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Introduction

This text is notes of a series of lectures given first in the Morningside Center in February and
March 2014 in Beijing and then at Jacques-Louis Lions laboratory in May and June 2014. I
thank very warmly the audience of this two series of lectures for their interest and for their
remarks. I want to thank espaccially Professor Ping Zhang for a rereading of the notes and a
lot of suggestions of improvements.

The purpose of theses lectures was the description, up to an extraction, of lack of com-
pacness of the Sobolev embeddings as acieved in the work [18] of P. Gérard. We apply this
result to the describtion of the possible blow up in the three dimensionnal incompressible
Navier-Stokes.

More precisely, the first chapter will be devoted to the proof of a refined Sobolev inequality
which is in particular invariant under translation in Fourier space (i.e. multiplication by an
oscillating function). This involves some particular classes of Besov spaces we shall define and
study.

The second chapter is devoted to the statement and the detailled proof of the P. Gérard’s
result which provides a precise describtion, up an extraction, of a sequence of function which
is bounded in the homogenenous Sobolev Ḣs(Rd). It claims that in some sense, it is the sum
of dilation and translation of some given fuction in Ḣs(Rd). For a given sequence (λn)n∈N,
the concept of (λn)n∈N-oscillating sequence is defined. Together with some particular class of
Besov spaces, this tunrs out to be the crucial tool of the proof.

In the third chapter, we first recall some basic results about incomressible Navier-Stokes
system. Then we prove some result about bounded sequences of initial data in the spirit of
the work by I. Gallagher (see [14]. And we apply this resulst to prove the celebrated result
by L. Escauriaza, G. Serëgin, V. Sverak (see [12]) which claims that if a solution u to the
incompressible three dimensionnal Navier-Stokes equation develops a singularity at time T ?,
then we have

lim sup
t→T ?

‖u(t)‖
Ḣ

1
2

=∞.

We follow the approach developed by C. Kenig and G. Koch in [20].
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Chapter 1

Sobolev embeddings revisited

1.1 Sobolev spaces and Sobolev embedding

Definition 1.1.1. Let s be a real number. The homogeneous Sobolev space Ḣs(Rd) is the set
of tempered distributions u the Fourier transform of which û belongs to L1

loc(R
d) and satisfies

‖u‖2
Ḣs

def
=

∫
Rd
|ξ|2s|û(ξ)|2dξ <∞.

The following interpolation inequality is of constant use. We left as an exercise to the
reader the proof that Ḣs(Rd) is a Hilbert space in the case when s is less than d/2.

Proposition 1.1.1. If u belongs to Ḣs1 ∩ Ḣs2 , for any s between s1 and s2, u belongs on Ḣs

and
‖u‖Ḣs ≤ ‖u‖θḢs1

‖u‖1−θ
Ḣs2

with s = θs1 + (1− θ)s2.

Proof. Let us simply apply Hölder inequality for the fonction |ξ|2θs1 and |ξ|2(1−θ)s2 for the
measure |û(ξ)|2dξ and this gives the result. 2

Let us state the classical Sobolev inequality and its dual version.

Theorem 1.1.1. If s belongs to [0, d2 [, then the space Ḣs(Rd) is continuously embedded

in L
2d
d−2s (Rd). If p belongs to ]1, 2], then the space Lp(Rd) is continuusly included in the

space Ḣ
d
(

1
2
− 1
p

)
.

Proof. The second part is easily deduced from the first one proceeding by duality. Let us
write that

‖a‖Ḣs = sup
‖ϕ‖

Ḣ−s(Rd)≤1
〈a, ϕ〉.

As s = d

(
1

2
− 1

p

)
= d

(
1− 1

p
− 1

2

)
, we have by the first part

‖ϕ‖Lp ≤ C‖ϕ‖Ḣ−s

where p is the conjugate of p defined by
1

p
+

1

p
= 1 and thus

‖a‖Ḣs ≤ C sup
‖ϕ‖

Lp
≤1
〈a, ϕ〉

≤ C‖a‖Lp .
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This concludes the proof of the second part.

There are many different proofs of the first part. We shall use a frequency cut off argument
which gives for free a refined version of this inequality which will be crucial in the second
chapter. Let us introduce the following definition.

Definition 1.1.2. Let θ be a function of S(Rd) such that θ̂ be compactly supported, has
value 1 near 0 and satisfies 0 ≤ θ̂ ≤ 1. For u in S ′(Rd) and σ > 0, we set

‖u‖Ḃ−σ
def
= sup

A>0
Ad−σ‖θ(A·) ? u‖L∞ .

The fact that B−σ is a Banach space is an exercice left to the reader. We shall see later on
that the space is independant of the choice of the function θ. Let us observe that if u belongs
to Ḣs, then û is locally in L1 and the function θ̂(A−1·)û is in L1. The inverse Fourier theorem
implies that

‖Adθ(A·) ? u‖L∞ ≤ (2π)−d‖θ̂(A−1·)û‖L1

≤ (2π)−d
∫
Rd
θ̂(A−1ξ)|ξ|−s|ξ|s|û(ξ)| dξ.

Using the fact that θ̂ is compactly supported, Cauchy-Schwarz inequality implies that

‖Adθ(A·) ? u‖L∞ ≤
C(

d
2 − s)

1
2

A
d
2
−s‖u‖Ḣs .

This means exactly that the space Ḣs is continuously included in Ḃs− d
2 . By multiplication,

we can assume that ‖u‖
Ḃs−

d
2

= 1. Then let us estimate ‖u‖Lp . We decompose the function u

in low and high frequencies. More precisely, let us write

u = u`,A + uh,A with u`,A = F−1(θ̂(A−1·)û) (1.1)

where θ is the function of Definition 1.1.2. The triangle inequality implies that(
|u| > λ

)
⊂
(
|u`,A| > λ/2

)
∪
(
|uh,A| > λ/2

)
·

By definition of ‖ · ‖
Ḃs−

d
2
, we have ‖u`,A‖L∞ ≤ A

d
2
−s. From this, we deduce that

A = Aλ
def
=
(λ

2

) p
d

=⇒ µ
(
|u`,A| > λ/2

)
= 0.

We deduce that

‖u‖pLp ≤ p
∫ ∞

0
λp−1µ

(
|uh,Aλ | > λ/2

)
dλ.

Using that

µ
(
|uh,Aλ | > λ/2

)
≤ 4
‖uh,Aλ‖2L2

λ2
,

we get

‖u‖pLp ≤ 4p

∫ ∞
0

λp−3‖uh,Aλ‖
2
L2 dλ.
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Because the Fourier transform is (up to a constant) an isometry on L2(Rd) and the function θ̂
has value 1 near 0, we thus get for some c > 0 depending only on θ̂,

‖u‖pLp ≤ 4p (2π)−d
∫ ∞

0
λp−3

∫
(|ξ|≥cAλ)

|û(ξ)|2 dξ dλ (1.2)

for some positive constant c. Now, by definition of Aλ, we have

|ξ| ≥ cAλ ⇐⇒ λ ≤ Cξ
def
= 2

( |ξ|
c

) d
p ·

Fubini’s theorem thus implies that

‖u‖pLp ≤ 4p (2π)−d
∫
Rd

(∫ Cξ

0
λp−3dλ

)
|û(ξ)|2 dξ

≤ (2π)−d
p2p

p− 2

∫
Rd

( |ξ|
c

) d(p−2)
p |û(ξ)|2 dξ.

As s = d
(1

2
− 1

p

)
, the theorem is proved. 2

1.2 Interpretation in terms of Besov spaces and oscillations

In fact the above proof tells more than the classical Sobolev theorem, namely the following
theorem.

Theorem 1.2.1. Let s be in ]0, d/2[. There exists a constant C depending only on d and θ̂
such that

‖u‖Lp ≤
C

(p− 2)
1
p

‖u‖
1− 2

p

Ḃs−
d
2
‖u‖

2
p

Ḣs
with p =

2d

d− 2s
·

Let us see what type of improvement it is compared with the classical inequality. Let ϕ
be a given function in the Schwartz class S(Rd) and ω a unit vector of Rd. Let us consider
the family of functions defined by

uε(x) = ei
(x|ω)
ε ϕ(x).

Let us prove that for any σ in ]0, d] we have

‖uε‖Ḃ−σ . εσ. (1.3)

By Hölder’s inequality, we have

Ad‖θ(A·) ? φε‖L∞ ≤ ‖θ‖L1‖φ‖L∞ .

From this we deduce that, if Aε ≥ 1 then we have

Ad−σ‖θ(A·) ? φε‖L∞ ≤ εσ‖θ‖L1‖φ‖L∞ . (1.4)

If Aε ≤ 1, we perform integrations by parts. More precisely, using that

(−iε∂1)dei
x1
ε = ei

x1
ε
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and Leibniz formula, we get

Ad(θ(A·) ? φε)(x) = (iAε)d
∫
Rd
∂dy1 (θ(A(x− y))φ(y)) ei

y1
ε dy

= (iAε)d
∑
k≤d

(
d

k

)
Ak((−∂1)kθ)(A·) ? (ei

y1
ε ∂d−k1 φ)(x).

Using Hölder’s inequalities, we get that

Ak
∥∥∥((−∂1)kθ)(A·) ? (ei

y1
ε ∂d−k1 φ)

∥∥∥
L∞
≤ ‖∂k1θ‖

L
d
k
‖∂d−k1 φ‖

L( dk )
′ .

Thus, we get Ad‖θ(A·) ? φε‖L∞ ≤ C(Aε)d. As we are in the case when Aε ≤ 1, we get, for
any σ ≤ d,

Ad‖θ(A·) ? φε‖L∞ ≤ C(Aε)σ.

Together with (1.4), this concludes the proof of Inequality (1.3).

Considering that ‖uε‖Ḣs . ε−s, then we can check that

‖uε‖
1− 2

p

Ḃs−
d
2
‖uε‖

2
p

Ḣs
. ε

( d2−s)
(

1− 2
p

)
− 2s
p ∼ 1.

This shows that the refined inequality of Theorem 1.2.1 is invariant under translation in
Fourier spaces (i.e. multiplication by oscillating functions).

The spaces defined in Definition 1.1.2 have a universal property: they are the biggest
normed spaces which are translation invariant and which have the same scaling. More precisely
we have the following proposition.

Proposition 1.2.1. Let E be a norm space continuously included in the space of tempered
distribution. Let us assume that the space E is globally invariant under dilations and trans-
lations and that a constant C and a positive real number σ exists such that

‖u(λ · −−→a )‖E ≤ Cλ−σ‖u‖E .

Then the space E is continuously embedded in B−σ.

Proof. As E is continuously included in S ′, then we have

|〈u, θ〉| ≤ C‖u‖E .

Because of the hypothesis on E, we get

|〈u(A−1 ·+x), θ〉| ≤ ‖u(A−1 ·+x)‖E ≤ CAσ‖u‖E .

As we have

〈u(A−1 ·+x), θ〉 = Ad(θ(A·) ? u)(x),

we get the result. 2
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1.3 The link with Besov norms

The following proposition is an exercise about partition of unity.

Proposition 1.3.1. Let C be the annulus {ξ ∈ Rd / 3/4 ≤ |ξ| ≤ 8/3}. There exist two radial
functions χ and ϕ valued in the interval [0, 1], belonging respectively to D(B(0, 4/3)) and
to D(C), and such that

∀ξ ∈ Rd , χ(ξ) +
∑
j≥0

ϕ(2−jξ) = 1, (1.5)

∀ξ ∈ Rd \{0} ,
∑
j∈Z

ϕ(2−jξ) = 1, (1.6)

|j − j′| ≥ 2⇒ Supp ϕ(2−j ·) ∩ Supp ϕ(2−j
′ ·) = ∅, (1.7)

j ≥ 1⇒ Supp χ ∩ Supp ϕ(2−j ·) = ∅, (1.8)

the set C̃ def
= B(0, 2/3) + C is an annulus and we have

|j − j′| ≥ 5⇒ 2j
′ C̃ ∩ 2jC = ∅. (1.9)

Besides, we have

∀ξ ∈ Rd ,
1

2
≤ χ2(ξ) +

∑
j≥0

ϕ2(2−jξ) ≤ 1, (1.10)

∀ξ ∈ Rd \{0} , 1

2
≤
∑
j∈Z

ϕ2(2−jξ) ≤ 1. (1.11)

Let us state the following definition.

Definition 1.3.1. Let s be a real number, and (p, r) be in [1,∞]2. The homogeneous Besov
space Ḃs

p,r is the subset of distributions u of S ′h such that

‖u‖Ḃsp,r
def
=

(∑
j∈Z

2rjs‖∆̇ju‖rLp
) 1
r

<∞.

Let us point out that in the case when p = r = 2, this is homogeneous Sobolev spaces and
in the case when r =∞, this definition coincides with Definition 1.1.2.

Proposition 1.3.2. The Ḣs norm and the Ḣs norm are equivalent. For any positive σ, the
two norms Ḃ−σ and Ḃ−σ∞,∞ norm are equivalent. Moreover, we have, for s less than d/2,

‖a‖Ḃs2,∞ . ‖a‖
Ḃs−

d
2
. ‖a‖

Ḃ
s− d2∞,∞

.

Proof. It is possible to use Proposition 1.2.1. Let us give here a direct proof of this inequality.
Let us write that

Ad‖θ(A·) ? u‖L∞ ≤ (2π)−d‖θ̂(A−1·)û‖L1 .

