, the sequence (fg(n) — gn)nen is also (N 4 () )nen-
unrelated,
L
e we have hm lgnllr2 > 3

Proof. By definition of the Besov norm || - || B the hypothesis implies that that a sequence
of integers (kp)nen exists such that | for largev enough n,

L

”Aknfn”L 5 (2.5)

Now let us consider the scale A, et 5—knand let us consider the sequence of functions (F},)neN
defined by

F ]1’00[ — [0700[
" R — ||1A;10anH%2'

For any n, the function F), is non decreasing and, for any R, F),(R) is less than or equal to
the supremum of || f,| ;2. Helly’s lemma implies that an extraction ¢; and a (of course non
decreasing) function exist such that

VR>1, lim Fy (R) = F(R).

This implies that

1
n+1

Vi, 3my, [ Ym > my, |[Fg ) (n) — F(n)| <

Let us define by induction by ¢2(n) def max{¢p1(n — 1) + 1,m,} and state ¢ def ¢1 0 ¢9. Now
we can define the sequence (g )nen by

~ def
=1,
In Ap(n )C”f¢

Let us check that (g, )nen satisfies the conclusions of the lemma. Let us observe that

n>R— ﬂc% = ]lc" —]lcR.

Thus by definition of ¢ and F,,, we get, for n greater than or equal to R,

[ P = [ e - / i (6) e

= F(b(n)( ) F¢(n)( (2'6)

The function F' is bounded and non decreasing. Let us denote by F its limits at infinity and
let us write

1
|Fyn)(n) — Foo| < |Fy(ny — F(n)| + Foo — F(n )<?+F — F(n).

18



thus we have lim Fy,)(n) = F. Then we deduce from (2.6) that

n—o0

lim |§n(§)|2df =Fo — F(R)

Thus (gn)nen 18 (Ap(n))nen-oscillating.
Moreover, if n is greater or equal to R, the ring Cg is included in the ring C,,. Thus we
have

ﬂ’\;<lrL)CR(f¢(n) ~Gn) = ]l’\;(lmcR(]l’\;(ln)Cnan) - gn) =0.

Thus (fg(n) — gn)nen 18 (Ag(n))nen-unrelated.
By definition of g,, and A,,, we have

Gl = [, (P

o(n)Cr

- f 2
N /2’“¢(n>cn [ o) (E)I7dE.

If n is large enough, the ring C,, contains the support of the smooth cut-off function of the
Littlewood-Paley theory. Thus, because of (2.5), we have, for large enough n,

L
lgnllz = 9
Up the an extraction, we can assume that ||g,| ;2 converges and the lemma is proved. O

Conclusion of the proof of Theorem 2.2.1. We proceed by induction. For an integer J let us
define the property P; as for any j, it exists a family (¢;)o<j<s of extractions, families of
sequences of functions (gi,)nen and (77,)nen such that

e Up to extraction, the sequence (fy,)nen can be decompose as

J-1

§ : j J J
f¢00¢1"‘O¢J(n) = géj+10---0¢](n) + gn + T”’
j=0

e for any couple (5, ) such that j’ is different from j, the two scales (A} )nen and ()\zL/)nEN
are orthogonal,

e for any couple (j',7) such that j’ is less than or equal to j, the sequence (r%)neN
is (M ¢j,o_,,o¢j(n))neN—unrelated,

e for any j, the sequence (g%)neN is ()\%)neN—oscﬂlatory,
lim (g [z > < limsup 1Y o . (2.7)
nosoo OIS = 2 n—ooco n By
Let us prove Py1. If liminf ||r;]|| 50 = 0, then we choose
n—oo 2,00

S = =0 and  ¢yi1(n) =n.

19



If liminf ||7]]| jg 18 positive, then we apply Lemma 2.2.1 to the sequence (r))nen which
n—oo ,00

provides the existence of an extraction ¢, 1, and sequences (g 1), cn and (r/+1)

scale (A\J*1), oy which satisfies Pyy.
Now let us prove Assertion (2.4). Because of Proposition 2.2.2, we have, for any J,

neN, and a

J-1
. 2 j 2 J|2 J)2
nlggo<|’f¢oo¢1.-.o¢J(n)HL2 - E 0: “gfz)j+1o-..o¢J(n)“L2 —llgnllz2 — H%Hm) = 0.
]:

This implies that

J-1

Sp | all 32 2 D195, oo Iz + 1921172 + 00 (1)
7=0

with lim 0‘7( ) = 0. Passing to the limit when n tends to infinity gives thanks to Inequal-
n—oo

ity (2.7)

—thsupHrd)Ho 06y (n H SSlrleanHB

which obviously implies that

lim limsup ||r7 =0.

J 500 m—soo ¢>+10 0¢s(n HBO

Now we use the diagonal process and define

def
¢(n) = goo--0pn(n)
~;  def i
7 e J
9n = g¢j+1o...o¢n(n)
def

Th = T romopn(n) form>j and 0Oifn<j.

form>j7 and Oifn<j,

Then, for any n greater than J, we have
J .
V2, fomy =Y _Ght7a
j=0

and the theorem is proved. O

2.3 The extraction of the cores for 1-oscillating sequences

The purpose of this section is the proof of the following theorem which describes, up to an
extraction, the structure of the 1-oscillating sequences.

Theorem 2.3.1. Let (gn)neN be a 1-oscillating sequence. It exists an extraction ¢, two se-
quences (V*)en and (r¥),en of L? functions and a sequence (z¥),en of points of R? such
that

e for any integer K, gyn) = Z wk (x — :13 )+ RK
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e for any couple (k', k) such that k and k' are different, |x* — 2¥'| tends to co when n
tends to infinity,

e we have

lim =0.
n—oo n—oo 00,00

K
k K . . K
(1 =32 1041 — IR ) =0 amd -t s | RE, g

Proof. It relies on the repeated application of the following lemma.

Lemma 2.3.1. A positive constant ¢y exists such that for any 1-oscillating sequence (gn)nen,
it exists an extraction ¢, a function ¢ and a sequence (&, )nen such that x,, = 0 or |z,| tends
to infinity when n tends to infinity which satisifies

o) (@n +-) = ¢ and Y[z = colimsup |lgn] g -
n—o00 Booo

._4d
Proof. If (gn)nen tends to 0 in the space Boo’wo, there is nothing to prove because any element 1)

of the weak closure of (g, )nen works with 2, = 0. Let us assume that (g, )nen does not tend
d

to 0 in the space B;?oo Up to an extraction we omit to note, we can assume that
li =L>0.
Jim. Ilgnllg;gw >

._d
By definition of the Besov norm Ba’, it implies that a sequence (¢, Zp)nen of elements

of 7 x R? exists such that I
d -
24 A, gn ()| 2 5 (28)

if n is large enough. The fact that (g,)nen is 1-oscillating implies that the sequence (€;,)nen
takes only a finite number of values. Indeed, Bernstein inequality implies that

_¢ 4
272 || Ay, gnll Lo < Coll A, gnll 2. (2.9)

As (gn)nen is l-oscillatory, a radius Ry greater than 1 exists such that

lim sup /
n—oo C

Moreover, a constant C exists such that

(e < (3-)

C
Ro

0] > Cy log Ry = | F(Aggn)(€)2dé = 0.

Cry

Thus, an integer ng exists such that

L
(n=nr and ] > Crlog Ry) = 275 || Ay, gull 1= < s
0
Inequality (2.9) implies the sequence (¢, )nen defining by (2.8) takes only a finite number of
values. Thus, up to an extraction we omit to note, we can assume that the sequence (¢,)nen
is constant and equal to some integer k. By definition of the operator Ay, we have
d

d ~ _ ~
27F2 Apgn(F,) = 27F224 » h28(@n — ) gn(y)dy.
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As h is even, let us change variable z = —2¥(Z, — y) in the above integral. This gives

[NJisH

2_’“%Akgn(%n) =27F /d h(2)gn(Fn + 275 2)dz.
R

The sequence (2_]“% Gn(Tp +27F )) is bounded in L?. Thus an extraction ¢ exists and a

neN
function 1 such that the sequence (Z_k%g¢(n(§¢(n + 2"“-))
we deduce that

nen converges weakly to . Then

- . def
Go) Fpmy +) — ¥ with 1(z) =

Now let us remark that by definition of k£ and of the sequence (Z,)nen, we have

2k5 (2K ).

L

2

IN

_kd ~
2772 Akgo(m) Fo(m))|
_gd ~ _
< 272 g (Tom) +27F), 1)
Passing to the limit when n tends to infinity gives

L ~ ~
5 < [, h) < [Blla ]l ze-

Once observed that [|[¢]|;2 = ||¢]|z2, we define z, = Ty(n) and then get the lemma with the

constant ¢y equal to up to the fact that x,, = 0 or |z,| tends to infinity when n tends

1
2[|A| 2
to infinity.