Because the Fourier transform of θ is compacly supported, we have

θ̂(A−1·)û =
∑

2j.A

θ̂(A−1·)F(∆ju).
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Thus, we get

Ad‖θ(A·) ? u‖L∞ .
∑

2j.A

‖θ(A−1·)F(∆ju)‖L1

.
∑

2j.A

2j
d
2 ‖∆ju‖L2

.

( ∑
2j.A

2j(
d
2
−s)
)
‖u‖Ḃs2,∞

. A
d
2
−s‖u‖Ḃs2,∞ .

This proves the proposition. 2

In order to figure out the difference between the norm Ḣs = Ḃs
2,2 and the norm Ḃs

2,∞, let
us consider the following example which based on the idea of lacunar series. Let us consider
a function χ in S such that its Fourier transform is supported in a (small) ball of center 0
and radius ε0. Let us consider, for a vector ω of Rd of Euclidian norm 3/2, the sequence of
functions (fn)n∈N defined by

fn(x) =
√
n
∑
j≥n

2−js
1

j + 1
ei2

j(x|ω)χ(x).

As the support of the Fourier transform of the function ei2
j(·|ω)χ is included in 2jω+B(0, ε0),

we get

‖fn‖2Hs ∼ n
∑
j≥n

1

(j + 1)2
∼ 1 and ‖fn‖Ḃs2,∞ .

1√
n
·
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Chapter 2

The theory of profiles

2.1 The fundamental theorem about bounded sequences

Let us state the following definition

Definition 2.1.1. We say that a sequence (λjn, x
j
n)(j,n)∈N2 of ]0,∞[×R3 is a sequence of scales

and cores if it satisfies

j 6= k =⇒ either lim
n→∞

∣∣∣∣log
(λjn
λkn

)∣∣∣∣ = +∞ or λjn = λkn and lim
n→∞

|xjn − xkn|
λjn

=∞. (2.1)

The following theorem has been proved by P. Gérard in [18] and describes, up to extraction,
the defect of compactness of Sobolev embeddings.

Theorem 2.1.1. Let (un)n∈N be a bounded sequence of Ḣs with s less than d/2. Then
there exists a sequence of scales and cores (λjn, x

j
n)(j,n)∈N2 in the sense of Definition 2.1.1,

a sequence (ϕj)j∈N in Ḣs and a sequence (rjn)(j,n)∈N2 of functions which satisfies, up to an
extraction on (un)n∈N, the following properties:

∀J ∈ N , uφ(n)(x) =

J∑
j=0

1

(λjn)
d
2
−s
ϕj
(x− xjn

λjn

)
+ rJn(x) ,

lim
J→∞

lim sup
n→∞

‖rJn‖
Ḃ
s− d2∞,∞

= 0 and

∀J ∈ N , lim
n→∞

(
‖un‖2Ḣs −

J∑
j=0

‖ϕj‖2
Ḣs − ‖rJn‖2Ḣs

)
= 0.

Remarks The functions ϕj are called the profiles and they satisfies

lim
n→∞

(λjn)
d
2
−sun(λjn ·+xjn) ⇀ ϕj

in the sense of distributions. In particular ϕ0 is the weak limit of (un)n∈N.
Moreover, the refined Sobolev embeddings proved in Theorem 1.2.1 on page 9 implies that

lim
J→∞

lim sup
n→∞

‖rJn‖Lp = 0 with p =
2d

d− 2s
·

The above theorem has the following corollary.
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Corollary 2.1.1. Let us consider a bounded sequence (un)n∈N of Ḣs such that for any
sequence (λn, xn)n∈N of ]0,∞[×Rd, we have

λ
d
2
−s

n un(λn ·+xn) ⇀ 0

Then the infimum limit of ‖un‖Lp is 0 for p =
2d

d− 2s
·

2.2 The extraction of the scales

Let us state some definitions.

Definition 2.2.1. A scale is simply a sequence of positive real numbers. We say that two
scales (λn)n∈N and (λ′n)n∈N are orthogonal (denotes by (λn)n∈N ⊥ (λ′n)n∈N) if

lim
n→∞

∣∣∣log
(λn
λ′n

)∣∣∣ = +∞.

The following proposition describes some effects of orthogonality or not orthogonality of
scales.

Proposition 2.2.1. Let (λn)n∈N and (λ′n)n∈N be two scales. If they are orthogonal, then

∀R > 1 , ∃nR / n ≥ nR =⇒ (λ′n)−1CR ⊂ λ−1
n CcR

where, as in all that follows, CR
def
= {ξ ∈ Rd / |ξ| ∈ [R−1, R]}.

If (λn)n∈N and (λ′n)n∈N are not orthogonal, an extraction φ exists such that

1

C
≤
λφ(n)

λ′φ(n)

≤ C.

Proof. Let us observe, for any R greater than 1 and any n,

1

R
≤ λ′n|ξ| ≤ R⇐⇒

λn
λ′nR

≤ λn|ξ| ≤
λnR

λ′n
· (2.2)

As the scales (λn)n∈N and (λ′n)n∈N are assumed to be orthogonal, it exists nR such that

n ≥ nR =⇒ max
{λn
λ′n

,λ
′
n

λn

}
≥ R2.

Using (2.2), we observe that
λn
λ′n
≥ R2, then

1

R
≤ λ′n|ξ| =⇒ λn|ξ| ≥ R

and if
λn
λ′n
≥ R2, then

λ′n|ξ| ≤ R =⇒ λn|ξ| ≤
1

R

and the first assertion is proved.
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The fact that the scales (λn)n∈N and (λ′n)n∈N are not orthogonal exactly means that

lim inf
n→∞

∣∣∣log
(λn
λ′n

)∣∣∣ = C <∞.

Thus an extraction φ, exists such that, for any n large enough

C−
1
2 ≤

λφ(n)

λ′φ(n)

≤ C
1
2 .

The proposition is proved. 2

Let us define the concept of sequence which is oscillatory or unrelated with respect to a
scale.

Definition 2.2.2. Let (fn)n∈N be a bounded sequence of functions in L2 and (λn)n∈N a scale.
The sequence (fn)n∈N is said to be (λn)n∈N-oscillatory if

lim
R→∞

lim sup
n→∞

∫
λ−1
n CcR

|f̂n(ξ)|2dξ = 0.

The sequence (fn)n∈N is said (λn)n∈N-unrelated if

∀R > 1 , lim
n→∞

∫
λ−1
n CR

|f̂n(ξ)|2dξ = 0.

A first remark is that, if (fn)n∈N is (λn)n∈N-oscillatory, then the sequence (gn)n∈N de-
fined by

gn(x)
def
= λ

d
2
nfn(λnx)

is 1-oscillating. Let us notice that a typical example of a 1-oscillating sequence in a convergent
sequence in L2(Rd).

Now the following proposition translates in terms of orthogonality the properties of being
oscillating or unrelated.

Proposition 2.2.2. If (fn)n∈N is a (λn)n∈N oscillating sequence and (gn)n∈N a (λn)n∈N un-
related sequence, then

lim
n→∞

(fn|gn)L2 = 0.

Proof. Let us write that

(2π)d
∣∣(fn|gn)L2

∣∣ =
∣∣∣∫

Rd
f̂n(ξ)ĝn(ξ)dξ

∣∣∣
≤

∣∣∣∫
λ−1
n CcR

f̂n(ξ)ĝn(ξ)dξ
∣∣∣+
∣∣∣∫
λ−1
n CR

f̂n(ξ)ĝn(ξ)dξ
∣∣∣

≤ ‖f̂n‖L2(λ−1
n CcR)‖ĝn‖L2 + ‖f̂n‖L2‖ĝn‖L2(λ−1

n CR).

Let ε be a positive real number; because (fn)n∈N is (λn)n∈N-oscillating, a radius Rε exists
such that

lim sup
n→∞

∫
λ−1
n CcRε

|f̂n(ξ)|2dξ ≤ ε

2
·

As (gn)n∈N is (λn)n∈N-unrelated we have lim
n→∞

‖ĝn‖L2(λ−1
n CRε ) = 0. Thus

∀ε > 0 , lim sup
n→∞

|(fn|gn)L2 | ≤ ε

and the result is proved. 2
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The following corollary will be useful.

Corollary 2.2.1. Let (f jn, λ
j
n) be an element of (L2×]0,∞[)N

2
such that for any j, the

sequence (f jn)n∈N is (λjn)n∈N-oscillating and for any j different from j′ two scales (λjn)n∈N
and (λj

′
n )n∈N are orthogonal. Then, for any J ,

lim
n→∞

(∥∥∥ J∑
j=0

f jn

∥∥∥2

L2
−

J∑
j=0

‖f jn‖2L2

)
= 0.

Proposition 2.2.3. Let (fn)n∈N be a bounded sequence of L2 and (λn)n∈N and (λ′n)n∈N two
scales. Let us assume that (fn)n∈N is (λn)n∈N oscillating.

If the scales (λn)n∈N and (λ′n)n∈N are orthogonal then (fn)n∈N is (λ′n)n∈N unrelated.

Conversely, if lim inf
n→∞

‖fn‖L2 is positive and the sequence (fn)n∈N is (λ′n)n∈N-unrelated,

then the scales (λn)n∈N and (λ′n)n∈N are orthogonal.

Proof. Let R be a real number greater than 1 and a positive real number ε. Proposition 2.2.1
implies that

∀R > 1 , ∃nR / n ≥ nR =⇒
∫

(λ′n)−1CR
|f̂n(ξ)|2dξ ≤

∫
λ−1
n CcR

|f̂n(ξ)|2dξ. (2.3)

As (fn)n∈N is (λn)n∈N-oscillating, a real number Rε (which can be choosen greater than R)
exists such that

lim sup
n→∞

∫
λ−1
n CcR

|f̂n(ξ)|2dξ ≤ ε.

This means that an interger ñε (which can be choosen greater than nR) exists such that

∀n ≥ ñε ,
∫
λ−1
n CcRε

|f̂n(ξ)|2dξ ≤ ε.

Using (2.3) allows to conclude that (fn)n∈N is (λ′n)n∈N -unrelated.

Now let us argue by contraposition. If (λn)n∈N and (λ′n)n∈N are not orthogonal, Proposi-
tion 2.2.1 claims that an extraction φ exists such that λφ(n) ≡ λ′φ(n). For the scale (λφ(n))n∈N,

the sequence (fφ(n))n∈N is oscillating and unrelated. Proposition 2.2.2 implies that ‖fφ(n)‖L2

tends to 0 when n tends to infinity.

2

The following proposition describes the relation between scales and Besov spaces.

Proposition 2.2.4. Let (fn)n∈N be a bounded sequence of L2. Then the sequence (fn)n∈N
tends to 0 in Ḃ0

2,∞ if and only if the sequence (fn)n∈N is unrelated to any scale (λn)n∈N.

Proof. Let us assume that the sequence (fn)n∈N is unrelated to any scale (λn)n∈N. Let us
observe that

lim sup
n→∞

‖fn‖Ḃ0
2,∞

= lim sup
n→∞

sup
k∈Z
‖∆kfn‖L2

= sup
(kn)∈ZN

lim
n→∞

‖∆knfn‖L2 .
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Let us consider any sequence (kn)n∈N of elements of Z. Let us define λn = 2−kn . By definition
of the operator ∆k, we have, for some R large enough,

‖∆knf‖2L2 .
∫

2knCR
|f̂n(ξ)|2dξ.

As (fn)n∈N is (λn)n∈N-unrelated then ‖∆knfn‖L2 tends to 0.

Now let us assume that (fn)n∈N is not (λn)n∈N-unrelated for some scale (λn)n∈N. By
rescaling, we can assume that (fn)n∈N is not 1-unrelated. This means that

lim inf
n→∞

∫
CR
|f̂n(ξ)|2dξ

is positive. As we have ∫
CR
|f̂n(ξ)|2dξ ≤ CR sup

j′R≤j≤jR
‖∆jfn‖L2

we have lim inf
n→∞

‖fn‖Ḃ0
2,∞

> 0 and the proposition is proved. 2

The main theorem of this section of the following one.

Theorem 2.2.1. Let (fn)n∈N be a bounded sequence of L2. It exists an extraction φ, a
sequence (gjn, r

j
n, λ

j
n)(j,n)∈N2 of L2×L2×]0,∞[ such that we have the following decomposition

of fφ(n). For any integer J , we have

∀n ≥ J , fφ(n) −
J∑
j=0

gjn = rJn

with the following properties:

• for any couple (j, j′) with j different from j′, the two scales (λjn)n∈N and (λj
′
n )n∈N are

orthogonal,

• for any j, the sequence (gjn)n∈N is (λjn)n∈N-oscillatory,

• The sequence (rjn)(j,n)∈N2 tends to 0 in the sense that

lim
j→∞

lim sup
n→∞

‖rjn‖Ḃ0
2,∞

= 0 , (2.4)

• for any couple (j′, j) such that j′ is less than or equal to j, the sequence (rjn)n∈N
is (λj

′
n )n∈N-unrelated which implies that

∀J ∈ N , lim
n→∞

(
‖fφ(n)‖2L2 −

J∑
j=0

‖gjn‖2L2 − ‖rJn‖2L2

)
= 0.

Proof. The proof is based on the repeated application of the following lemma.

Lemma 2.2.1. Let us consider (fn)n∈N a bounded sequence of L2 such that

lim sup
n→∞

‖fn‖Ḃ0
2,∞

= L > 0.