If |x,,| does not tend to infinity, then, up to an extraction we omit to note, we can assume
that the sequence (x,)pen converges to some point zso of RZ. Let us write that, for any test
function € in L?, we have

/d (g¢(n) (mn + x) — 9o(n) (xoo + x))Q(x)dx = /d 9o (n) (:Eoo + $) (9(1‘ + Too — In) - 9(1‘))d$
R R

Because (gp)nen is bounded on L?, the fact that translation are continuous on L? ensures that
the sequence (g¢(n) (Tn + ) = Go(n) (Too + '))neN tends weakly to 0. This concludes the proof
of the lemma. O

Continuation of the proof of Theorem 2.5.1 By repeated application of the above lemma, let
us define a sequence (¢ )ren, a sequence (Y*)ien, a sequence (xfl)(k,n)eNQ of points of R?, a

sequence (lea)(k,n)ekﬁ which satisfies Ry = gy, ¥ = 0, 22 = 0 and ¢° = Id and

n

Ry =RS =9 (=), [0z > colimsup Ry g, Rp(ep +) =0 (2.10)
n—00 B

00,00

Let us prove that
/ . k K
VE <k, JL\H;O‘:U” - x¢k/+10“'0¢k(n)} = 00. (2.11)
Let us first prove it for ¥’ = k — 1. By definition (2.10) of the sequences, we have

Ry (o +) =9 and Ry7Hamh +) =0,

Property (2.11) for ¥’ = k — 1 will follow from the following easy lemma, the proof of which
is omitted.
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Lemma 2.3.2. Let (f,)nen be a bounded sequence of L? which converges weakly to some
function f which is not the zero function. Let (yn)nen be any sequence of R?. Then the
sequence (fn(yn + ) )nen tends weakly to 0 if and only if |y,| tends to infinity.

Now let us proceed by induction assuming that
/ / : k K _
VE'/ k—p<k <k, T}l_}n;o‘xn - x¢k/+1o~~-o¢k(n)| = 00. (2.12)
By Definition (2.10) of the sequences, we have

—1
Rk—p—l ) _ R?]i,; + pz wk—p/(‘ . xk—p/

dr—po--odi(n b oo () (2.13)

p'=0
Using that (RE(zF 4 -))nen tends weakly to 0, and the induction hypothesis (2.12), we get

k—p—1 4 ) —0.

n

Ry @) = yf and RET (@

Pr—pO--0Pi(n Qr—pO---0Py

Lemma 2.3.2 ensures (2.11).
Moreover, we have

IBEL 122 = %122 + IREIZ: +2(6*| RS Gk +)) 1
Using that (RE(zF 4 -)),en tends weakly to 0, we get that
Tim (|5 2 — [ — R 2) = 0.

Using Formula (2.13), we get by iteration that, for any k,

k
lim (Hgmo_.om(n)u; =3 k2 - Hszuiz) —o.

n—oo
k'=1
As the sequence (gn)nen is bounded in L?, the series (||t)"||%,)ken is convergent. Using that

k : k—1
[9¥12 > colimsup [ Ry

As a term of a square convergent series, we have that,

lim li k=1 =0.
dimn limsup [ Rg, g =0

Now let us argue with a diagonal argument by defining ¢(n) = ¢ 0--- 0 ¢,(n). For any n
greater than k, we have

K

_ k k K
o) (@) = YV (@ = 3G, opim) T R sobn(n)-
k=0

Defining 5713 = x$k+1~-~o () and éff = ng allows to conclude the proof of Theo-

rem 2.3.1.

{106n(n)
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Conclusion of the proof of Theorem 2.1.1 First, let us apply Theorem 2.2.1 to the se-
quence (A®fp)nen where A®f def 7 (R f) This provides the existence of a sequence of

an extraction ¢g, two by two orthogonal scales ()\%)( n)eN2s & sequence (gn)(] nyen of fonctions

in L? such that, for any j, the sequence (gn)neN is (/\J Jnen-oscillating, a sequence (T%)(],H)GN2
such that

J
A foomy = Z g+ 7y with
N (2.14)

n—o0 —00  n—oo

J
1m@mm—ZM@—W@}wmm}mmWWMoﬂ-
=0

Theorem 2.3.1 implies that a sequence (¢;)jen of extraction, two sequences of functions
of L2 (4pi+ )(jkyenz and (RE ) (kn)en?s @ sequence (5@)(&”)61\]2 of points of R? such that, for
any j, we have

K -
. 1 ~/x—xy 1 ~. T
J — Jvk n j7K o
T oot (o (L) = ——1) ( — >—i— ——R (7> with
oroo ) ;(%)5 M, Oy "N,
K
: s ~ 2.15
11 (190, 172 = 3 113 = NI ) =0 an (215)
k=0
hm hmsup||RJ | . _a
n—00 2
Now let us define
def
d(n) = goodr--odn(n),
N, def Xéﬁlo”.o%(n) it n>j741 and 0 ifnot
xﬁbk fef fifﬂow%(n) if n>341 and 0 ifnot
Pk = A*S{Ej,k and
J
JK def s g 1 s ik :
ey = ACrn + AR (—)
' ' ;%)3_2( reretnim) 57
Using (2.14) and (2.15), we have, for n greater than j
J K jk
=S k() e
j= k:l 2
We get the theorem by reordering the sequences.
O
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Chapter 3

Some basic facts about the
Navier-Stokes equation

3.1 The concept of solutions and some historical results

Let us define the concept of (weak) solutions of the incompressible Navier-Stokes system. Let
us first recall what the incompressible Navier Stokes system is. We consider as unknown the
speed v = (u!, u?,u3) a time dependant divergence free vector field on R? and the pressure p.

We consider the system

du+u-Vu—Au=—-Vp+f in R xR?
(NS) divu =0

uli—o = up.
Let us immediatly notice that this system has two fundamental properties. The first one is

the energy inequality. Formally, and in the case when f = 0, let us take the L? scalar product
with v in the equation. We get

R3

5 7 [u®IIZ: + [Vu®)llz: = /Rs(“(t) -Vau(t)lu(t)) 2 / (Vp(t)|u(t)) 2.

Thanks to the divergence free condition, obvious integration by parts implies that, any function
vector field a

(u-Vala)2 =0=(Vplu)2 =0 (3.1)
This gives
5 7 1@z + [Vut)llz2 = 0. (3.2)

The second one is the scaling invariance. It is easy to see that if u is a (smooth) solution
of (NS) on [0,T] x R with pressure p associated with the initial data wg, then, for any
positive A, the vector field and the pressure

ux(t, ) dof MM, z)  and  py(t,z) = N2p(\°t, \x)

is a solution of (NS) on the interval [0, \"2T] x R? associated with the initial data Aug(\z).

25



The notion of C? solution (i.e. classical solution) is not efficient because singularity can
appear here and also we can be interested in rough initial data. It has been pointed out by C.
Oseen in the beginning of the 20th century (see [27] and [28]) that another concept of solution
must be used. This has been formalized by J. Leray in 1934 in his seminal work [24]. Let us
define the notion of weak solution (that we shall denote simply solution in all that follows).

Definition 3.1.1. A time-dependent vector field u with components in L2 ([0,T] x R?) is
a weak solution (simply a solution in these notes) of (NS) if for any smooth compactly
supported divergence free vector field ¥,

Z/Rsujtx\lljtxda:—Z/RB )0 (0, z)dx
+ Z/ / W (', 2) (W (¢, 2) + AV (Y, 2))dt dx
=170 JR?

t 3 ¢
2 K (4 Uk 2 d dx ()l (¢ ,
+%/0 /Rg(uju ), 2)0; 95t x) dt'd +]Z:;/0 (1), 6 () dt

This definition is too weak in the sense there is not enough constraints on the solution.
In particular it ignores the fundamental concept of energy. J. Leray introduced in his seminal
paper [24] the concept of turbulent solution.

Definition 3.1.2. A turbulent solution of (NS) is a divergence free vector field w which is
a weak solution, has component in L(L*) N L2(H') and satisfies in addition the energy
inequality

1
Sz + [ IVt < Sl [ [ 0wt atae. 9

Remark For a turbulent solution, Definition 3.1.1 of a weak solution becomes

Z/Rgujtxllﬂtxdx—Z/ )W (0, z)d
3 t ‘ ‘ | |
+]§/O /}R3 W (t',2)0, W (¢, 2)dt dw — ]Zk/o » O (', )0V (¢, ) dt dee
t 3 .
+]Zk:/0 /Rs(ujuk)(t',l‘)ajllf’f(t/,x) dt’dm+;/0 (P (t'), d (¢)) i’

In [24], J. Leray proved the following theorem.

Theorem 3.1.1. Let ug be a divergence free vector field in L>(R?). Then a turbulent solu-
tion u exists on RT x R3.

The proof of this theorem relies on compactness methods and thus no uniqueness is proved.

In this text, we are going to focus on solution which are regular enough to be unique in
their own class. For this type of solutions let us state a theorem of existence of solutions by
J. Leray which he called semi-regular solutions.