Then a scale (λn)n∈N, a sequence (gn)n∈N and an extraction φ exist such that

17



• the sequence (gn)n∈N is (λn)n∈N-oscillating,

• the sequence (fφ(n)−gn)n∈N is (λn)n∈N-unrelated and for any scale (λ′n)n∈N such that the
sequence (fn)n∈N is (λ′n)n∈N-unrelated, the sequence (fφ(n) − gn)n∈N is also (λ′φ(n))n∈N-
unrelated,

• we have lim
n→∞

‖gn‖L2 ≥
L

2
·

Proof. By definition of the Besov norm ‖ · ‖Ḃ0
2,∞

, the hypothesis implies that that a sequence

of integers (kn)n∈N exists such that , for large enough n,

‖∆knfn‖L2 ≥
L

2
· (2.5)

Now let us consider the scale λn
def
= 2−knand let us consider the sequence of functions (Fn)n∈N

defined by

Fn

{
]1,∞[ −→ [0,∞[

R 7−→ ‖1λ−1
n CR f̂n‖

2
L2 .

For any n, the function Fn is non decreasing and, for any R, Fn(R) is less than or equal to
the supremum of ‖fn‖L2 . Helly’s lemma implies that an extraction φ1 and a (of course non
decreasing) function exist such that

∀R > 1 , lim
n→∞

Fφ1(n)(R) = F (R).

This implies that

∀n , ∃mn / ∀m ≥ mn , |Fφ1(m)(n)− F (n)| ≤ 1

n+ 1
·

Let us define by induction by φ2(n)
def
= max{φ1(n− 1) + 1,mn} and state φ

def
= φ1 ◦ φ2. Now

we can define the sequence (gn)n∈N by

ĝn
def
= 1λ−1

φ(n)
Cn f̂φ(n).

Let us check that (gn)n∈N satisfies the conclusions of the lemma. Let us observe that

n ≥ R =⇒ 1CcR = 1Cn − 1CR .

Thus by definition of φ and Fn, we get, for n greater than or equal to R,∫
λ−1
n CcR

|ĝn(ξ)|2dξ =

∫
λ−1
n Cn
|ĝn(ξ)|2dξ −

∫
λ−1
n CR

|ĝn(ξ)|2dξ

= Fφ(n)(n)− Fφ(n)(R). (2.6)

The function F is bounded and non decreasing. Let us denote by F∞ its limits at infinity and
let us write

|Fφ(n)(n)− F∞| ≤ |Fφ(n) − F (n)|+ F∞ − F (n) ≤ 1

n+ 1
+ F∞ − F (n).
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thus we have lim
n→∞

Fφ(n)(n) = F∞. Then we deduce from (2.6) that

lim
n→∞

∫
λ−1
n CcR

|ĝn(ξ)|2dξ = F∞ − F (R).

Thus (gn)n∈N is (λφ(n))n∈N-oscillating.

Moreover, if n is greater or equal to R, the ring CR is included in the ring Cn. Thus we
have

1λ−1
φ(n)
CR(f̂φ(n) − ĝn) = 1λ−1

φ(n)
CR

(
1λ−1

φ(n)
Cn f̂φ(n) − ĝn

)
= 0.

Thus (fφ(n) − gn)n∈N is (λφ(n))n∈N-unrelated.

By definition of gn and λn, we have

‖ĝn‖2L2 =

∫
λ−1
φ(n)
Cn
|f̂φ(n)(ξ)|2dξ

=

∫
2
kφ(n)Cn

|f̂φ(n)(ξ)|2dξ.

If n is large enough, the ring Cn contains the support of the smooth cut-off function of the
Littlewood-Paley theory. Thus, because of (2.5), we have, for large enough n,

‖gn‖L2 ≥
L

2
·

Up the an extraction, we can assume that ‖gn‖L2 converges and the lemma is proved. 2

Conclusion of the proof of Theorem 2.2.1. We proceed by induction. For an integer J let us
define the property PJ as for any j, it exists a family (φj)0≤j≤J of extractions, families of

sequences of functions (gjn)n∈N and (rjn)n∈N such that

• Up to extraction, the sequence (fn)n∈N can be decompose as

fφ0◦φ1···◦φJ (n) =
J−1∑
j=0

gjφj+1◦···◦φJ (n) + gJn + rJn ,

• for any couple (j′, j) such that j′ is different from j, the two scales (λjn)n∈N and (λj
′
n )n∈N

are orthogonal,

• for any couple (j′, j) such that j′ is less than or equal to j, the sequence (rjn)n∈N
is (λj

′
φj′◦···◦φj(n))n∈N-unrelated,

• for any j, the sequence (gjn)n∈N is (λjn)n∈N-oscillatory,

lim
n→∞

‖gjn‖L2 ≥
1

2
lim sup
n→∞

‖rj−1
n ‖Ḃ0

2,∞
. (2.7)

Let us prove PJ+1. If lim inf
n→∞

‖rJn‖Ḃ0
2,∞

= 0, then we choose

gJ+1
n = rJ+1

n = 0 and φJ+1(n) = n.
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If lim inf
n→∞

‖rJn‖Ḃ0
2,∞

is positive, then we apply Lemma 2.2.1 to the sequence (rJn)n∈N which

provides the existence of an extraction φJ+1, and sequences (gJ+1
n )n∈N and (rJ+1

n )n∈N, and a
scale (λJ+1

n )n∈N which satisfies PJ+1.

Now let us prove Assertion (2.4). Because of Proposition 2.2.2, we have, for any J ,

lim
n→∞

(
‖fφ0◦φ1···◦φJ (n)‖2L2 −

J−1∑
j=0

‖gjφj+1◦···◦φJ (n)‖
2
L2 − ‖gJn‖2L2 − ‖rJn‖2L2

)
= 0.

This implies that

sup
n
‖fn‖2L2 ≥

J−1∑
j=0

‖gjφj+1◦···◦φJ (n)‖
2
L2 + ‖gJn‖2L2 + oJn(1)

with lim
n→∞

oJn(1) = 0. Passing to the limit when n tends to infinity gives thanks to Inequal-

ity (2.7)

1

4

J−1∑
j=0

lim sup
n→∞

‖rj−1
φj+1◦···◦φJ (n)‖

2
Ḃ0

2,∞
≤ sup

n
‖fn‖L2

which obviously implies that

lim
J→∞

lim sup
n→∞

‖rj−1
φj+1◦···◦φJ (n)‖Ḃ0

2,∞
= 0.

Now we use the diagonal process and define

φ(n)
def
= φ0 ◦ · · · ◦ φn(n)

g̃jn
def
= gjφj+1◦···◦φn(n) for n ≥ j and 0 if n < j ,

r̃jn
def
= rjφj+1◦···◦φn(n) for n ≥ j and 0 if n < j .

Then, for any n greater than J , we have

∀n ≥ J , fφ(n) =
J∑
j=0

g̃jn + rJn

and the theorem is proved. 2

2.3 The extraction of the cores for 1-oscillating sequences

The purpose of this section is the proof of the following theorem which describes, up to an
extraction, the structure of the 1-oscillating sequences.

Theorem 2.3.1. Let (gn)n∈N be a 1-oscillating sequence. It exists an extraction φ, two se-
quences (ψk)k∈N and (rkn)n∈N of L2 functions and a sequence (xkn)n∈N of points of Rd such
that

• for any integer K, gφ(n) =
K∑
k=0

ψk(x− xkn) +RKn ,
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• for any couple (k′, k) such that k and k′ are different, |xkn − xk
′
n | tends to ∞ when n

tends to infinity,

• we have

lim
n→∞

(
‖gφ(n) −

K∑
k=0

‖ψk‖2L2 − ‖RKn ‖2L2

)
= 0 and lim

K→∞
lim sup
n→∞

‖RKn ‖
Ḃ
− d2∞,∞

= 0.

Proof. It relies on the repeated application of the following lemma.

Lemma 2.3.1. A positive constant c0 exists such that for any 1-oscillating sequence (gn)n∈N,
it exists an extraction φ, a function ψ and a sequence (xn)n∈N such that xn ≡ 0 or |xn| tends
to infinity when n tends to infinity which satisifies

gφ(n)(xn + ·) ⇀ ψ and ‖ψ‖L2 ≥ c0 lim sup
n→∞

‖gn‖
Ḃ
− d2∞,∞

.

Proof. If (gn)n∈N tends to 0 in the space Ḃ
− d

2∞,∞, there is nothing to prove because any element ψ
of the weak closure of (gn)n∈N works with xn ≡ 0. Let us assume that (gn)n∈N does not tend

to 0 in the space Ḃ
− d

2∞,∞. Up to an extraction we omit to note, we can assume that

lim
n→∞

‖gn‖
Ḃ
− d2∞,∞

= L > 0.

By definition of the Besov norm Ḃ
− d

2∞,∞, it implies that a sequence (`n, x̃n)n∈N of elements
of Z×Rd exists such that

2−`n
d
2 |∆`ngn(x̃n)| ≥ L

2
(2.8)

if n is large enough. The fact that (gn)n∈N is 1-oscillating implies that the sequence (`n)n∈N
takes only a finite number of values. Indeed, Bernstein inequality implies that

2−`n
d
2 ‖∆`ngn‖L∞ ≤ C0‖∆`ngn‖L2 . (2.9)

As (gn)n∈N is 1-oscillatory, a radius R0 greater than 1 exists such that

lim sup
n→∞

∫
CcR0

|ĝn(ξ)|2dξ ≤
( L

4C0

)2
·

Moreover, a constant C1 exists such that

|`| ≥ C1 logR0 =⇒
∫
CR0

|F(∆`gn)(ξ)|2dξ = 0.

Thus, an integer nR exists such that(
n ≥ nR and |`n| ≥ C1 logR0

)
=⇒ 2−`n

d
2 ‖∆`ngn‖L∞ ≤

L

4C0
·

Inequality (2.9) implies the sequence (`n)n∈N defining by (2.8) takes only a finite number of
values. Thus, up to an extraction we omit to note, we can assume that the sequence (`n)n∈N
is constant and equal to some integer k. By definition of the operator ∆k, we have

2−k
d
2 ∆kgn(x̃n) = 2−k

d
2 2kd

∫
Rd
h(2k(x̃n − y))gn(y)dy.
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As h is even, let us change variable z = −2k(x̃n − y) in the above integral. This gives

2−k
d
2 ∆kgn(x̃n) = 2−k

d
2

∫
Rd
h(z)gn(x̃n + 2−kz)dz.

The sequence
(
2−k

d
2 gn(x̃n + 2−k·)

)
n∈N is bounded in L2. Thus an extraction φ exists and a

function ψ̃ such that the sequence
(
2−k

d
2 gφ(n(x̃φ(n + 2−k·)

)
n∈N converges weakly to ψ̃. Then

we deduce that

gφ(n)(x̃φ(n) + ·) ⇀ ψ with ψ(x)
def
= 2k

d
2 ψ̃(2kx).

Now let us remark that by definition of k and of the sequence (x̃n)n∈N, we have

L

2
≤ 2−k

d
2

∣∣∆kgφ(n)(x̃φ(n))
∣∣

≤
∣∣〈2−k d2 gφ(n)(x̃φ(n) + 2−k·), h〉

∣∣.
Passing to the limit when n tends to infinity gives

L

2
≤
∣∣〈ψ̃, h〉∣∣ ≤ ‖h‖L2‖ψ̃‖L2 .

Once observed that ‖ψ̃‖L2 = ‖ψ‖L2 , we define xn = x̃φ(n) and then get the lemma with the

constant c0 equal to
1

2‖h‖L2

up to the fact that xn ≡ 0 or |xn| tends to infinity when n tends

to infinity.

If |xn| does not tend to infinity, then, up to an extraction we omit to note, we can assume
that the sequence (xn)n∈N converges to some point x∞ of Rd. Let us write that, for any test
function θ in L2, we have∫

Rd

(
gφ(n)(xn + x)− gφ(n)(x∞ + x)

)
θ(x)dx =

∫
Rd
gφ(n)(x∞ + x)

(
θ(x+ x∞ − xn)− θ(x)

)
dx.

Because (gn)n∈N is bounded on L2, the fact that translation are continuous on L2 ensures that
the sequence

(
gφ(n)(xn + ·) − gφ(n)(x∞ + ·)

)
n∈N tends weakly to 0. This concludes the proof

of the lemma. 2

Continuation of the proof of Theorem 2.3.1 By repeated application of the above lemma, let
us define a sequence (φk)k∈N, a sequence (ψk)k∈N, a sequence (xkn)(k,n)∈N2 of points of Rd, a

sequence (Rkn)(k,n)∈N2 which satisfies R0 = gn, ψ0 = 0, x0
n = 0 and φ0 = Id and

Rkn = Rk−1
φk(n) − ψ

k(· − xkn) , ‖ψk‖L2 ≥ c0 lim sup
n→∞

‖Rk−1
n ‖

Ḃ
− d2∞,∞

, Rkn(xkn + ·) ⇀ 0 (2.10)

Let us prove that

∀k′ < k , lim
n→∞

∣∣xkn − xk′φk′+1◦···◦φk(n)

∣∣ =∞. (2.11)

Let us first prove it for k′ = k − 1. By definition (2.10) of the sequences, we have

Rk−1
φk(n)(x

k
n + ·) ⇀ ψk and Rk−1

n (xk−1
n + ·) ⇀ 0.