26



Theorem 3.1.2. Let uy be a divergence free vector field in L?(R3) such that Vug belongs
to L?>(R3). Then a positive time, which can be choosen greater or equal to p0||VuOHZ§1 for

some constant pg, exists such that a unique solution u exists in C([0,T]; H') N L*([0,T]; H?).
Moreover a constant c; exists such that if

Juoll L2 [ Vuol| 2 < e1,
then T' can be choosen equal to oco.

Proof. We simply prove a formal control on the ||Vu(t)|| 2 norm. By differentiation of the
equation, we get
0i0ju +u - Voju — Adju = —Vp; — 0ju - Vu.

Taking the L? scalar product of the equation and summing in j gives
1d

2dt||Vu(t)H%2 + |IV2u(®)|2: = Z/RS dju(t,x) - Vu(t, ©)du(t, z)dz.
j=1

Sobolev embeddings (see Theorem 1.1.1 on page 7) implies that

/R Dpult.x) - Vult, 2)opu(t x)de < [Vu(t)[3

< Ivu@? .

The interpolation inequality between Sobolev spaces (see Proposition 1.1.1 on page 7) implies
that

3 3
- dju(t,z) - Vu(t, x)dju(t, x)dz < || Vu(t)]| 2. V2 u(t)]|7.

We shall vey often use the familiar convexity inequality

1

ab < fab + (1—-60)b1-0.
Used with 6 = 1/4 this gives
1
/3 Ojult, x) - Vu(t, 2)du(t, z)dz < S[|V*u(®)|[72 + CVu(t) |7
R
This gives
d
ZIVu®IZ + IV a@®)7: S [Vu®)z-
Thus, as long as | Vu(t)| 12 < 2||Vugl| 2, we have
IVu®)l72 < [IVuoll72 + Ctl[Vuo| 22

1
Thus for ¢t < 2—HVu0H%2, the quantity |[Vu(t)||3, remains less than or equal to 2[|Vug||3,.

This proves the local part of the theorem. In order to treat the case of small initial data, we
estimate the term (0;u - u|dju)r2 in a different way. By integration by parts, let us write that

Oju(t,x) - Vu(t, z)0ju(t, z)dx = —/ u(t,x) - Voju(t, x)0ju(t, v)dx

R3 R3

—/ u(t,x) - Vu(t,w)@?u(t, x)dx.
RS
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As u is divergence free, we get that
/ u(t,x) - Voju(t, x)0ju(t, v)dx = 0.
RS
Using Holder inequality and Sobolev embeddings, we deduce that

Rﬁjﬂ(tvfb)-VU(tw)@y'U(tax)dx < u® s V@) ol V2u() 2

S Nu@®llzs Va2

Using again Sobolev embeddings and interpolation inequality, we infer that

1 1
[u®)llzs S @722 Vu@®)llZ.-

The energy inequality implies that

1 1
[u(®)llzs < Colluoll 72l Vu®)] 72-

Now, as long as

1 1 1
Collull 3/ Fu(®)F2 < 5

we have ]
S IVu®zz + Va7 <o.

In particular [|[Vu(t)||%, is a decreasing function. Thus, if it is small enough at initial time, it

remains small and the theorem is proved.

Corollary 3.1.1. A constant cg exists such that if ug is a divergence free vector field in L*(R?)
such that if Vug belongs to L?(R®) and if the maximal time of existence T* of the solution

associated with ug is finite, then we have

vt e [0, T, HVu(t)H‘iz >co(T* —t)™' and T* < C[;lHU[)”%Q.

Proof. Applying this bound on the life span with u(¢) as an initial data gives the first inequality.

Then the energy estimate implies that

1 L 1
(T%)z = 2 —dt
1
0 (T*—1t)2

2 (T 9
o= | Ivu

1
——||uol[72-

J

IN

IN

The corollary is proved.

3.2 The Kato method; the case of H:? initial data

Let us first define operators which we are going to use in this chapter.
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Definition 3.2.1. Let 7 be a non negative real number. We denote by L(()T) the operator
defined by the fact that LE)T)f is the solution of

LT f— ALY f=f—Vp
divLyf=0 and L fu—, = 0.

Let us also define for k in {1,2, 3}, the operator Lg) by
L f— AL f = 0pf — Vp
divL)f =0 and L f,_, =0.

(0)

In the case when T = (0, we simply note Lj0 = L;. Let us also define the bilinear operator B by

3 3
1 1
B(u,v) = —§L0< E O (vFu + ukv)) =3 E L, (vFu + uFv).
k=1 k=1

Let us remark that if v and v are divergence free, we also have
B(u,v) = —%Lo (v-Vu+u-Vo) (3.4)
It is obvious that u a solution of (N.S) if and only if u satisfies
u = e ug + B(u,u).
Solving (NS) is equivalent to find a fixed point for the map
u— e®ug 4 B(u,u).

Now let us assume that we have a Banach space X of functions locally in L? on R* x R? such
that B is a bilinar map from X x X into X. Then Picard’s fixed point theorem implies the
existence of a unique solution. Such a space X will be called ”adapted”.

Let us remark there is a strong constrain on X due to the scaling property. If X adapted,
it must be scaling invariant (and also translation invariant) in the sense that

VA>0,Vd R, ue X <= u(Nt, A — @))€ X and |ullx ~A|u(NtA(— D))

Let us give a first example of an adapted spaces: the space L*(R™; H h.

The wellposedness of (NS) for initial data in the space H 2 is described by the following
theorem.

Theorem 3.2.1. Let ug be a divergence free vector field in H% A positive time T exists such
that the system (N S) has a unique solution u in L*([0,T]; H') which also belongs to

C([0,T); H2) N L*([0,T); H2).
A constant pg exists if HUOHH% < po, then the solution is global and satisfies

01 it + N2, g, < ol

Proof. Tt relies on the following lemma.
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Lemma 3.2.1. The operator Ly maps continously the space L*([0,T1; H_%) into the space
C(0.T]; 2) N L*([0,T); H2).

Proof. In Fourier space, we can write that

-~

FLof(t.6) = [ I B i,

0

where P(£) is the orthogonal projection in R* on the orthogonal of . Thus, we get

t 1
IFLof(t,€)| < /0 e OIE o O F(E, )1t

.1
H 2

with [|0(#,-)]|z2 = 1 for any ¢’ of RT. Convolution inequality gives

T
ENIFLof (€)oo 0,7 + IEPIFLof (N T2ory S /U O ONF )7y dt’

Taking the L? in £ norm in the above inequality gives the result except the continuity. Let us
assume that ¢; and ty are two points of [0, 7] such that ¢; < to. Thus, we have

Lof(ts) = e WAL p(ty) + L f(ty — 1), (3.5)

Thus if ¢ is such that || f]| < ¢ is small, then

L2([t b F2)

1Zof (t2) = ">~ Lo f(t1)]]

Se.

The continuity of the heat flow on H 3 allows to conclude the proof. O
Conclusion of the proof of Theorem 3.2.1 Let us observe that dual Sobolev embedding and
Sobolev embedddding imply that

||’U,'VU+’U'VU||H7% S ||u-Vv+v-VuHL%

S lullzelVollze + ol zs [ Vall 22

S Va2 Vol e (3.6)
We infer that the bilinear operator B maps the space L*([0,T]; H') x L*([0, T]; H') into the
space C’([O,T];H%) N LQ([O,T];H%). As we have

FleBuo) () = e (6),
we infer that )
I (") (€) | paqrty < 1€17 2 [0 (€)]
Because of Minkowski inequality, we get
||etAu0||L4(R+;H1) 5 ||u0||H% .
Thus if ||ug HH 3 is small enough, then a unique global solution exists in LARY; HY. If |lug HH 1
is not small the result is only local. Indeed let us define

. def _ ~
Uup = Ugp + Uo,g with Up = F 1(13(07)\0)210). (3.7)
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We have )
A 1 1
le“Suoll o,z 1y S luosll 3 + TG lluoll ;5

We can choose A\g such that [|ug, ||H 1 small which proves the theorem up to the last inequality.

In order to prove it, let us perform a I 3 energy estimate which gives

1d , ,
Sl + IVu(OI? ) = (- Tl
As we have
1 3~
@y = [l
RS
< loll- 190l

Inequality (3.6) together with an interpolation argument gives that

(u-Vulu) .

gy < ClIVuliz)Vall

< Cllull IVul,y.

Thus as long as C||u||H% <'1/2, we have

d 2
lu®IZ ) + 1Vu@)]?, <o.

2
12
Thus if ||u0||H 1 < (2C) ™1, we get the required inequality and the theorem is proved. O

Remark Because the /2 norm is scaling invariant, the life span cannot be bounded from
below by a function of the norm. Let us notice that even if we assume that ug belongs to L2nH?
the best known life span is the one coming from the arguments we give here in the proof of
Theorem 3.1.2.

Now let us establish a criteria for blow up of the regularity. In other words, it is a necessary
condition for the appearance of singularities.