Property (2.11) for k′ = k − 1 will follow from the following easy lemma, the proof of which
is omitted.
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Lemma 2.3.2. Let (fn)n∈N be a bounded sequence of L2 which converges weakly to some
function f which is not the zero function. Let (yn)n∈N be any sequence of Rd. Then the
sequence (fn(yn + ·))n∈N tends weakly to 0 if and only if |yn| tends to infinity.

Now let us proceed by induction assuming that

∀k′ / k − p ≤ k′ < k , lim
n→∞

∣∣xkn − xk′φk′+1◦···◦φk(n)

∣∣ =∞. (2.12)

By Definition (2.10) of the sequences, we have

Rk−p−1
φk−p◦···◦φk(n) = Rkn +

p−1∑
p′=0

ψk−p
′(· − xk−p′φk−p′◦···◦φk(n)

)
. (2.13)

Using that (Rkn(xkn + ·))n∈N tends weakly to 0, and the induction hypothesis (2.12), we get

Rk−p−1
φk−p◦···◦φk(n)(x

k
n + ·) ⇀ ψk and Rk−p−1

φk−p◦···◦φk(n)(x
k−p−1
n + ·) ⇀ 0.

Lemma 2.3.2 ensures (2.11).

Moreover, we have

‖Rk−1
φk(n)‖

2
L2 = ‖ψk‖2L2 + ‖Rkn‖2L2 + 2

(
ψk
∣∣Rkn(xkn + ·)

)
L2 .

Using that (Rkn(xkn + ·))n∈N tends weakly to 0, we get that

lim
n→∞

(
‖Rk−1

φk(n)‖
2
L2 − ‖ψk‖2L2 − ‖Rkn‖2L2

)
= 0.

Using Formula (2.13), we get by iteration that, for any k,

lim
n→∞

(
‖gφ1◦···◦φk(n)‖2L2 −

k∑
k′=1

‖ψk‖2L2 − ‖Rkn‖2L2

)
= 0.

As the sequence (gn)n∈N is bounded in L2, the series (‖ψk‖2L2)k∈N is convergent. Using that

‖ψk‖L2 ≥ c0 lim sup
n→∞

‖Rk−1
φk(n)‖

Ḃ
− d2∞,∞

.

As a term of a square convergent series, we have that,

lim
k→∞

lim sup
n→∞

‖Rk−1
φk(n)‖

Ḃ
− d2∞,∞

= 0.

Now let us argue with a diagonal argument by defining φ(n)
def
= φ1 ◦ · · · ◦ φn(n). For any n

greater than k, we have

gφ(n)(x) =

K∑
k=0

ψk(x− xkφk+1···◦φn(n)) +RKφk+1···◦φn(n).

Defining x̃kn = xkφk+1···◦φn(n) and R̃Kn = RKφk+1···◦φn(n) allows to conclude the proof of Theo-
rem 2.3.1.
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Conclusion of the proof of Theorem 2.1.1 First, let us apply Theorem 2.2.1 to the se-

quence (Λsfn)n∈N where Λsf
def
= F−1(| · |sf̂). This provides the existence of a sequence of

an extraction φ0, two by two orthogonal scales (λ̃jn)(j,n)∈N2 , a sequence (gjn)(j,n)∈N of fonctions

in L2 such that, for any j, the sequence (gjn)n∈N is (λ̃jn)n∈N-oscillating, a sequence (rjn)(j,n)∈N2

such that

Λsfφ0(n) =
J∑
j=0

gjn + rJn with

lim
n→∞

(
Λsfφ0(n) −

J∑
j=0

‖gjn‖2L2 − ‖rJn‖2L2

)
= 0 and lim

J→∞
lim sup
n→∞

‖rJn‖Ḃ0
2,∞

= 0.

(2.14)

Theorem 2.3.1 implies that a sequence (φj)j∈N of extraction, two sequences of functions

of L2 (ψ̃j,k)(j,k)∈N2 and (R̃kn)(k,n)∈N2 , a sequence (x̃kn)(k,n)∈N2 of points of Rd such that, for
any j, we have

gjφ1◦···◦φj(n)(x) =
K∑
k=1

1

(λ̃jn)
d
2

ψ̃j,k
(x− x̃j,kn

λ̃jn

)
+

1

(λ̃jn)
d
2

R̃j,Kn

( x
λ̃jn

)
with

lim
n→∞

(
‖gjφ1◦···◦φj(n)‖

2
L2 −

K∑
k=0

‖ψ̃j,k‖2L2 − ‖R̃j,Kn ‖2L2

)
= 0 and

lim
K→∞

lim sup
n→∞

‖R̃j,Kn ‖
Ḃ
− d2∞,∞

= 0.

(2.15)

Now let us define

φ(n)
def
= φ0 ◦ φ1 · · · ◦ φn(n) ,

λjn
def
= λ̃jφj+1◦···◦φn(n) if n ≥ j + 1 and 0 if not

xj,kn
def
= x̃j,kφj+1◦···◦φn(n) if n ≥ j + 1 and 0 if not

ψj,k = Λ−sψ̃j,k and

ρJ,Kn
def
= Λ−srJn +

J∑
j=0

1

(λjn)s−
d
2

(Λ−sR̃j,kφj+1◦···◦φn(n))
( ·
λjn

)
·

Using (2.14) and (2.15), we have, for n greater than j

fφ(n) =

J∑
j=0

K∑
k=1

1

(λjn)
d
2
−s
ψj,k

( · − xj,kn
λjn

)
+ ρJ,Kn .

We get the theorem by reordering the sequences.
2
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Chapter 3

Some basic facts about the
Navier-Stokes equation

3.1 The concept of solutions and some historical results

Let us define the concept of (weak) solutions of the incompressible Navier-Stokes system. Let
us first recall what the incompressible Navier Stokes system is. We consider as unknown the
speed u = (u1, u2, u3) a time dependant divergence free vector field on R3 and the pressure p.
We consider the system

(NS)


∂tu+ u · ∇u−∆u = −∇p+ f in R+×R3

div u = 0

u|t=0 = u0.

Let us immediatly notice that this system has two fundamental properties. The first one is
the energy inequality. Formally, and in the case when f = 0, let us take the L2 scalar product
with u in the equation. We get

1

2

d

dt
‖u(t)‖2L2 + ‖∇u(t)‖2L2 = −

∫
R3

(u(t) · ∇u(t)|u(t))L2 −
∫
R3

(∇p(t)|u(t))L2 .

Thanks to the divergence free condition, obvious integration by parts implies that, any function
vector field a

(u · ∇a|a)L2 = 0 = (∇p|u)L2 = 0 (3.1)

This gives
1

2

d

dt
‖u(t)‖2L2 + ‖∇u(t)‖2L2 = 0. (3.2)

The second one is the scaling invariance. It is easy to see that if u is a (smooth) solution
of (NS) on [0, T ] × R3 with pressure p associated with the initial data u0, then, for any
positive λ, the vector field and the pressure

uλ(t, x)
def
= λu(λ2t, λx) and pλ(t, x) = λ2p(λ2t, λx)

is a solution of (NS) on the interval [0, λ−2T ]× R3 associated with the initial data λu0(λx).
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The notion of C2 solution (i.e. classical solution) is not efficient because singularity can
appear here and also we can be interested in rough initial data. It has been pointed out by C.
Oseen in the beginning of the 20th century (see [27] and [28]) that another concept of solution
must be used. This has been formalized by J. Leray in 1934 in his seminal work [24]. Let us
define the notion of weak solution (that we shall denote simply solution in all that follows).

Definition 3.1.1. A time-dependent vector field u with components in L2
loc([0, T ] × Rd) is

a weak solution (simply a solution in these notes) of (NS) if for any smooth compactly
supported divergence free vector field Ψ,

3∑
j=1

∫
R3
uj(t, x)Ψj(t, x)dx =

3∑
j=1

∫
R3
uj0(x)Ψj(0, x)dx

+
3∑
j=1

∫ t

0

∫
R3
uj(t′, x)

(
∂tΨ

j(t′, x) + ∆Ψj(t′, x)
)
dt′dx

+
∑
j,k

∫ t

0

∫
R3

(ujuk)(t′, x)∂jΨ
k(t′, x) dt′dx+

3∑
j=1

∫ t

0
〈f j(t′), uj(t′)〉dt′.

This definition is too weak in the sense there is not enough constraints on the solution.
In particular it ignores the fundamental concept of energy. J. Leray introduced in his seminal
paper [24] the concept of turbulent solution.

Definition 3.1.2. A turbulent solution of (NS) is a divergence free vector field u which is
a weak solution, has component in L∞T (L2) ∩ L2

T (H1) and satisfies in addition the energy
inequality

1

2
‖u(t)‖2L2 +

∫ t

0
‖∇u(t′)‖2L2dt

′ ≤ 1

2
‖u0‖2L2 +

∫ t

0

∫
R3
f(t′, x) · u(t′, x)dt′dx. (3.3)

Remark For a turbulent solution, Definition 3.1.1 of a weak solution becomes

3∑
j=1

∫
R3
uj(t, x)Ψj(t, x)dx =

3∑
j=1

∫
R3
uj0(x)Ψj(0, x)dx

+
3∑
j=1

∫ t

0

∫
R3
uj(t′, x)∂tΨ

j(t′, x)dt′dx−
∑
j,k

∫ t

0

∫
R3
∂ku

j(t′, x)∂kΨ
j(t′, x)

)
dt′dx

+
∑
j,k

∫ t

0

∫
R3

(ujuk)(t′, x)∂jΨ
k(t′, x) dt′dx+

3∑
j=1

∫ t

0
〈f j(t′), uj(t′)〉dt′.

In [24], J. Leray proved the following theorem.

Theorem 3.1.1. Let u0 be a divergence free vector field in L2(Rd). Then a turbulent solu-
tion u exists on R+×R3.

The proof of this theorem relies on compactness methods and thus no uniqueness is proved.

In this text, we are going to focus on solution which are regular enough to be unique in
their own class. For this type of solutions let us state a theorem of existence of solutions by
J. Leray which he called semi-regular solutions.
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Theorem 3.1.2. Let u0 be a divergence free vector field in L2(R3) such that ∇u0 belongs
to L2(R3). Then a positive time, which can be choosen greater or equal to ρ0‖∇u0‖−4

L2 for

some constant ρ0, exists such that a unique solution u exists in C([0, T ]; Ḣ1)∩L2([0, T ]; Ḣ2).
Moreover a constant c1 exists such that if

‖u0‖L2‖∇u0‖L2 ≤ c1,

then T can be choosen equal to ∞.

Proof. We simply prove a formal control on the ‖∇u(t)‖L2 norm. By differentiation of the
equation, we get

∂t∂ju+ u · ∇∂ju−∆∂ju = −∇pj − ∂ju · ∇u.

Taking the L2 scalar product of the equation and summing in j gives

1

2

d

dt
‖∇u(t)‖2L2 + ‖∇2u(t)‖2L2 =

∑
j=1

∫
R3
∂ju(t, x) · ∇u(t, x)∂ju(t, x)dx.

Sobolev embeddings (see Theorem 1.1.1 on page 7) implies that∫
R3
∂ju(t, x) · ∇u(t, x)∂ju(t, x)dx ≤ ‖∇u(t)‖3L3

. ‖∇u(t)‖3
Ḣ

1
2
.

The interpolation inequality between Sobolev spaces (see Proposition 1.1.1 on page 7) implies
that ∫

R3
∂ju(t, x) · ∇u(t, x)∂ju(t, x)dx . ‖∇u(t)‖

3
2

L2‖∇2u(t)‖
3
2

L2 .

We shall vey often use the familiar convexity inequality

ab ≤ θa
1
θ + (1− θ)b

1
1−θ .

Used with θ = 1/4 this gives∫
R3
∂ju(t, x) · ∇u(t, x)∂ju(t, x)dx ≤ 1

2
‖∇2u(t)‖2L2 + C‖∇u(t)‖6L2 .

This gives
d

dt
‖∇u(t)‖2L2 + ‖∇2u(t)‖2L2 . ‖∇u(t)‖6L2 .

Thus, as long as ‖∇u(t)‖L2 ≤ 2‖∇u0‖L2 , we have

‖∇u(t)‖2L2 ≤ ‖∇u0‖2L2 + Ct‖∇u0‖6L2 .

Thus for t ≤ 1

2C
‖∇u0‖4L2 , the quantity ‖∇u(t)‖2L2 remains less than or equal to 2‖∇u0‖2L2 .

This proves the local part of the theorem. In order to treat the case of small initial data, we
estimate the term (∂ju · u|∂ju)L2 in a different way. By integration by parts, let us write that∫

R3
∂ju(t, x) · ∇u(t, x)∂ju(t, x)dx = −

∫
R3
u(t, x) · ∇∂ju(t, x)∂ju(t, x)dx

−
∫
R3
u(t, x) · ∇u(t, x)∂2

j u(t, x)dx.
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As u is divergence free, we get that∫
R3
u(t, x) · ∇∂ju(t, x)∂ju(t, x)dx = 0.

Using Hölder inequality and Sobolev embeddings, we deduce that∫
R3
∂ju(t, x) · ∇u(t, x)∂ju(t, x)dx ≤ ‖u(t)‖L3‖∇u(t)‖L6‖∇2u(t)‖L2

. ‖u(t)‖L3‖∇2u(t)‖2L2 .

Using again Sobolev embeddings and interpolation inequality, we infer that

‖u(t)‖L3 . ‖u(t)‖
1
2

L2‖∇u(t)‖
1
2

L2 .

The energy inequality implies that

‖u(t)‖L3 ≤ C0‖u0‖
1
2

L2‖∇u(t)‖
1
2

L2 .

Now, as long as

C0‖u0‖
1
2

L2‖∇u(t)‖
1
2

L2 ≤
1

2
,

we have
d

dt
‖∇u(t)‖2L2 + ‖∇2u(t)‖2L2 ≤ 0.

In particular ‖∇u(t)‖2L2 is a decreasing function. Thus, if it is small enough at initial time, it
remains small and the theorem is proved. 2

Corollary 3.1.1. A constant c0 exists such that if u0 is a divergence free vector field in L2(R3)
such that if ∇u0 belongs to L2(R3) and if the maximal time of existence T ? of the solution
associated with u0 is finite, then we have

∀t ∈ [0, T ?[ , ‖∇u(t)‖4L2 ≥ c0(T ? − t)−1 and T ? ≤ c−1
0 ‖u0‖4L2 .

Proof. Applying this bound on the life span with u(t) as an initial data gives the first inequality.
Then the energy estimate implies that

(T ?)
1
2 = 2

∫ T ?

0

1

(T ? − t)
1
2

dt

≤ 2
√
c0

∫ T ?

0
‖∇u(t)‖2L2dt

≤ 1
√
c0
‖u0‖2L2 .

The corollary is proved. 2

3.2 The Kato method; the case of Ḣ
1
2 initial data

Let us first define operators which we are going to use in this chapter.
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Definition 3.2.1. Let τ be a non negative real number. We denote by L
(τ)
0 the operator

defined by the fact that L
(τ)
0 f is the solution of{

∂tL
(τ)
0 f −∆L

(τ)
0 f = f −∇p

divL
(τ)
0 f = 0 and L

(τ)
0 f|t=τ = 0.

Let us also define for k in {1, 2, 3}, the operator L
(τ)
k by{

∂tL
(τ)
k f −∆L

(τ)
k f = ∂kf −∇p

divL
(τ)
k f = 0 and L

(τ)
k f|t=τ = 0.

In the case when τ = 0, we simply note L
(0)
j = Lj . Let us also define the bilinear operator B by

B(u, v) = −1

2
L0

( 3∑
k=1

∂k(v
ku+ ukv)

)
= −1

2

3∑
k=1

Lk(v
ku+ ukv).

Let us remark that if u and v are divergence free, we also have

B(u, v) = −1

2
L0

(
v · ∇u+ u · ∇v

)
(3.4)

It is obvious that u a solution of (NS) if and only if u satisfies

u = et∆u0 +B(u, u).

Solving (NS) is equivalent to find a fixed point for the map

u 7−→ et∆u0 +B(u, u).

Now let us assume that we have a Banach space X of functions locally in L2 on R+×R3 such
that B is a bilinar map from X ×X into X. Then Picard’s fixed point theorem implies the
existence of a unique solution. Such a space X will be called ”adapted”.

Let us remark there is a strong constrain on X due to the scaling property. If X adapted,
it must be scaling invariant (and also translation invariant) in the sense that

∀λ > 0 , ∀−→a ∈ R3 , u ∈ X ⇐⇒ u
(
λ2t, λ(· − −→a )) ∈ X and ‖u‖X ∼ λ

∥∥u(λ2t, λ(· − −→a )
)∥∥
X
.

Let us give a first example of an adapted spaces: the space L4(R+; Ḣ1).

The wellposedness of (NS) for initial data in the space Ḣ
1
2 is described by the following

theorem.

Theorem 3.2.1. Let u0 be a divergence free vector field in Ḣ
1
2 . A positive time T exists such

that the system (NS) has a unique solution u in L4([0, T ]; Ḣ1) which also belongs to

C([0, T ]; Ḣ
1
2 ) ∩ L2([0, T ]; Ḣ

3
2 ).

A constant ρ0 exists if ‖u0‖
Ḣ

1
2
≤ ρ0, then the solution is global and satisfies

‖u‖2
L∞(R+;Ḣ

1
2 )

+ ‖u‖2
L2(R+;Ḣ

3
2 )
≤ ‖u0‖2

Ḣ
1
2
.

Proof. It relies on the following lemma.
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Lemma 3.2.1. The operator L0 maps continously the space L2([0, T ]; Ḣ−
1
2 ) into the space

C([0, T ]; Ḣ
1
2 ) ∩ L2([0, T ]; Ḣ

3
2 ).

Proof. In Fourier space, we can write that

FL0f(t, ξ) =

∫ t

0
e−(t−t′)|ξ|2 P(ξ)f̂(t′, ξ)dt′

where P(ξ) is the orthogonal projection in R3 on the orthogonal of ξ. Thus, we get

|FL0f(t, ξ)| ≤
∫ t

0
e−(t−t′)|ξ|2 |ξ|

1
2 θ(t′, ξ)‖f(t′, ·)‖

Ḣ−
1
2
dt′

with ‖θ(t′, ·)‖L2 = 1 for any t′ of R+. Convolution inequality gives

|ξ| ‖FL0f(·, ξ)‖2L∞([0,T ]) + |ξ|3‖FL0f(·, ξ)‖2L2([0,T ]) .
∫ T

0
θ2(t′, ξ)‖f(t′, ·)‖2

H−
1
2
dt′.

Taking the L2 in ξ norm in the above inequality gives the result except the continuity. Let us
assume that t1 and t2 are two points of [0, T ] such that t1 ≤ t2. Thus, we have

L0f(t2) = e(t2−t1)∆L0f(t1) + L
(t1)
k f(t2 − t1). (3.5)

Thus if t2 is such that ‖f‖
L2([t1,t2];Ḣ−

1
2 )
≤ ε is small, then

‖L0f(t2)− e(t2−t1)∆L0f(t1)‖
Ḣ

1
2
. ε.

The continuity of the heat flow on Ḣ
1
2 allows to conclude the proof. 2

Conclusion of the proof of Theorem 3.2.1 Let us observe that dual Sobolev embedding and
Sobolev embedddding imply that

‖u · ∇v + v · ∇u‖
Ḣ−

1
2

. ‖u · ∇v + v · ∇u‖
L

3
2

. ‖u‖L6‖∇v‖L2 + ‖v‖L6‖∇u‖L2

. ‖∇u‖L2‖∇v‖L2 . (3.6)

We infer that the bilinear operator B maps the space L4([0, T ]; Ḣ1)× L4([0, T ]; Ḣ1) into the

space C([0, T ]; Ḣ
1
2 ) ∩ L2([0, T ]; Ḣ

3
2 ). As we have

F(et∆u0)(ξ) = e−t|ξ|
2
û0(ξ),

we infer that
‖F(et∆u0)(ξ)‖L4(R+) ≤ |ξ|

− 1
2 |û0(ξ)|

Because of Minkowski inequality, we get

‖et∆u0‖L4(R+;Ḣ1) . ‖u0‖
Ḣ

1
2
.

Thus if ‖u0‖
Ḣ

1
2

is small enough, then a unique global solution exists in L4(R+; Ḣ1). If ‖u0‖
Ḣ

1
2

is not small the result is only local. Indeed let us define

u0 = u0,[ + u0,] with u0,[
def
= F−1(1B(0,λ0)û0). (3.7)

30



We have

‖et∆u0‖L4([0,T ];Ḣ1) . ‖u0,[‖Ḣ 1
2

+ T
1
4λ

1
2
0 ‖u0‖

Ḣ
1
2
.

We can choose λ0 such that ‖u0,[‖Ḣ 1
2

small which proves the theorem up to the last inequality.

In order to prove it, let us perform a Ḣ
1
2 energy estimate which gives

1

2

d

dt
‖u(t)‖2

Ḣ
1
2

+ ‖∇u(t)‖2
Ḣ

1
2

= (u · ∇u|u)
Ḣ

1
2
.

As we have

(a|b)
Ḣ

1
2

=

∫
R3
|ξ|−

1
2 â(ξ)|ξ|

3
2 b̂(−ξ)dξ

≤ ‖a‖
Ḣ−

1
2
‖∇b‖

Ḣ
1
2
,

Inequality (3.6) together with an interpolation argument gives that

(u · ∇u|u)
Ḣ

1
2
≤ C‖∇u‖2L2‖∇u‖

Ḣ
1
2

≤ C‖u‖
Ḣ

1
2
‖∇u‖2

Ḣ
1
2
.

Thus as long as C‖u‖
Ḣ

1
2
≤ 1/2, we have

d

dt
‖u(t)‖2

Ḣ
1
2

+ ‖∇u(t)‖2
Ḣ

1
2
≤ 0.

Thus if ‖u0‖
Ḣ

1
2
≤ (2C0)−1, we get the required inequality and the theorem is proved. 2

Remark Because the Ḣ
1
2 norm is scaling invariant, the life span cannot be bounded from

below by a function of the norm. Let us notice that even if we assume that u0 belongs to L2∩Ḣ1

the best known life span is the one coming from the arguments we give here in the proof of
Theorem 3.1.2.

Now let us establish a criteria for blow up of the regularity. In other words, it is a necessary
condition for the appearance of singularities.

Proposition 3.2.1. If u0 is in Ḣ
1
2 and if T ? the maximal time of existence of a solution in

the space L∞loc[0, T
?[; Ḣ

1
2 ) ∩ L2

loc(T
?; Ḣ

3
2 ) is finite. Then we have

∀(p, q) ∈ [2,∞[×]3,∞] /
2

p
+

3

q
= 1 ,

∫ T ?

0
‖u(t)‖pLqdt =∞. (3.8)

Proof. Let us write that

1

2

d

dt
‖u(t)‖2

Ḣ
1
2

+ ‖∇u(t)‖2
Ḣ

1
2

= −(u · ∇u|u)
Ḣ

1
2
.

Using that, if a and b are real valued, we have

(a|b)
Ḣ

1
2

=

∫
R3
â(ξ)|ξ |̂b(−ξ)dξ

=
(
a
∣∣ |D|b)

L2 with |D|b def
= F−1(| · |̂b).

Thus we have

(u · ∇u|u)
Ḣ

1
2

=

∫
R3
u(x) · ∇u(x)(|D|u)(x)dx.
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Let q̃ defined by
1

q
+

2

q̃
= 1.

Hölder inequality, Sobolev embedding and interpolation inequality give using the relation
between p and q,

(u · ∇u|u)
Ḣ

1
2

. ‖u‖Lq‖∇u‖Lq̃‖|D|u‖Lq̃

. ‖u‖Lq‖∇u‖2
Ḣ

3
2q

. ‖u‖Lq‖∇u‖2
Ḣ

1
2−

1
p

. ‖u‖Lq‖u‖
2
p

Ḣ
1
2
‖∇u‖

2
p′

Ḣ
1
2
.

Then using the convexity inequality and Relation (3.8), we infer that

(u · ∇u|u)
Ḣ

1
2
≤ 1

2
‖∇u(t)‖2

Ḣ
1
2

+ C‖u(t)‖pLq‖u(t)‖2
Ḣ

1
2
.

By Gronwall lemma, we deduce that

‖u(t)‖2
Ḣ

1
2

+

∫ t

0
‖∇u(t′)‖2

Ḣ
1
2
dt′ ≤ ‖u0‖2

Ḣ
1
2

exp
(
C

∫ t

0
‖u(t′)‖pLqdt

′
)
.

The theorem is proved. 2

As a conclusion of this introduction, let us introduce the set of initial data which gives
birth to global regular solution.

Definition 3.2.2. Let us denote by G the set of initial data u0 such that the solution u given
by Theorem 3.2.1 is global i.e. belongs to L4

loc(R
+; Ḣ1).

We denote as ρc the supremum of the positive real number ρ such that if ‖u0‖
Ḣ

1
2
< ρ

implies that u0 gives birth to a global solution in the space in L4
loc(R

+; Ḣ1).

3.3 Global stability results in Ḣ
1
2

The basic theorem in this section is the following.

Theorem 3.3.1. Let u be a global solution of (NS) in L∞loc(R
+; Ḣ

1
2 )∩L4

loc(R
+; Ḣ1). Then we

have

lim
t→∞
‖u(t)‖

Ḣ
1
2

= 0 and

∫ ∞
0
‖u(t)‖4

Ḣ1dt <∞.

Proof. We shall decompose the initial data u0 as a sum of a low and a high frequency part. A
positive real number ρ being given, let us state

u0 = u0,] + u0,[ with u0,[
def
= F−1(1B(0,r)(ξ)û0(ξ)).

Let ε be any positive real number. We can choose r such that

‖u0,[‖Ḣ 1
2
≤ min{ρ0, ε/2}.
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where ρ0 is the constant of Theorem 3.2.1. Let us denote by u[ the global solution of (NS)
given by Theorem 3.2.1 for the initial data u0,[. We have

‖u[‖2
L∞(R+;Ḣ

1
2 )

+ ‖u[(t)‖2
L2(R+;Ḣ

3
2 )
≤ ‖u0,[‖2

Ḣ
1
2
. (3.9)

Let us define u]
def
= u − u[. Let us notice that u] is globally defined because so are u and u[.

It satisfies {
∂tu] −∆u] + (u] + u[) · ∇u] + u] · ∇u[ = −∇p

u]|t=0 = u0,].

By energy estimate, we infer

1

2
‖u](t)‖2L2 +

∫ t

0
‖∇u](t′)‖2L2dt

′ =
1

2
‖u0,]‖2L2 +

∫ t

0
(u] · ∇u[|u])dt′.