Proposition 3.2.1. Ifluo is in H2 ansd if T* the maximal time of existence of a solution in
the space L2 [0, T*[; H2) N L2 (T*; H?) is finite. Then we have

C loc
2 3 ™ »
V(p. q) € [2,00[x]3, 0] / PRI [[w(t)||Zadt = oo (3.8)
0
Proof. Let us write that
Lo Vu)|?, = v
3 Iy HIVu@ll, = —(u- Vulu)
Using that, if a and b are real valued, we have
@)y = [ a©lelb-€de
RB
def —1

= (a||DIb),, with |D]p= FY(|-[b).

Thus we have

(u- Vu|u)H%

- / u(z) - Vu(@)(|Dlu) (z)dz.
R
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Let ¢ defined by

Holder inequality, Sobolev embedding and interpolation inequality give using the relation
between p and ¢,

(w-Vulu) .1 S lullza[Vull all[Dlul| Lz
< ullzal |Vl s
F2q
2
S HUHL‘IHVUHH%,%

2 2
S Nullzallal? 1Vl 7,

Then using the convexity inequality and Relation (3.8), we infer that

1
< SIVu@I y + Cllu)allu(t)

2
it 5

By Gronwall lemma, we deduce that

t t
2 (12 / 2 N |(|P /
0+ [ IV e < ol esp(C [ el ar ).

The theorem is proved. O

As a conclusion of this introduction, let us introduce the set of initial data which gives
birth to global regular solution.

Definition 3.2.2. Let us denote by G the set of initial data uy such that the solution u given
by Theorem 3.2.1 is global i.e. belongs to L{ (R*; HY).
We denote as p. the supremum of the positive real number p such that if ”UOHH% <p

implies that ug gives birth to a global solution in the space in L}, (RT; HY).

3.3 Global stability results in H:

The basic theorem in this section is the following.

Theorem 3.3.1. Let u be a global solution of (NS) in L{ (R*; H%) NLL (RT; HY). Then we
have

lim [u()],y =0 and /0 lu(®)][4dt < oc.

t—o00

Proof. We shall decompose the initial data ug as a sum of a low and a high frequency part. A
positive real number p being given, let us state

. def
Uy = Ugy + Ug with (N =

F (1 (©)T0(©))-
Let € be any positive real number. We can choose r such that
luosll ;3 < min{po,e/2}.
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where pg is the constant of Theorem 3.2.1. Let us denote by wu, the global solution of (NS)
given by Theorem 3.2.1 for the initial data wug). We have

lusll? e gy H IO, s <ol - (3.9)

oo (RT;F2) L2(RT;H?2)

Let us define uy def u — uy. Let us notice that uy is globally defined because so are v and w,,.
It satisfies
{ Oruy — Auy + (ug + ) - Vug +uy - Vu, = —=Vp
Utje=0 = U0,g-

By energy estimate, we infer

1 t 1 t
SOl + [ 19wt = Sl + [ (s Tufui
Using Sobolev embedding, we claim that

| (s () - Vuy (1), us (1)) [[ug (t) - Vo () || L2 [ Veu(t) | 2
[z (0) | o Nl (8) | 23 [ Vg () | 2

Cllus (@)l 3 Vg (1172

VAN VANVAN

Then we deduce that

1 t
lug(t) 2 + / IVt 2t < 5lunalie+ Clluosly [ IVt Eace.

Choosing € small enough ensures that

t
g ()12 + /0 V()| Badt! < Jluog 2.

This implies that a positive time ¢, exists such that ||Uﬂ(t5)||H% < e/2. Thus ||u(t€)||H% is less
than e. Then Theorem 3.2.1 allows to conclude the proof. O

Let us remark that the set G contains the open ball of radius p. and centered at origin.
Let us state the following corollary of Theorem 3.3.1.

Theorem 3.3.2. The set G is an open connected subset of H%

Proof. Let us consider ug in H 2 such that the associated solution is global. Let us consider wq
in H 3 and the (a priori) local solution v associated with the initial data vg def ug + wo. The

. def . .
function w = v — u is solution of

{ ow—Aw+u-Vw+w-Vu+w-Vw=—-Vp

w|t:0 = wop.

Sobolev embeddings together with interpolation inequality gives

|
|

3
CIIuHHleH? yIIVwll” , and

|(u- Vw +w - Vu|w)

IN

M\H
K\)

IN

|(w - Vw|w)

ClleH%IIVwHiI%

M\»—‘
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1
Let us assume that HwOH 3 < T8 and define

def 1
Ty < sup{t/ max. 0@,y < 75}

Thanks to the convexity inequality we infer that, for any ¢ < Ty,

t t
2 1\ 112 / 2 N4 N2 /
oy + [ V0O, gt < ool +C [ @) fo@)1? ar.

Gronwall’s Lemma and Theorem 3.3.1 imply that, for any ¢ < Ty,

t
2 |12 / 2
lw(®)I y + /0 IV @)% ydt’ < Jluwoll? , exp(C /O ()l dt).

If the smallness condition

1
2
HwOHH% exp(C/O [l u(t )H ) < T6c?’ (3.10)

is satisfied, the blow up condition for v is never satisfied. Thus G is open. )
The fact that G is connected is due to the fact that as tlim u(t) =01in Hz, any ug in G is
— 00

connnected to 0. Thus the corollary is proved. O

3.4 The Kato theory in the L” framework

The purpose of this section is the proof of the folllowing theorem.

Theorem 3.4.1. Let ug be a divergence free vector field in L3. A positive time T exists
such that the system (NS) has a unique solution u in L([0,T] x R3) which also belongs
to C([0, T); L3). Moreover, a constant p; exists if ||ug||zs < p1, then the solution is global and
satisfies

||UHL°°(R+;L3) + HU||L5(R+ x R3) S lluolzs-
Proof. Tt relies on the following lemma.

Lemma 3.4.1. For j in {1,2,3}, we have
3 t )
=3 [ [ = tia syt
1’0 JR?

where the functions Fi ¢, belongs to the space L{ and satisfies

1
ki IS (e

Proof. In Fourier space, we have
t
FLif(t,€) =i /O e S ) ot nele 2, €)dt.
k¢
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In order to write this operator as a convolution operator, it is enough to compute the inverse
Fourier transform of §j£k§g|§|_26_t‘5|2. Using the fact that

o0
e~HEP g2 = / IR gy
t

we get that
FZ:,Z(t’ xr) = z/ /R3 gjgk&ei(x\i)*t’\ﬁlzdt/dg
t

= 3jakae/ /ei(IIE)t’ﬂth’dg_
t RS

Using the formula about the Fourier transform of the Gaussian functions, we get

y T e
Lpot,z) = 0,040, t e dt

(4nt))?
1 (> 1 ; x ) ; def L2
= — 2 ( )dt/ with U7 (2) € 80,0 .
ﬂg/t (4tl)3 k.t At k:,ﬁ( ) JUkOL
Changing variable r = (4t')~!|z|? gives
L z
(o) < —— 7 (—r)dr.
TN = 3y el
This implies that
; 1 1 1
I ,(t,x <min{—>—}<7.

The fact that (v + |x|)~* belongs to L from the fact that the function is homogenenous of
order —4 in the sapce of dimension 5 because the homogeneity is with respect of the dilation
(t,z) — (A%, \z). This proves the lemma. O

Corollary 3.4.1. The operators Ly maps continuously from the space L%([O,T] x R?) into
the space C([0,T]; L?) N L3([0, T]; L?).

4 5
Proof. Using Lemma 3.4.1, we immediatly infer that I', belongs to L. As we have

14 1 4 n 2
5 55
then using Hardy-Littlewood-Sobolev inequality (see for instance Theorem 1.7 on page 10
of [2]) we infer that

Now let us observe that Lemma 3.4.1 implies that
1

7
5

J (. <
Ik 2y S 7

Holder inequality in time implies that

. < I — ; . 5
L lmory S [ I =)l g 10,5 gy

1
< I — .
S [l g g o

Sle—yls
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As

Hardy-Littlewood-Sobolev inequality implies that

Lk f Nl L3 (3,00 (p0,77) < ||f||L%([o,T]xR3)'

As (|9l oo (o103 ®?) < N9l L3 (2,100 ([0,77)) this gives the result. In order to prove the continuity,
we use (3.8) and then proceed exactly as in the proof of Lemma 3.2.1. a

Conclusion of the proof of theorem 3.4.1 The fact that the bilinear operator B maps con-
tinuously L°([0,T] x R3) x L>([0,T] x R3) into L>®(Ry; L) N L>([0,T] x R?) is an obvious
consequence of Corollary 3.4.1. Then we simply have to prove that

A
le"uoll L5 @+ ) < lluollrs- (3.12)

As we have

_la—y?
i< oy [ ol
7y
we get
1 |z —y|2
A < / —T‘ d
le T uo(z) s o) < . (477)36 L5([O,T])|u0(y)‘ y
1
S [ ).
RS |z —y[5
As
Bt
5 15 3

Hardy-Littlewood-Sobolev inequality give the result in the case when ug is small. For the local
version, let us use that the space L>N L is dense in L3. Thus for any positive €, a function UQ e
exists in L3 N L5 such that ||ug — ug.||zs < e. Using (3.12) gives that

1
e uoll 15 jo.ryxrs) S €+ T3 [[woellzs-

This concludes the proof of the theorem. O

3.5 A stability result in the L” framework

The following theorem refines Theorem 3.3.2. It will be useful in the proof of forthcoming
Theorem 4.1.1.