Using Sobolev embedding, we claim that∣∣〈u](t) · ∇u[(t), u](t)〉∣∣ ≤ ‖u](t) · ∇u[(t)‖L2‖∇u(t)‖L2

≤ ‖u](t)‖L6‖u[(t)‖L3‖∇u](t)‖L2

≤ C‖u[(t)‖Ḣ 1
2
‖∇u](t)‖2L2 .

Then we deduce that

1

2
‖u](t)‖2L2 +

∫ t

0
‖∇u](t′)‖2L2dt

′ ≤ 1

2
‖u0,]‖2L2 + C‖u0,[‖Ḣ 1

2

∫ t

0
‖∇u](t′)‖2L2dt

′.

Choosing ε small enough ensures that

‖u](t)‖2L2 +

∫ t

0
‖∇u](t′)‖2L2dt

′ ≤ ‖u0,]‖2L2 .

This implies that a positive time tε exists such that ‖u](tε)‖
Ḣ

1
2
< ε/2. Thus ‖u(tε)‖

Ḣ
1
2

is less

than ε. Then Theorem 3.2.1 allows to conclude the proof. 2

Let us remark that the set G contains the open ball of radius ρc and centered at origin.
Let us state the following corollary of Theorem 3.3.1.

Theorem 3.3.2. The set G is an open connected subset of Ḣ
1
2 .

Proof. Let us consider u0 in Ḣ
1
2 such that the associated solution is global. Let us consider w0

in Ḣ
1
2 and the (a priori) local solution v associated with the initial data v0

def
= u0 + w0. The

function w
def
= v − u is solution of{

∂tw −∆w + u · ∇w + w · ∇u+ w · ∇w = −∇p
w|t=0 = w0.

Sobolev embeddings together with interpolation inequality gives∣∣(u · ∇w + w · ∇u|w) 1
2

∣∣ ≤ C‖u‖Ḣ1‖w‖
1
2

Ḣ
1
2
‖∇w‖

3
2

Ḣ
1
2

and∣∣(w · ∇w|w) 1
2

∣∣ ≤ C‖w‖
Ḣ

1
2
‖∇w‖2

Ḣ
1
2
.
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Let us assume that ‖w0‖
Ḣ

1
2
≤ 1

8C
and define

Tw0

def
= sup

{
t / max

0≤t′≤t
‖w(t′)‖

Ḣ
1
2
≤ 1

4C

}
·

Thanks to the convexity inequality we infer that, for any t < Tw0 ,

‖w(t)‖2
Ḣ

1
2

+

∫ t

0
‖∇w(t′)‖2

Ḣ
1
2
dt′ ≤ ‖w0‖2

Ḣ
1
2

+ C

∫ t

0
‖u(t′)‖4

Ḣ1‖w(t′)‖2
Ḣ

1
2
dt′.

Gronwall’s Lemma and Theorem 3.3.1 imply that, for any t < Tw0 ,

‖w(t)‖2
Ḣ

1
2

+

∫ t

0
‖∇w(t′)‖2

Ḣ
1
2
dt′ ≤ ‖w0‖2

Ḣ
1
2

exp
(
C

∫ ∞
0
‖u(t)‖4

Ḣ1dt
)
.

If the smallness condition

‖w0‖2
Ḣ

1
2

exp
(
C

∫ ∞
0
‖u(t)‖4

Ḣ1dt
)
≤ 1

16C2
, (3.10)

is satisfied, the blow up condition for v is never satisfied. Thus G is open.

The fact that G is connected is due to the fact that as lim
t→∞

u(t) = 0 in Ḣ
1
2 , any u0 in G is

connnected to 0. Thus the corollary is proved. 2

3.4 The Kato theory in the Lp framework

The purpose of this section is the proof of the folllowing theorem.

Theorem 3.4.1. Let u0 be a divergence free vector field in L3. A positive time T exists
such that the system (NS) has a unique solution u in L5([0, T ] × R3) which also belongs
to C([0, T ];L3). Moreover, a constant ρ1 exists if ‖u0‖L3 ≤ ρ1, then the solution is global and
satisfies

‖u‖L∞(R+;L3) + ‖u‖L5(R+×R3) . ‖u0‖L3 .

Proof. It relies on the following lemma.

Lemma 3.4.1. For j in {1, 2, 3}, we have

Ljf(x) =
3∑

k=1

∫ t

0

∫
R3

Γjk(t− t
′, x− y)f(t′, y)dydt′.

where the functions Γjk,` belongs to the space L
5
4
w and satisfies

|Γjk,`(τ, z)| .
1

(
√
τ + |z|)4

·

Proof. In Fourier space, we have

FLjf(t, ξ) = i

∫ t

0
e−(t−t′)|ξ|2

∑
k,`

αj,k`ξjξkξ`|ξ|−2f̂(t′, ξ)dt′.
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In order to write this operator as a convolution operator, it is enough to compute the inverse
Fourier transform of ξjξkξ`|ξ|−2e−t|ξ|

2
. Using the fact that

e−t|ξ|
2 |ξ|−2 =

∫ ∞
t

e−t
′|ξ|2dt′,

we get that

Γjk,`(t, x) = i

∫ ∞
t

∫
R3
ξjξkξ`e

i(x|ξ)−t′|ξ|2dt′dξ

= ∂j∂k∂`

∫ ∞
t

∫
R3
ei(x|ξ)−t

′|ξ|2dt′dξ.

Using the formula about the Fourier transform of the Gaussian functions, we get

Γjk,`(t, x) = ∂j∂k∂`

∫ ∞
t

1

(4πt′)
3
2

e−
|x|2
4t′ dt′

=
1

π
3
2

∫ ∞
t

1

(4t′)3
Ψj
k,`

( x√
4t′

)
dt′ with Ψj

k,`(z)
def
= ∂j∂k∂`e

−|z|2 .

Changing variable r = (4t′)−1|x|2 gives

|Γjk,`(t, x)| ≤ 1

π
3
2

1

|x|4

∫ |x|2
4t

0
rΨj

k,`

( x
|x|
r
)
dr.

This implies that

|Γjk,`(t, x)| . min
{ 1

t2
, 1

|x|4
}
.

1

(
√
t+ |x|)4

·

The fact that (
√
t+ |x|)−4 belongs to L

5
4
w from the fact that the function is homogenenous of

order −4 in the sapce of dimension 5 because the homogeneity is with respect of the dilation
(t, x) 7→ (λ2t, λx). This proves the lemma. 2

Corollary 3.4.1. The operators Lk maps continuously from the space L
5
2 ([0, T ] × R3) into

the space C([0, T ];L3) ∩ L5([0, T ];L5).

Proof. Using Lemma 3.4.1, we immediatly infer that Γjk belongs to L
5
4
w. As we have

1 +
1

5
=

4

5
+

2

5

then using Hardy-Littlewood-Sobolev inequality (see for instance Theorem 1.7 on page 10
of [2]) we infer that

‖Lkf‖L5([0,T ]×R3) . ‖f‖L 5
2 ([0,T ]×R3)

. (3.11)

Now let us observe that Lemma 3.4.1 implies that

‖Γjk(·, z)‖L 5
3 (R+)

.
1

|z|
14
5

·

Hölder inequality in time implies that

‖Lkf(·, x)‖L∞([0,T ]) .
∫
R3

‖Γjk(·, x− y)‖
L

5
3 (R+)

‖f(·, y)‖
L

5
2 ([0,T ])

dy

.
∫
R3

1

|x− y|
14
5

‖f(·, y)‖
L

5
2 ([0,T ])

dy.
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As

1 +
1

3
=

14

15
+

2

5
,

Hardy-Littlewood-Sobolev inequality implies that

‖Lkf‖L3(R3;L∞([0,T ]) . ‖f‖L 5
2 ([0,T ]×R3)

.

As ‖g‖L∞([0,T ];L3(R3) ≤ ‖g‖L3(R3;L∞([0,T ])) this gives the result. In order to prove the continuity,
we use (3.8) and then proceed exactly as in the proof of Lemma 3.2.1. 2

Conclusion of the proof of theorem 3.4.1 The fact that the bilinear operator B maps con-
tinuously L5([0, T ] × R3) × L5([0, T ] × R3) into L∞(R+;L3) ∩ L5([0, T ] × R3) is an obvious
consequence of Corollary 3.4.1. Then we simply have to prove that

‖et∆u0‖L5(R+×R3) . ‖u0‖L3 . (3.12)

As we have

|et∆u0(x)| ≤ 1

(4πt)
3
2

∫
R3
e−
|x−y|2

4t |u0(y)|dy,

we get

‖e·∆u0(x)‖L5([0,T ]) ≤
∫
R3

∥∥∥ 1

(4π·)
3
2

e−
|x−y|2

4·

∥∥∥
L5([0,T ])

|u0(y)|dy

.
∫
R3

1

|x− y|
13
5

|u0(y)|dy.

As

1 +
1

5
=

13

15
+

1

3
,

Hardy-Littlewood-Sobolev inequality give the result in the case when u0 is small. For the local
version, let us use that the space L3∩L5 is dense in L3. Thus for any positive ε, a function u0,ε

exists in L3 ∩ L5 such that ‖u0 − u0,ε‖L3 ≤ ε. Using (3.12) gives that

‖et∆u0‖L5([0,T ]×R3) . ε+ T
1
5 ‖u0,ε‖L5 .

This concludes the proof of the theorem. 2

3.5 A stability result in the Lp framework

The following theorem refines Theorem 3.3.2. It will be useful in the proof of forthcoming
Theorem 4.1.1.

Theorem 3.5.1. A constant C0 exists such that for any couple (u0, v0) of divergence free

vector fields in Ḣ
1
2 and an external force f in L2(R+; Ḣ

1
2 ) ∩ L

5
2 (R+×R3). Let us assume

that u belongs to L∞(R+; Ḣ
1
2 ) ∩ L4(R+; Ḣ1) and that

‖v0‖L3 + ‖f‖
L

5
2 (R+×R3)

≤ 1

C0
exp
(
−C0‖u‖5L5(R+×R3)

)
.

Then the system

(NSu)

 ∂tv −∆v + v · ∇v + div
(
u⊗ v + v ⊗ u

)
= −∇p+

3∑
`=1

∂`f
`

div v = 0 and v|t=0 = v0.
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has a global solution which satisfies

‖v‖L∞(R+;L3) + ‖v‖L5(R+×R3) ≤
1

C0

(
‖v0‖L3 + ‖f‖

L
5
2 (R+×R3)

)
exp
(
C0‖u‖5L5(R+×R3)

)
.

Proof. Let us first notice that for any subinterval I = [a, b), the bilinear operator BI defined by{
∂tBI −∆BI = −1

2
div
(
u⊗ v + v ⊗ u

)
−∇p

divBI = 0 and BI |t=a = 0

maps continuously L5(I ×R3)×L5(I ×R3) into L∞(I;L3(R3))∩L5(I ×R3) with a constant
of continuity which does not depend on I; let us denote by ‖B‖ this constant. Let us also
denote by C1 the best constant such that

‖et∆a‖L5(R+×R3) ≤ C1‖a‖L3 .

Let us remark that Theorem 3.3.1 implies that u belongs to L∞(R+; Ḣ
1
2 ) ∩ L2(R+; Ḣ

3
2 ).

Thus Sobolev embedding and interpolation inequalities between Sobolev spaces implies that u
belongs to the space L5(R+×R3). The local theory of wellposedness for initial data in Ḣ

1
2

claims in particular that a unique maximal solution w exists in C[0, T ?[; Ḣ
1
2 )∩L2

loc([0, T
?[; Ḣ

3
2 )

and if T ? is finite, then ∫ T ?

0
‖w(t, ·)‖5L5dt =∞.

We want to control the ‖w‖L5([0,T ]×R3) to prevent blow up. In order to do so, let us write the
solution w = u+ v. Then v is the solution of

(NSu)

 ∂tv −∆v + v · ∇v + div
(
u⊗ v + v ⊗ u

)
= −∇p+

3∑
`=1

∂`f
`

div v = 0 and v|t=0 = v0.

Let us decompose R+ as a disjoint union of intervals (Ij)1≤j≤N such that if Ij = [I−j , I
+
j ],

then I−j = 0, I+
j = I−j+1 and I+

N =∞ and

∀j ∈ {1, · · · , N} ,
∫
Ij

‖u(t, ·)‖5L5dt =
( 1

8‖B‖

)5
and

∫
IN

‖u(t, ·)‖5L5dt ≤
( 1

8‖B‖

)5
.

Let us notice that, by addition, we get

(N − 1)
( 1

8‖B‖

)5
≤
∫
R+
‖u(t, ·)‖5L5dt ≤ N

( 1

8‖B‖

)5

We shall prove by induction that if

‖v0‖L3 + ‖f‖
L

5
2 (R+×R3)

≤ 1

8C1‖B‖
(2C1)−N−1, (3.13)

then, for any j, we have Îj
déf
=

j⋃
j′=1

I ′j ⊂ [0, T ?[ and

T ? > I+
j and ‖v(I+

j )‖L3 ≤
(
‖v0‖L3 + ‖f‖

L
5
2 (I1×R3)

)
(2C1)j . (3.14)
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Let us point out that it prevents blow up and thus u0 + v0 belongs to G. Let us prove the
induction hypothesis for j = 1. Let us define

T
def
= sup

{
T < min{T ?, I+

1 } / max
{
‖v‖L∞([0,T ];L3(R3), ‖v‖L5([0,T ]×R3)}

≤
(
‖v0‖L3 + ‖f‖L5(I1×R3)

)
(2C1)

}
.