Theorem 3.5.1. A constant Cy exists such that for any couple (ug,vy) of divergence free
vector fields in H? and an external force f in LQ(R+;H%) N Lg(R+ x R3). Let us assume
that u belongs to L= (R™; H%) NLYR*; H') and that
1
loollze + 11,5 g gy < 7 P~ CollulZoar s )
Then the system

3
atv—Av+v-Vv+div(u®v+v®u) :—Vp—I—Z(?gfe

(NSy) —

divv=0 and Vjt=0 = V0
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has a global solution which satisfies

1
[0l Lo (m8) + 101 L3 et x 3y < E(HUOHU” S5 mr ps) exp(Collull 75 g+  g2))-
Proof. Let us first notice that for any subinterval I = [a, b), the bilinear operator B; defined by
1
0;Br — ABy = —idiv(u@)v—l—v@u) —Vp
diVB[ =0 and B[\t:a =0

maps continuously L°(I x R?) x L%(I x R3) into L>(I; L3(R3)) N L°(I x R3) with a constant
of continuity which does not depend on I; let us denote by ||B|| this constant. Let us also
denote by C' the best constant such that

A
leall s g+ xr3) < Cillall s

Let us remark that Theorem 3.3.1 implies that u belongs to L™ (R™; H %) NL2RT; H %)
Thus Sobolev embedding and interpolation inequalities between Sobolev spaces implies that u
belongs to the space L?(RT x R3). The local theory of wellposedness for initial data in H?2

claims in particular that a unique maximal solution w exists in C[0, T*[; H 2 )OL2 ([0, T*[; H 2)

loc
and if T is finite, then
T*
| ottt =

We want to control the ||w|| 5o 77xr3) to prevent blow up. In order to do so, let us write the
solution w = u + v. Then v is the solution of

3
8tv—Av+v-Vv+div(u®v+v®u) :—vp+285ff

(NSy) —
divo =0 and v—9 = vo.
Let us decompose R" as a disjoint union of intervals (I;)1<j<n such that if I; = [I- ; ,I;r],
thean =0, Ij = j+1 and I = oo and

. 1 5 1 5
Vje (L, N}, / Ju(t, Mpdt = () and / Ju(t, st < (rz7)
N

Let us notice that, by addition, we get

=1 (557) < L It < 8 (grr)”

We shall prove by induction that if

1

—N-1
L3 (R x RS) = 80, HB||(201) ) (3.13)

lvollzs + 111l 5

then, for any j, we have I U I’ [0, T*[ and

> 10 and o(I)zs < (llvolles + 111, 5 )(2C1)’. (3.14)

L3 (I xR3)
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Let us point out that it prevents blow up and thus ug 4+ vg belongs to G. Let us prove the
induction hypothesis for j = 1. Let us define

7 def .
T= SUP{T <min{T*, I} } / max{|[v]l po o773 %) 191l 25 0,77 x3) }
< (Ivollzo + I 1lzs ) (2C1) }-
The system (N S,,) writes
3
v = ey + 2B(u,v) + B(v,v) + Zkak
k=1
For any T < T, we have
max{||v\|Lw ([0, T);L3(R3)> ||UHL5 ([0, T]xR3) }< Cl(HUOHL3 + ”f“m n ><]R3))
+ QHBHHUHH (I1 xR3) HU||L5([0T xR3) + HBHHU”Ls(OT]XRs)-

By definition of 7" and the intervals I;, we get, thanks to Hypothesis (3.13)

1
max{ vl poe o.rpLas) [lls o zixe } < Crlllvolles + 1515 ) gs)) + 510025 0mices)
which gives

VT < T, max{[[v|l oo, r2®2) 1015 (o.mxm3)} < 2C1 (Jlvoll s + HfHLf I XR“))

This implies that T* > I fr and T =T 1+ which is exactly the induction hypothesis for j = 1.
Let us assume the induction hypothesis for j < N. The system (N.S,,) can be written

v=el" 7+1)A”([j_+1) + 2B, (u,v) + B(v,v) + Z?):kak‘
k=1
Let us define
Tyer € sup{T < mindT*, 11}/ max{ [0l g r-, | oy 0o oy}
< (2017 (Juoll 5 + ||f|| o)
Forany I, <T < Tj+1, we have
maX{HUHLoo([];H,T};L?» R3)> HU”LS([ LT]IXR3) }< CI(H ( 3+1)HL3 + Hf” xR3))
+ 2| Blllull s (1, xr2) HUHLS "L TIxR3) T ”BH”UH L TIXR3)
By definition of 7" and of the intervals I, we get that
maX{H’UHLm( (17, THL3(R3) HUHLo(I +1,T]xR3)}
< G0l + 105, n) + 3100, ey

which gives

VT < T maX{HvHLw [I T]; L3 (R3)» ||UHL5(IJ._+1,T}><R3)} < 201(””([]‘]—1)”1]3 + HfHL%(Ij_;,_lxR%)'

+10

This implies that T* > I, 41 and T= ;Zrl which is exactly the induction hypothesis for j + 1
and the theorem is proved O
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Chapter 4

Applications of profile
decomposition to the Navier-Stokes
equations

The following theorem is the basis of application of profiles theory to incompressible Navier-
Stokes system.

4.1 Bounded sequences of initial data

Theorem 4.1.1. Let (upn)nen be a sequence of initial data which is bounded in H%
Let us consider an extraction ¢, a sequence of profiles (¢’ )jeN, a sequence of scales and
cores (X, x%)(j’n)eNz in the sense of Definition 2.1.1, a sequence (T%)(j,n)€N2 of functions given
by Theorem 2.1.1 on page 13.

Let us define J; as the set of indices J such that @) does not belongs to G i.e. ¢ does not
give birth to a global solution in L*(R™; H'). This set is finite.

If Jy is empty, then, for n large enough, ug(,) belongs to G.
If J; is non empty, an index jo exists in Jy such that

Vj € Ty, g/ n>nj = (NPT () < (M)*T*(¢7).

For any positive real number ¢, let us define 75 def (A)2(T*(pi0) — ¢). Then

Ine [ n > n. = T (U pn)) = Tn-

J

Proof. Let us search the solution ;)

associated with ug 4(,) of the form

J
. f ;
ul = u;iapp +R!  with uiapp de Z DI + ebr)
= (41)
. 1 . t _J
and @ (t,z) = .@J( S —— >
M, (A2 N,
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where @ denotes the solution of (NS) associated with ¢/. The vector field R;! satisfies

IR — AR + R VR + ), VR +R).Vu! —Vp — div Z F2Y with

(=1

n,app n app

FPE N REowith B 6] o 9k,
0<j k<]
SR

J J
F;L]’Q def <Z <I>{L> ® etArJ + etAr,{ ® (Z @%) and
§=0 §=0

def
FJS el et ®€tATJ

(4.2)
Now let us prove the following lemma.

Lemma 4.1.1. A real number M exists such that, for J,

J
dJ

J=0

lim sup
n—oo

L5([0,75] xR3)
with the agreement that 1,; equal to infinity if J; is empty.

Proof. Using the scaling invariance of the space-time L® norm, let us write that

J

2P

’ 5
Jj=0

J
115
a Z H(I)jHLE’([O,Tg]XRS)
§=0

L5([0,78] xR3)
5

< > /{0 1] 1@t ) |dzdt

£ 3
(jl7j27j37j47j5)€{07'9J}5\A 7Tn]XR =1

where A % {(] J,7.3.3)/ 7 €10,- ,J}5}. Up to a permutation of indices, we can assume
that j; is different from js. Using Holder inequality and the scaling invariance of the space-
time L® norm we get

5

5
R (T G Ry
[0,75]xR” p— =3

. . 5
([ el e b
[O,Tg}XRB
J1

An
log()\ s )‘ = +00. Using the scaling, we get

n

Let us assume that lim
n—oo

gk = /[o ]R3|‘1>%1<t7x)|3|q>g‘5<t,x)|3dxdt
TE|X

< [SEEE L (25)7)
0 )\%1 )\%1
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Using that the weak converge in LP namely the fact that, in p is in |1,00], for any (f,g)
in LP(R?) x L' (RY), we have

lim A_%f(A_lx)g(aj)dm = 0. (4.3)
A—oco JRd
Thus we have ‘
A jid
1 _ — 3 1,J2 —
Jim o ()| = o0 = Jim 72 = (a4

If the case when )\%1 = )\ZE, let us write that

T

£
o AJ2)2
\77‘1711.723 ( )/
RS

0
J

. i k|3
o (t,m - W)’ B (¢, 2)|3 dadt.
n

k
Ty — T
Using the fact that lim |7 . nl

n—oo

tends to infinity this implies that together with (4.4)

V(j, k)€ {0,---,JY ) j#k, lim T =, (4.5)

Together with (4.4), this implies that

J
VJ, limsup ‘ Z

n—oo j:0

5
PJ

n

J
SN [ " (4.6)
L5([077-75J ><]R3) J—Z() L5([07T (@J) E} XR3)

Now we have to estimate the righthandside term of the above inequality independently of J.

Let us denote by 7, the set of indices such that || ||H 4 is greater than or equal to than po/2

(where pg is the radius given by Theorem 3.2.1 on page 29). As the series (ngJHi] 1)jeN is
2

summable, this set is finite. If j does not belongs to J,,, Theorem 3.2.1 claims that

7| 7|2 < |l ;.
I ||L00(R+;H%)+|| IIL2(R+;Hg)_IIs0 IIH%

Sobolev embeddings and interpolation inequality between Sobolev spaces imply that

121 s @ezs@ey < Ol g a2 sy,

< CHWHZ{

Thus, as the series (||¢’ ||Z 1 )jen is summable and as ¢*(Z) is continuously included in ¢°(Z),
2

we get that
J
|5 5 (|5
Z H(I)]‘|L5([0,T*(<pj)—e]><R3) < CS17le HUJO,TLHH% + Z ||q)]”LW[O,T*(@U—&}XRS)
=0 i€Tp0
Using Theorem 3.3.1 on page 32 and Inequality (4.6), we get the lemma. O

Continuation of the proof of Theorem 4.1.1 Let n be a positive real number which will be
choosen later on. Two integers .J,, and n, such that

n > ny = |rllps <n. (4.7)
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Lemma 4.1.1 and Inequality (3.12) on page 36 imply that, if n large enough (depending on 7)

J J
lunthon |l 25 (0.7 (p)—cxms)y < M + [1€707 | 15 @+ &3
< M+ Ch. (4.8)

Moreover, Inequality (3.12) on page 36 implies that, if n large enough,

[Pastas] < Cn. (4.9)

L%([O,Tg]xR?’) -

Holder inequality and Lemma 4.1.1 imply that, if n is large enough |,

Jn,2 <
708 o gy <

Jﬂ

j A
E @, e’ TH,J”LE’(RJrXRS)
j=0 L3([0,75]xR?)

< CMn. (4.10)
Inequality (4.5) on page 41 implies that

1 J17,1 —
A [1F ”L%([O,Tg]xRS) =0
Together with Inequalities (4.8)—(4.10), this implies that, choosing 1 small enough, we have,
for n large enough,

[raidl

-1 J; 5
L8 oy = G0 (= Colluitapn 7o rg e
In the case when 7,7 equals to infinity, then the theorem is proved. In the case when 7, in
finite, the proof of Theorem 3.5.1 on page 36 can be repeated words for words to ensures
that T*(ug(,)) is greater than or equal to 7.

O

4.2 A first application to the structure of the set G

Theorem 4.2.1. Let us assume that G # H% Let us define
def
pe = sup{p €]0,00[/ B(0,p) C G}.

Then if S(0, p) denotes the sphere on radius p and center 0 in H%, we have that S(0, p.) N G¢
is non empty. It is compact up to translation and dilation in the following sense. If (un)nen
is a sequence of S(0, p.) N G, then a sequence (An, Zn)nen of (]0,00[x R*)N and a function v
in S(0, p.) N G exists such that, up to an extraction, we have

lim [[Anun (An(- +2n)) — 0| 1 =0.

n—00 H2
Proof. By definition of p., a sequence (uy,)nen of elements of H3 exists such that

T*(up) < oo and HUnHH% = pe- (4.11)

lim
n—oo
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Theorem 2.1.1 claims that a sequence of scales and cores (/\%, x%)(j,n)eN2’ a sequence (¢’)jen

in H %, a sequence (TZL)(]- nyenz Which satisfies the following, up to an extraction on (up)nen,

J

1 ~x—mj
VJ €N, uy(z) = —’ + with
() ;ZO:A#”( i ") +r(@)

lim limsup||7;| ;s =0 and
J—=00 n—oo
J
. 2 q,.d2 — J |2
vIeN, lim (Jualyy — 17, ) = 311,
The last relation implies in particular that

Z 1112y < P2 (4.12)

Theorem 4.1.1 implies that an integer jo exists such that /0 does not belongs to G. As
the (open) ball of center 0 and radius p. is included in G, then an integer jy exists such
that anJOHH% > pe. Inequality (4.12) implies that

Il ;5 = pe and  j#jo= ¢ =0.
Thus ¢’ is an element of S(0, p.) N G¢ which proves the first part of the theorem. For the

second part, let us consider a sequence (uy)nen of S(0, pc) NG. Arguing exactly as above, we
deduce that, up to an extraction

>+rn with nh_>no10||rn||H% =0.
As the 3 norm is scaling invariant, this gives the whole theorem. O
4.3 Describtion of bounded sequences of solutions

The purpose of this section is to prove the following theorem.

Theorem 4.3.1. Let (ugn)nen be a sequence of initial data bounded in s, With notations
of Theorem 4.1.1, we have

Jim 1 R R’ 3 ) =0. 4.13
im lmsup (1R3ll o o ooty T 1Bl 2o e ) (4.13)
Moreover, for any J, we have
: 2 2 tAJ |12
@.7 = 0. 4.1
s 012 }ju Oy Iy | =0 @

Proof. The first step is the proof of the following lemma which is the analog of Lemma 4.1.1.
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Lemma 4.3.1. A real number M exists such that, for J,

J
lim sup ‘ g
n—oo .
J=0

dJ

n

<M
LA([0,r5]: 1)

with the agreement that 7 equal to infinity if J; is empty.
Proof. Let us write that for any ¢ in [0, 75|, we have

J

2
PR A0

Jj=0

J
=D IO+ Y (RLO)RE(1) g (4.15)
Jj=0 0<j,k<J
itk
Let us prove that for any (j, k) in {0,---,J}? such that j and k are different, we have

lim H (<I>] |<I>k(

n—oo

Hl HL2([0,T5[) =0. (4.16)

Let us first consider the case when the two scales (M,)nen and (AF),en are different.
Using the scaling invariance of the space L4(H 1) norm, let us write that

N 2
(@R O12n®) 1 [ L2orey < /0 WLH[O’T*WE]<(A%)2>’¢J((A%)2) &8
t k t ’
Xﬂ{o,T*(M)E](()\ﬁ)?)‘(I) <()\’fl)2> H1dt
oo Ak Ay 2 j A2 ’
< n * (i N 2 Sva
< /O )\%ﬂ[o,T (@J)E](()\%) t)’q) <<>\%> t> !

X Lo e (b)) (D@7 () |31 dt

Because of the hypothesis of orthogonality on the scales, this implies (4.16) in the case when
the two scales (M) )pen and (A¥),cn are different.
In the case when the two scales (M, )nen and (AF),en are equal, let us observe

¢ —
SL(I25(®) </],k‘<©j ' q)k< _%—%))
| @O oy < 7@t (6= 57))

with 77, def min{T*(¢’), T*(¢*)} — €. Lebesgue’s theorem implies that for any positive 7, a
positive real number oy exists such that, for any j in {0,--- ,J}, we have

2
dt

n
subjes 71| pa 0,7+ (p0) ;)

ot (1— (O;J)+X(‘aJ))<1>j

where y if a compactly supported function in R? with value 1 near the origin. Thus we have

with

197 = 2, o, (o) -efiny <
(4.17)

€

TS, J _ .k
: k In X
(q)zXJ(ta')‘q)aJ<ta'_ P n>) )
0 An ot

H(@%(t)!q’ﬂf))mHiz([o,rfl[) = 20 +/ L

2
dt.
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J Lk
As lim 1Zn =l

= 00, for n large enough, the support of the two functions

| ol gk
@, (t,-) and <I>§J <t,~— n)\j ”)
n

are disjoint. Thus we get (4.16) in all cases. Taking the L? norm and passing to the limit
when n tends to infinity in Relation (4.15), we get

J

PO

J=0

2

lim sup
n—oo

J
<> 0701 e
L4([077—5};H1) ]ZO LA([0,T* (7 )—€];HY)

With the notations of Theorem 4.1.1, let us write that

ZHq) ||L4(0T* SOJ) € Hl) — Z ||q) ||L4(0T* SOJ) € Hl) + Z ||(I) ||L4R+ Hl
/<00 gl
JI=

Using Theorem 3.2.1, we get that

< i 2
Z HQ) HL4 ([0,T*(p7)—e]; H1) ]EZJPO HQ) HL4 ([0,T* (03 )—e]; HY) + hI?rlleSI:Tlp HU'IZHH%

and the lemma is proved. O

Continuation of the proof of Theorem 4.3.1 Thanks to Lemma 4.3.1, it is enough to prove that

lim lim ||F/|| = 0. (4.18)

J—s00 Nn—00 L2(]o, TS]HQ)