The system (NSu) writes

v = et∆v0 + 2B(u, v) +B(v, v) +
3∑

k=1

Lkf
k

For any T < T , we have

max
{
‖v‖L∞([0,T ];L3(R3), ‖v‖L5([0,T ]×R3)} ≤ C1

(
‖v0‖L3 + ‖f‖

L
5
2 (I1×R3)

)
+ 2‖B‖‖u‖L5(I1×R3)‖v‖L5([0,T ]×R3) + ‖B‖‖v‖2

L5([0,T ]×R3)
.

By definition of T and the intervals Ij , we get, thanks to Hypothesis (3.13)

max
{
‖v‖L∞([0,T ];L3(R3), ‖v‖L5([0,T ]×R3)} ≤ C1

(
‖v0‖L3 + ‖f‖

L
5
2 (I1×R3)

)
+

1

2
‖v‖L5([0,T ]×R3)

which gives

∀T < T , max
{
‖v‖L∞([0,T ];L3(R3), ‖v‖L5([0,T ]×R3)} ≤ 2C1

(
‖v0‖L3 + ‖f‖

L
5
2 (I1×R3)

)
.

This implies that T ? > I+
1 and T = I+

1 which is exactly the induction hypothesis for j = 1.
Let us assume the induction hypothesis for j < N . The system (NSu) can be written

v = e(t−I−j+1)∆v(I−j+1) + 2BIj+1(u, v) +B(v, v) +
3∑

k=1

Lkf
k.

Let us define

T j+1
def
= sup

{
T < min{T ?, I+

j+1} / max
{
‖v‖L∞([I−j+1,T ];L3(R3), ‖v‖L5(I−j+1,T ]×R3)}

≤ (2C1)j+1
(
‖v0‖L3 + ‖f‖

L
5
2 (Ij+1×R3)

)}
.

For any I−j+1 ≤ T < T j+1, we have

max
{
‖v‖L∞([I−j+1,T ];L3(R3), ‖v‖L5(I−j+1,T ]×R3)} ≤ C1

(
‖v(I−j+1)‖L3 + ‖f‖

L
5
2 (Ij+1×R3)

)
+ 2‖B‖‖u‖L5(I1×R3)‖v‖L5(I−j+1,T ]×R3) + ‖B‖‖v‖2

L5(I−j+1,T ]×R3)
.

By definition of T and of the intervals Ij , we get that

max
{
‖v‖L∞([I−j+1,T ];L3(R3), ‖v‖L5(I−j+1,T ]×R3)}

≤ C1

(
‖v(I−j+1)‖L3 + ‖f‖

L
5
2 (Ij+1×R3)

)
+

1

2
‖v‖L5(I−j+1,T ]×R3)

which gives

∀T < T , max
{
‖v‖L∞([I−j+1,T ];L3(R3), ‖v‖L5(I−j+1,T ]×R3)} ≤ 2C1

(
‖v(I−j+1)‖L3 + ‖f‖

L
5
2 (Ij+1×R3)

)
.

This implies that T ? > I+
j+1 and T = I+

j+1 which is exactly the induction hypothesis for j + 1
and the theorem is proved. 2
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Chapter 4

Applications of profile
decomposition to the Navier-Stokes
equations

The following theorem is the basis of application of profiles theory to incompressible Navier-
Stokes system.

4.1 Bounded sequences of initial data

Theorem 4.1.1. Let (u0,n)n∈N be a sequence of initial data which is bounded in Ḣ
1
2 .

Let us consider an extraction φ, a sequence of profiles (ϕj)j∈N, a sequence of scales and

cores (λjn, x
j
n)(j,n)∈N2 in the sense of Definition 2.1.1, a sequence (rjn)(j,n)∈N2 of functions given

by Theorem 2.1.1 on page 13.

Let us define Jf as the set of indices j such that ϕj does not belongs to G i.e. ϕj does not
give birth to a global solution in L4(R+; Ḣ1). This set is finite.

If Jf is empty, then, for n large enough, uφ(n) belongs to G.

If Jf is non empty, an index j0 exists in Jf such that

∀j ∈ Jf , ∃nj / n ≥ nj =⇒ (λj0n )2T ?(ϕj0) ≤ (λjn)2T ?(ϕj).

For any positive real number ε, let us define τ εn
def
= (λj0n )2(T ?(ϕj0)− ε). Then

∃nε / n ≥ nε =⇒ T ?(u0,φ(n)) ≥ τ εn.

Proof. Let us search the solution uJn associated with u0,φ(n) of the form

uJn = uJn,app +RJn with uJn,app
def
=

J∑
j=0

Φj
n + et∆rJn

and Φj
n(t, x) =

1

λjn
Φj

(
t

(λjn)2
,x− x

j
n

λjn

) (4.1)

39



where Φj denotes the solution of (NS) associated with ϕj . The vector field RJn satisfies

∂tR
J
n −∆RJn +RJn · ∇RJn + uJn,app · ∇RJn +RJn · ∇uJn,app = −∇p− div

3∑
`=1

F J,`n with

F J,1n
def
=

∑
0≤j,k≤J
j 6=k

F j,kn with F j,kn
def
= Φj

n ⊗ Φk
n ,

F J,2n
def
=

( J∑
j=0

Φj
n

)
⊗ et∆rJn + et∆rJn ⊗

( J∑
j=0

Φj
n

)
and

F J,3n
def
= et∆rJn ⊗ et∆rJn .

(4.2)

Now let us prove the following lemma.

Lemma 4.1.1. A real number M exists such that, for J ,

lim sup
n→∞

∥∥∥∥ J∑
j=0

Φj
n

∥∥∥∥
L5([0,τεn]×R3)

≤M

with the agreement that τ εn equal to infinity if Jf is empty.

Proof. Using the scaling invariance of the space-time L5 norm, let us write that∣∣∣∣ ∥∥∥∥ J∑
j=0

Φj
n

∥∥∥∥5

L5([0,τεn]×R3)

−
J∑
j=0

‖Φj‖5
L5([0,τεn]×R3)

∣∣∣∣
≤

∑
(j1,j2,j3,j4,j5)∈{0,·,J}5\∆

∫
[0,τεn]×R3

5∏
`=1

|Φj`
n (t, x)|dxdt .

where ∆
def
=
{

(j, j, j, j, j) / j ∈ {0, · · · , J}5
}

. Up to a permutation of indices, we can assume
that j1 is different from j2. Using Hölder inequality and the scaling invariance of the space-
time L5 norm we get∫

[0,τεn]×R3

5∏
`=1

|Φj`
n (t, x)|dxdt ≤

( 5∏
`=3

‖Φj`‖L5([0,T ?(ϕj)−ε]×R3)

)

×
(∫

[0,τεn]×R3
|Φj1
n (t, x)|

5
2 |Φj2

n (t, x)|
5
2dxdt

) 2
5

.

Let us assume that lim
n→∞

∣∣∣∣log
(λj1n
λj2n

)∣∣∣∣ = +∞. Using the scaling, we get

J j1,j2n
def
=

∫
[0,τεn]×R3

|Φj1
n (t, x)|

5
2 |Φj2

n (t, x)|
5
2dxdt

≤
∫ τεn

(λ
j2
n )2

0

λj2n

λj1n

∥∥∥∥Φj1

((λj2n
λj1n

)2
t, ·
)∥∥∥∥ 5

2

L5(R3)

‖Φj2(t, ·)‖
5
2

L5(R3)
dt.
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Using that the weak converge in Lp namely the fact that, in p is in ]1,∞[, for any (f, g)
in Lp(Rd)× Lp′(Rd), we have

lim
Λ→∞

∫
Rd

Λ
− d
p f(Λ−1x)g(x)dx = 0. (4.3)

Thus we have

lim
n→∞

∣∣∣∣log
(λj1n
λj2n

)∣∣∣∣ = +∞ =⇒ lim
n→∞

J j1,j2n = 0. (4.4)

If the case when λj1n = λj2n , let us write that

J j1,j2n ≤
∫ τεn

(λ
j2
n )2

0

∫
R3

∣∣∣∣Φj

(
t, x− xjn − xkn

λjn

)∣∣∣∣ 52 |Φk(t, x)|
5
2dxdt.

Using the fact that lim
n→∞

|xjn − xkn|
λjn

tends to infinity this implies that together with (4.4)

∀(j, k) ∈ {0, · · · , J}2 / j 6= k , lim
n→∞

J j1,j2n = 0. (4.5)

Together with (4.4), this implies that

∀J , lim sup
n→∞

∥∥∥∥ J∑
j=0

Φj
n

∥∥∥∥5

L5([0,τεn]×R3)

≤
J∑
j=0

‖Φj‖5
L5([0,T ?(ϕj)−ε]×R3)

. (4.6)

Now we have to estimate the righthandside term of the above inequality independently of J .
Let us denote by Jρ0 the set of indices such that ‖ϕj‖

Ḣ
1
2

is greater than or equal to than ρ0/2

(where ρ0 is the radius given by Theorem 3.2.1 on page 29). As the series (‖ϕj‖2
Ḣ

1
2
)j∈N is

summable, this set is finite. If j does not belongs to Jρ0 , Theorem 3.2.1 claims that

‖Φj‖2
L∞(R+;Ḣ

1
2 )

+ ‖Φj‖2
L2(R+;Ḣ

3
2 )
≤ ‖ϕj‖2

Ḣ
1
2
.

Sobolev embeddings and interpolation inequality between Sobolev spaces imply that

‖Φj‖2
L5(R+;L5(R3))

≤ C‖Φj‖2
L5(R+;Ḣ

1
2+2

5 (R3))

≤ C‖ϕj‖2
Ḣ

1
2
.

Thus, as the series (‖ϕj‖2
Ḣ

1
2
)j∈N is summable and as `2(Z) is continuously included in `5(Z),

we get that

J∑
j=0

‖Φj‖5
L5([0,T ?(ϕj)−ε]×R3)

≤ C sup
n
‖u0,n‖5

Ḣ
1
2

+
∑
j∈Jρ0

‖Φj‖5
L5([0,T ?(ϕj)−ε]×R3)

Using Theorem 3.3.1 on page 32 and Inequality (4.6), we get the lemma. 2

Continuation of the proof of Theorem 4.1.1 Let η be a positive real number which will be
choosen later on. Two integers Jη and nη such that

n ≥ nη =⇒ ‖rJηn ‖L3 ≤ η. (4.7)
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Lemma 4.1.1 and Inequality (3.12) on page 36 imply that, if n large enough (depending on η)

‖uJηn,app‖L5([0,T ?(ϕj)−ε]×R3) ≤ M + ‖et∆rJηn ‖L5(R+×R3)

≤ M + Cη. (4.8)

Moreover, Inequality (3.12) on page 36 implies that, if n large enough,

‖F Jη ,3n ‖
L

5
2 ([0,τεn]×R3)

≤ Cη2. (4.9)

Hölder inequality and Lemma 4.1.1 imply that, if n is large enough ,

‖F Jη,2n ‖
L

5
2 ([0,τεn]×R3)

≤
∥∥∥∥ Jη∑
j=0

Φj
n

∥∥∥∥
L5([0,τεn]×R3)

‖et∆rn,J‖L5(R+×R3)

≤ CMη. (4.10)

Inequality (4.5) on page 41 implies that

lim
n→∞

‖F Jη,1n ‖
L

5
2 ([0,τεn]×R3)

= 0.

Together with Inequalities (4.8)–(4.10), this implies that, choosing η small enough, we have,
for n large enough,

‖F Jηn ‖
L

5
2 ([0,τεn]×R3)

≤ C−1
0 exp

(
−C0‖u

Jη
n,app‖5L5([0,τεn]×R3)

)
.

In the case when τ εn equals to infinity, then the theorem is proved. In the case when τ εn in
finite, the proof of Theorem 3.5.1 on page 36 can be repeated words for words to ensures
that T ?(uφ(n)) is greater than or equal to τ εn.

2

4.2 A first application to the structure of the set G

Theorem 4.2.1. Let us assume that G 6= Ḣ
1
2 . Let us define

ρc
def
= sup

{
ρ ∈]0,∞[ / B(0, ρ) ⊂ G

}
.

Then if S(0, ρ) denotes the sphere on radius ρ and center 0 in Ḣ
1
2 , we have that S(0, ρc)∩Gc

is non empty. It is compact up to translation and dilation in the following sense. If (un)n∈N
is a sequence of S(0, ρc) ∩ Gc, then a sequence (λn, xn)n∈N of (]0,∞[×R3)N and a function v
in S(0, ρc) ∩ Gc exists such that, up to an extraction, we have

lim
n→∞

‖λnun(λn(·+ xn))− v‖
Ḣ

1
2

= 0.

Proof. By definition of ρc, a sequence (un)n∈N of elements of Ḣ
1
2 exists such that

T ?(un) <∞ and lim
n→∞

‖un‖
Ḣ

1
2

= ρc. (4.11)
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Theorem 2.1.1 claims that a sequence of scales and cores (λjn, x
j
n)(j,n)∈N2 , a sequence (ϕj)j∈N

in Ḣ
1
2 , a sequence (rjn)(j,n)∈N2 which satisfies the following, up to an extraction on (un)n∈N,

∀J ∈ N , un(x) =
J∑
j=0

1

λjn
ϕj
(x− xjn

λjn

)
+ rJn(x) with

lim
J→∞

lim sup
n→∞

‖rJn‖L3 = 0 and

∀J ∈ N , lim
n→∞

(
‖un‖2

Ḣ
1
2
− ‖rJn‖2

Ḣ
1
2

)
=

J∑
j=0

‖ϕj‖2
Ḣ

1
2
.