We use the notations of Definition (4.2) of R and F/. Let us first study Fy, 71 If the two
scales (M)nen and (AF),en are different, we have, because of law of product in Sobolev
spaces

]k2 def j k:2
1B, 0y IR,
| t [t 2
< 7]1 * '78 T (I)]
= /0 Nk 10T ) ]<(>\]) >' ( >H
" 2
<Loron-a 7 )H (; H
<

% \k 1 _ AEy2¢ MNey2¢
0 E [0,7*(p7)—e] (A]) %

X Ljg 7x (k) H‘I’k )H

Thus we infer that if the two scales (M) )pen and (A¥),cn are different, then

lim HFJ’“HL2 (omeriih) = O (4.19)
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In the case when the two scales (M) )nen and (AF),en are equal, let us observe, using (4.17),
we have, for any appropriated choice of oy,

Ts, J_ Lk 2
24 RTI Ot ) @ ®F [, — )|l gt
2((0,rg];H 2) 0 A i
TE, J _ .k 2
< 2n+/J %) (,-)@cb&(t,--“/\ﬂi) dt
0 n H1
|2h, — k|

with 77, def min{T*(¢7), T*(¢*)} —¢. As lim

n— 00 A%

- il — xk
@ (t,) and @’gu (t, - n)\j”)
n

= 00, for n large enough, the support

of the two functions

are disjoint and thus, thanks to (4.19), we have

3 J,1 . —
vJ, nlir{:o\|Fn I r2 (0, 75,11y = O- (4.20)

In order to treat the term F’ ’2, let us observe that interpolation inequalities imply that

0
HGHB§9 < llall%,y lall 525
9

cb\to

Using Lemma 2.4 of [2] and the Minkowski inequality, we have

)

J0 Jn1-6
e <l eIt

39_1
L4 (RJr 'Bg 2 )

7
Properties of the sequence (7"%)( jn)EN? implies that

V6 € [0,1[, lim limsup ||e®r)
0,1[, Jim limsup le T"HL4(R+;B§
0

Law of product in Besov spaces (see for instance Chapter 2 of [2]) say that, for 6 > 2/3, we
have

.31 .31 .
B2, ?.B:,? c H2
0’6 670
It immediatly ensures that
J,3 —
hm hmsup | Ey ”L4 RHaE) = 0. (4.21)
39_1
Moreover, as H' is continuously embedded in B 5 5 7, then Lemma 4.3.1 ensures that
0’6

. . J2 .
S i sup 15 gty =
Then Inequalitites (4.20) and (4.21) imply (4.18) and the first part of Theorem 4.3.1 is proved.
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In order to prove the second part of Theorem 4.3.1, let us first write that

J 4
2 _ 2 tA,J |2 T\ 112 Je .
lugmy @I,y = Z;\@”( Moy el y IR @I +2;En (t) with
j= —

7=0
def
Ep?(t) = (¢l Ra(1) 3 - (4.22)
J
def i
BP0 (L ano)esr)
j=0 H2
def
E® = Y (BA0IRHD) 3
0<j,k<J
J#k

We shall make a very frequent use of the fact that

¥(j,n) eN?, te (0,7 = € [0,T%(¢") — €.

(Mh)?
The first step is the proof of the following lemma
Lemma 4.3.2. For any (j, k) in N? such that j and k are different, we have

Jim H(‘l’j (6|5 (t) t) ;1 HL&([Omﬁ]) =0

Proof. Let us consider a positive real number 7. We first study the case when ()\i)neN
and ()\ )nen are different. For any j, the set {®7(t),t € [0,T*(¢’) — €]} is a compact subset

of H7 as the range of the compact interval [0,T *(goj ) — €] by the continuous ap ®’. Thus
it can be covered by a finite number of balls centered at functions the Fourier transform of
which is included in a ring of R? and of radius

n 1 HF|1
—m P .
2 x| H o0 (0,7 (p7)—e];2) 2k HLOO([OT*( k) s];H%)}

Then we deduce that for any ¢ in [0, 7], it exists two functions f; and gy (which are choosen
a finite family of functions depending on 7, on (j, k) and on € such that

’(‘I)gz(t)(bﬁ(t))gé - Aﬁ;ﬁ <f3< - xn)‘gk( xk>>H§

_ ‘(@J((Aﬁ) £)|S*(AR)*1) -

1
H?2

— (filgr) 3| <.

\
When ‘log )\—Z

J

. A
are disjoint; thus the two functions are orthogonal in H 7 and we have, for log)\—z
n

enough '
[ICAGIHG) FEY . (4.23)
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In the case when the two scales ()\J )neN and (AF),cn are equal, let us write that because of
the scaling invariance of the space 3 we have

J

] j t t j def $ -
J k — (@I ) | pF R J.k LA
(@5 PR (1)) 3 = <<I> <(A¥L)2 : )}<1> (%)2 y ))H% with 2 v

By definition of the H > scalar product, we get

(0I2n(1) ;4 = <<|D’q)j<(A§;)2 ")"I’k<(A§;)2 o)

Using that the set

{ID|®7(t) ,t € [0, T*(¢’) — ]}
is a compact subset of H 7%, it can be covered with a finite number of ball of radius less than

S 1P 1% o egg + 1)

and centered on functions of D(R®\{0}) for the H ~2 topology. The same is true for the set
{28(1),t € [0, T*(¢) — €]}

in the H2 topology. Thus two functions f; and g, exists in D(R3\{0}) such that

(@L0950) 4] <0+ [ 1i@ante - i)da].

As lim |y/*| = oo, the above integral is 0. With (4.23), the lemma is proved. O
n—o0

Continuation of the proof of Theorem 4.3.1. Lemma 4.3.2 implies that, for any J

J
S, anbﬂ DI,
=0

Let us introduce J,, the set of indices such that the associated profile 7 does not belong to
the open ball contered at the origin and of radius py where pg is given by Theorem 3.2.1 on
page 29. It is a finite set. Moreover thanks to Theorem 3.2.1, we have

=0.
Leo([0,75])

lim
n—oo

Vi & Joo s 193] (4.24)

[,oo R+ Hf HéJHLoo(R+;H%) S H(IOJHH%

Thus we infer that

lim sup
n—oo

def
<M S I 1

L°°([O e H3) €,

Using Cauchy-Schwarz inequality, we get, with the notations of (4.22),

J
limsup ||EXY | pooiorey < limsu ‘ PI(t limsup || R/
n—>oop 125 (073D = n—>oop 320 ®) Lo ([0,72]) n—>oop|| ||L°° ([o, E]H2)
< M|R;]

Lo (jo,rglifr2)’
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Thus, using Inequality (4.13) (which is now proven), we get

lim lim sup HE,;{’IHLOO([OJ—SD =0. (4.25)
J—=00 noeoo

The estimate of Ej? is easy. Indeed, Cauchy-Schwarz inequality implies that

H(emﬁﬂR;{(t) i3 HLOO([O,TE < HTJH 7% HRJHLO@(O Tl H '%)'

Because lim sup ”TJH 1 is less than or equal to M sup || wo, n|| 1> we get
n—oo

. tA T R ; J
hTIlIl_)SolipH (6 Tn|Rn(t))H% HLOO([O,TEL]) < thln_?ip HRnHL 0 T,,EJ;H%).
Using Lemma 4.13, we get
Jim Tim sup IE:2]| oo ((0,727) = O (4.26)
—00 n—oo

The term E;*° requires more care. Let us consider an integer J' greater than the maximum
of Jp,. For any J greater than J', we have, because of Lemma 4.3.2 and Assertion (4.24)

J 2 J
lim sup I (¢ < limsup 2 .
n—00 ];, n() Loo([oﬂ—fJ;H%) n—00 Z/” ”Loo([o ]H%)
2
< S
j=J
< IR,
j=J

Let us define J,, such that

n
A
j=>Jy pn‘]

Now let us consider J such that J,. By definition of E;3(t), we have

n—oo

JW
. : n : j A
limsup | B (1)< 0.z < 2+j§:%hg;sogpu(%<t> i) it e o)y

Using the scahng properties of the space H3 2, let us write that, by definition of the scalar
product of Jig 2,

L M O RO B LICARE AN

Using the compactness of {®7(t),¢ € [0,7*(¢?) — €]}, we can recover the set
{ID|®’(t),t € [0,T*(¢’) e}
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by a finite number of balls (for the H _%—topology) of radius

Ui

iTysupn Ty

and centered at function of D(R?). Thus we get, for any ¢ in [0, 7Z],

. N2 . .
[(@L@)]e" ) 4y | < ﬁ + (fo M (X)L (N - )
< 4J + [ Fell gz Nl g
Thus we get
3
B3| oo ((0,06] < ™ +C77H7’JHB -
Using (4.25), (4.26) and Lemma 4.3.2, we conclude the proof of the Theorem. )

4.4 A blow up theorem

The purpose of this section is to prove the following theorem.

Theorem 4.4.1. Let us consider a maximal solution u to (NS) which belongs to the space
O([0.T"[ H2) N Lio((0, T H ).

We have
T* < 0o = limsup |[u(t)| .1 = oo.
H?2
t—T*
Proof. We argue by contradiction. Let us denote by Iz the interval of real numbers A such
that it exists a solution u to (NS) which blows up for some finite 7* and is such that

limsup |lu(t)| .1 < A.
t—T* H2
The theorem claims that Iz is empty. Let us assume that Iz is not empty; this will lead to
some contradiction.
Because of Theorem 3.2.1 on page 29, Iz does not intersect the ball centered at the origin
and of radius py defined in this theorem. Thus if we denote by A, the infimum of I, we have

A > po. (4.27)

Now let us consider a sequence (uy,)pen of solutions to (NS) which blow up for finite
time (7} )nen such that

1
Ac < 1i Ol gy S Act o 4.28
¢S ltrg;gpllun( ™ (4.28)
By definition of the upper limit, a sequence (t,)nen exists such that
lran ()l 3 = <Tn ||U"HLOo (UnTasiyy ST 0 (4.29)

Let us consider the sequence

Von = def VIx — tnun<tn, \ITx —tnl'> .
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By definition of (uy,)nen, the sequence (vgn)nen gives birth to a family of solutions (vy,)nen
o (NS) the life span of which is 1; because of (4.29), we have

1 1
v EN, fooal,y = A=~ and foull g h) S Aet (4.30)

Let us prove the following proposition, which is the one of the main step of the proof.

Proposition 4.4.1. Let (von)neny be a family of initial data such that for any n, the life
span of the solution associated with vy, is 1 and which satisfies (4.30). Let us consider an
extraction, a sequence of scales and cores, and a sequence of profiles given by Theorem 2.1.1
on page 13. For any j, we have that X}, is less than or equal to 1.

Proof. Let us apply Theorem 2.1.1. We have

J .
j=0 \n n

A consequence of (4.30) is that

hrn H'UnH [0 TE} H%) = Ac.

Inequality (4.14) of Theorem 4.3.1 allows us to write that, for any ¢ in [0, 75],

2

J
9 1 0 z— ) > ( T — a:n> .
[|on (t || H @ A0 o )\] %2, )\% ik n

where o/ is non negative and lim limsup o’ = 0. We deduce that, for any ¢ in [0, 7] we get

J—=00 n—oo

0 2
T—z
Jont® > |55 (G0
" Al
2 A2 J
+ > mfS I ()2, e [0, (22) (T (v0) )] | — on
J=1 An
Passing to the supremum in time gives
2 > (9912
Fonlle o rgyiaty = 12 ”Loo([o T () —elifi %)
: 7 2 /\91 2 * J (4'32)
+ Z it 187015,y 2 € 0. (33) (" (eo) =) — o
j:
Let us analyze this inequality. First of all, we get,
2 0|2
Il oty + 0 2 N2 oyt

Passing to the limit in n and J gives that

1% 1, SAZ
= (0T (o)~ 11%)

By definition of A, this implies the following proposition.
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Proposition 4.4.2. A solution ® to (NS) exists such that H@[)HLOO(OT*[H%) is equal to A,
and lim sup || D (¢ )HH% = A..
t—T™

Let us continue the proof of Proposition 4.4.1. Let us consider in Inequality (4.32) the
indices j such that j does not belongs to G. Because of Theorem 3.2.1 on page 29, we get

inf{H(I)j(t)H 1 te[0,T"(p } > po-

Inequality (4.32) implies that this set is empty. Let us consider that the set of j such that

0
n

gojeg and lim —& =0.

As the solution is continuous in time with value in H %, we have
i int {702, .t € [0, (22) (T (00) — )] { = 107
n—00 30 )\% %0 ® s
Thus for such indices j, ¢/ = 0 and the proposition is proved. O

Continuation of the proof of Theorem 4.4.1 It reduces to a backward uniqueness argument
once we have proved the following proposition.

Proposition 4.4.3. Let ® be a maximal solution of (NS) given by Proposition 4.4.2. Then,
for all s in [-3/2,1/2],
® < C(j0,T*[; H d lim ||[®(t)| 5. = 0.
€ C(0, T H1%) and lim [2(1)]
Proof. Now let us consider a critical blow up solution given by Proposition 4.4.2. Let us

consider a sequence (ty,)nen which tends to T such that || P(¢,) HH 3 tends to Ac. Let us apply
Proposition 4.4.1 to the sequence

vo,n(x df\/T*—td) (tn, VT* —tp x).

Profiles decomposition of vg, contains only scales less than or equal to 1. By rescaling, we
deduce that

; |
1 r |
@(tn,x):§:—.cpj<x d )+r;{ with Vj e N, N < /T* — .

A

This implies that the sequence (®(t,))nen tends weakly to 0.
Thanks to law of product in Sobolev spaces, the fact that ® is a solution of Navier-Stokes
equation gives that

Hatq)HLoo([O,T*[;H—%) S HA(EHLOO([O T*[H** + Hle (I) ® (b HLOO [0 T*[ 3)
< 2

This implies that the function ®(t) = def ®(t) — ®(0) in time with value in A ~3 and satisfies a
Cauchy condition when ¢ tends to T* which means that

Ve >0, 3t. >0/ V(1) €T —t.,T*], |®(t) — &)(t')HH_% <e.

This implies that the function ® has a limit in the space H =2 when ¢ tend to T*. As the
sequence (P(t,))nen tends weakly to 0 when n tends to infinity, we deduce that ®(0) belongs

to /=2 and then (4.33) implies the result after interpolation. O
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Continuation of the proof of Theorem 4.4.1 Now, we are going to explain why such a solution
must be 0 which gives a contradiction.

Let us introduce the conpcet of suitable solution of Navier-Stokes equations on a domain
of RT x R3.

Definition 4.4.1. Let w be an open set in R® . We say that a pair (u,p) is a suitable weak
solution of the NavierStokes equations on the set wx|—Ty,T| if the following conditions hold:
we L®( - Ty, T LA(Q) N L2(-Ty, T[; H'(w)) and pe L2(]— Ty, T[xw)
and (u,p) satisfy the Navier-Stokes equations in the distribution sense and in addition the

following local energy inequality

T

[ ettt opde+2 [ [ peolvat oo
7 o

< [ (1t 0P (Aet.0) + uplt, ) + ult,n) - Veolt, ) fult, o) + 2p(¢.2)) ) dods
T Jw

for almost all t in | — Ty, T| and for any non-negative function ¢ in D(R' x R?) in a neigh-
bourhood of the parabolic boundary 9'Q 2 ) {t=-T1}Udw x [-T1,T.

The following statement is a local regularity criterion proved in [11]

Lemma 4.4.1. There exist positive absolute constants £y and (ci)xeny with the following

property: If a suitable weak solution (u,p) of (NSE) on @1 where Q, d:ef] —7r2,0[xB(0,r)

satisfies the condition
/ (Jult,z)[* + \p(t,x)]%dxdt < €0,

Q1

then w is smooth on Q1 and satisfies the estimate
2

sup  [VElu(t, )] < .
(trx)eé%

Let us observe that because of Sobolev embeddings, ® belongs to L>([0,7*]; L?). Because

Riesz operators maps L%(R?’) into itsself, we have the pressure p belongs to L*([0,T™]; L%)
Thus

-
/ / (1B(t, )] + |p(t, @) 2 dwdt) < oo.
0 R3

It implies that, for any positive ¢, a radius R. exists such that, for any zp such that |z|
greater than or equal to R,

T* .
I[P +lpes)?) s < -
0 B(z0,V/T*)

Then applying Lemma 4.4.1 after a rescaling and time translation we get that ® is smooth
on [(3/4)T*,T*] x (R3\B(0, R.)). Let us write the vorticity equation

KA —AQ+D - VQ+Q VI =0
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on the set [(3/4)T*,T*] x (R3\B(0, R.)). Because ® is smooth up to T*, the vorticity Q(T)
is identically equal to 0 on R3\B(0, R.)). As ® in bounded in [(3/4)T*,T*] x (R*\B(0, R.)),
we have the pointwise inequality

0:(t, z) — AQ(t, 2)| < C(|Q(t, z)| + |[VQUL, 2)]).
Then we can apply the following backward uniqueness result proved in [12].

Theorem 4.4.2 (Backwards uniqueness). Let us consider a vector valued distribution
in H2 _((R*\B(0, R.))x] — 6,0]) and satisfies

loc
|0:2(t, ) — AQt, z)| < C (|t z)| + [V, z)|)

on (R*\B(0, R.))x] — 6,0]. If Q(0,2) = 0 on B(R3\B(0, R.)), then

Q =0 on the set (R3\B(0,R.))x] — §,0].

In order to conclude the proof of Theorem 4.4.1, let us notice that for any time ¢ in |0, 7%,
the vector field u has components which are analytic in the variable z on the whole space R3
(see for instance [6] and [23]) . Thus for any ¢ in [3/47*,T*], Q(t) = 0 and thus ®(¢) = 0
which is obviously in contradiction with the definition of ®. O
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