The last relation implies in particular that

∞∑
j=0

‖ϕj‖2
Ḣ

1
2
≤ ρ2

c . (4.12)

Theorem 4.1.1 implies that an integer j0 exists such that ϕj0 does not belongs to G. As
the (open) ball of center 0 and radius ρc is included in G, then an integer j0 exists such
that ‖ϕj0‖

Ḣ
1
2
≥ ρc. Inequality (4.12) implies that

‖ϕj0‖
Ḣ

1
2

= ρc and j 6= j0 =⇒ ϕj = 0.

Thus ϕj0 is an element of S(0, ρc) ∩ Gc which proves the first part of the theorem. For the
second part, let us consider a sequence (un)n∈N of S(0, ρc) ∩ G. Arguing exactly as above, we
deduce that, up to an extraction

un =
1

λj0n
ϕj0
( · − xj0n

λj0n

)
+ rn with lim

n→∞
‖rn‖

Ḣ
1
2

= 0.

As the Ḣ
1
2 norm is scaling invariant, this gives the whole theorem. 2

4.3 Describtion of bounded sequences of solutions

The purpose of this section is to prove the following theorem.

Theorem 4.3.1. Let (u0,n)n∈N be a sequence of initial data bounded in Ḣ
1
2 . With notations

of Theorem 4.1.1, we have

lim
J→∞

lim sup
n→∞

(
‖RJn‖L∞([0,τεn];Ḣ

1
2 )

+ ‖RJn‖L2([0,τεn];Ḣ
3
2 )

)
= 0. (4.13)

Moreover, for any J , we have

lim
n→∞

∥∥∥∥ ‖uφ(n)(t)‖2
Ḣ

1
2
−

J∑
j=0

‖Φj
n(t)‖2

Ḣ
1
2
− ‖et∆rJn‖2

Ḣ
1
2

∥∥∥∥
L∞([0,τεn])

= 0. (4.14)

Proof. The first step is the proof of the following lemma which is the analog of Lemma 4.1.1.
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Lemma 4.3.1. A real number M exists such that, for J ,

lim sup
n→∞

∥∥∥∥ J∑
j=0

Φj
n

∥∥∥∥
L4([0,τεn];Ḣ1)

≤M

with the agreement that τ εn equal to infinity if Jf is empty.

Proof. Let us write that for any t in [0, τ εn], we have∥∥∥∥ J∑
j=0

Φj
n(t)

∥∥∥∥2

Ḣ1

=
J∑
j=0

‖Φj
n(t)‖2

Ḣ1 +
∑

0≤j,k≤J
j 6=k

(
Φj
n(t)|Φk

n(t)
)
Ḣ1 . (4.15)

Let us prove that for any (j, k) in {0, · · · , J}2 such that j and k are different, we have

lim
n→∞

∥∥(Φj
n(t)|Φk

n(t)
)
Ḣ1

∥∥
L2([0,τεn[)

= 0. (4.16)

Let us first consider the case when the two scales (λjn)n∈N and (λkn)n∈N are different.

Using the scaling invariance of the space L4
t (Ḣ

1) norm, let us write that

∥∥(Φj
n(t)|Φk

n(t)
)
Ḣ1

∥∥2

L2([0,τεn[)
≤

∫ ∞
0

1

λjnλkn
1[0,T ?(ϕj)−ε]

(
t

(λjn)2

)∥∥∥∥Φj

(
t

(λjn)2

)∥∥∥∥2

Ḣ1

× 1[0,T ?(ϕk)−ε]

(
t

(λkn)2

)∥∥∥∥Φk

(
t

(λkn)2

)∥∥∥∥2

Ḣ1

dt

≤
∫ ∞

0

λkn

λjn
1[0,T ?(ϕj)−ε]

((λkn
λjn

)2
t

)∥∥∥∥Φj

((λkn
λjn

)2
t

)∥∥∥∥2

Ḣ1

× 1[0,T ?(ϕk)−ε](t)‖Φk(t)‖2
Ḣ1dt.

Because of the hypothesis of orthogonality on the scales, this implies (4.16) in the case when
the two scales (λjn)n∈N and (λkn)n∈N are different.

In the case when the two scales (λjn)n∈N and (λkn)n∈N are equal, let us observe

∥∥(Φj
n(t)|Φk

n(t)
)
Ḣ1

∥∥2

L2([0,τεn[)
≤
∫ T εj,k

0

∣∣∣∣(Φj(t, ·)
∣∣∣Φk

(
t, · − xjn − xkn

λjn

))
Ḣ1

∣∣∣∣2dt
with T εj,k

def
= min{T ?(ϕj), T ?(ϕk)} − ε. Lebesgue’s theorem implies that for any positive η, a

positive real number αJ exists such that, for any j in {0, · · · , J}, we have

‖Φj − Φj
αJ
‖L4([0,T ?(ϕj)−ε];Ḣ1) ≤

η

supj∈J ‖Φj‖L4([0,T ?(ϕj)−ε];Ḣ1)

with

Φj
αJ

def
=

(
1− χ

( ·
αJ

)
+ χ(·αJ)

)
Φj

(4.17)

where χ if a compactly supported function in R3 with value 1 near the origin. Thus we have

∥∥(Φj
n(t)|Φk

n(t)
)
Ḣ1

∥∥2

L2([0,τεn[)
≤ 2η +

∫ T εj,k

0

∣∣∣∣(Φj
αJ

(t, ·)
∣∣∣Φk

αJ

(
t, · − xjn − xkn

λjn

))
Ḣ1

∣∣∣∣2dt.
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As lim
n→∞

|xjn − xkn|
λjn

=∞, for n large enough, the support of the two functions

Φj
αJ

(t, ·) and Φk
αJ

(
t, · − xjn − xkn

λjn

)
are disjoint. Thus we get (4.16) in all cases. Taking the L2 norm and passing to the limit
when n tends to infinity in Relation (4.15), we get

lim sup
n→∞

∥∥∥∥ J∑
j=0

Φj
n(t)

∥∥∥∥2

L4([0,τεn];Ḣ1)

≤
J∑
j=0

‖Φj‖2
L4([0,T ?(ϕj)−ε];Ḣ1)

.

With the notations of Theorem 4.1.1, let us write that

J∑
j=0

‖Φj‖2
L4([0,T ?(ϕj)−ε];Ḣ1)

≤
∑
j∈Jρ0

‖Φj‖2
L4([0,T ?(ϕj)−ε];Ḣ1)

+
∑
j 6∈Jρ0
j≤J

‖Φj‖2
L4 R+;Ḣ1)

Using Theorem 3.2.1, we get that

J∑
j=0

‖Φj‖2
L4([0,T ?(ϕj)−ε];Ḣ1)

≤
∑
j∈Jρ0

‖Φj‖2
L4([0,T ?(ϕj)−ε];Ḣ1)

+ lim sup
n∈N

‖un‖2
Ḣ

1
2

and the lemma is proved. 2

Continuation of the proof of Theorem 4.3.1 Thanks to Lemma 4.3.1, it is enough to prove that

lim
J→∞

lim
n→∞

‖F Jn ‖L2([0,τεn];Ḣ
1
2 )

= 0. (4.18)

We use the notations of Definition (4.2) of RJn and F Jn . Let us first study F J,1n . If the two
scales (λjn)n∈N and (λkn)n∈N are different, we have, because of law of product in Sobolev
spaces

‖F j,kn ‖2
L2([0,τεn];Ḣ

1
2 )

def
= ‖Φj ⊗ Φk‖2

L2([0,τεn];Ḣ
1
2 )

≤
∫ ∞

0

1

λjnλkn
1[0,T ?(ϕj)−ε]

(
t

(λjn)2

)∥∥∥∥Φj

(
t

(λjn)2

)∥∥∥∥2

Ḣ1

× 1[0,T ?(ϕk)−ε]

(
t

(λkn)2

)∥∥∥∥Φk

(
t

(λkn)2

)∥∥∥∥2

Ḣ1

dt

≤
∫ ∞

0

λkn

λjn
1[0,T ?(ϕj)−ε]

(
λkn)2t

(λjn)2

)∥∥∥∥Φj

(
(λkn)2t

(λjn)2

)∥∥∥∥2

Ḣ1

× 1[0,T ?(ϕk)−ε](t)‖Φk(t)‖2
Ḣ1dt.

Thus we infer that if the two scales (λjn)n∈N and (λkn)n∈N are different, then

lim
n→∞

‖F j,kn ‖L2([0,τεn];Ḣ
1
2 )

= 0. (4.19)
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In the case when the two scales (λjn)n∈N and (λkn)n∈N are equal, let us observe, using (4.17),
we have, for any appropriated choice of αJ ,

‖F j,kn ‖2
L2([0,τεn];Ḣ

1
2 )
≤

∫ T εj,k

0

∥∥∥∥Φj(t, ·)⊗ Φk

(
t, · − xjn − xkn

λjn

)∥∥∥∥2

Ḣ1

dt

≤ 2η +

∫ T εj,k

0

∥∥∥∥Φj
αJ

(t, ·)⊗ Φk
αJ

(
t, · − xjn − xkn

λjn

)∥∥∥∥2

Ḣ1

dt

with T εj,k
def
= min{T ?(ϕj), T ?(ϕk)}−ε. As lim

n→∞

|xjn − xkn|
λjn

=∞, for n large enough, the support

of the two functions

Φj
αJ

(t, ·) and Φk
αJ

(
t, · − xjn − xkn

λjn

)
are disjoint and thus, thanks to (4.19), we have

∀J , lim
n→∞

‖F J,1n ‖L2([0,τεn];Ḣ1) = 0. (4.20)

In order to treat the term F J,2n , let us observe that interpolation inequalities imply that

‖a‖
Ḃ

3
2 θ−1

2
θ
, 2
θ

≤ ‖a‖θ
Ḣ

1
2
‖a‖1−θ

Ḃ−1
∞,∞

.

Using Lemma 2.4 of [2] and the Minkowski inequality, we have

‖et∆rJn‖
L4(R+;Ḃ

3
2 θ−

1
2

2
θ
, 2
θ

)
≤ ‖rJn‖θ

Ḣ
1
2
‖rJn‖1−θḂ−1

∞,∞
.

Properties of the sequence (rjn)(j,n)∈N2 implies that

∀θ ∈ [0, 1[ , lim
J→∞

lim sup
n→∞

‖et∆rJn‖
L4(R+;Ḃ

3
2 θ−

1
2

2
θ
, 2
θ

)
= 0.

Law of product in Besov spaces (see for instance Chapter 2 of [2]) say that, for θ > 2/3, we
have

Ḃ
3
2
θ− 1

2
2
θ
, 2
θ

· Ḃ
3
2
θ− 1

2
2
θ
, 2
θ

⊂ Ḣ
1
2 .

It immediatly ensures that

lim
J→∞

lim sup
n→∞

‖F J,3n ‖L4(R+;Ḣ
1
2 )

= 0. (4.21)

Moreover, as Ḣ1 is continuously embedded in Ḃ
3
2
θ− 1

2
2
θ
, 2
θ

, then Lemma 4.3.1 ensures that

lim
J→∞

lim sup
n→∞

‖F J,2n ‖L4(R+;Ḣ
1
2 )

= 0.

Then Inequalitites (4.20) and (4.21) imply (4.18) and the first part of Theorem 4.3.1 is proved.
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In order to prove the second part of Theorem 4.3.1, let us first write that

‖uφ(n)(t)‖2
Ḣ

1
2

=
J∑
j=0

‖Φj
n(t)‖2

Ḣ
1
2

+ ‖et∆rJn‖2
Ḣ

1
2

+ ‖RJn(t)‖2
Ḣ

1
2

+ 2
4∑
`=1

EJ,`n (t) with

EJ,1n (t)
def
=

( J∑
j=0

Φj
n(t)

∣∣RJn(t)

)
Ḣ

1
2

,

EJ,2n (t)
def
=
(
et∆rJn |RJn(t)

)
Ḣ

1
2
,

EJ,3n (t)
def
=

( J∑
j=0

Φj
n(t)

∣∣∣et∆rJn)
Ḣ

1
2

,

EJ,4n (t)
def
=

∑
0≤j,k≤J
j 6=k

(
Φj
n(t)|Φk

n(t)
)
Ḣ

1
2
.

(4.22)

We shall make a very frequent use of the fact that

∀(j, n) ∈ N2 , t ∈ [0, τ εn] =⇒ t

(λjn)2
∈ [0, T ?(ϕj)− ε].

The first step is the proof of the following lemma

Lemma 4.3.2. For any (j, k) in N2 such that j and k are different, we have

lim
n→∞

∥∥(Φj
n(t)|Φk

n(t)
)
Ḣ

1
2

∥∥
L∞([0,τεn])

= 0.

Proof. Let us consider a positive real number η. We first study the case when (λjn)n∈N
and (λkn)n∈N are different. For any j, the set

{
Φj(t) , t ∈ [0, T ?(ϕj)− ε]

}
is a compact subset

of Ḣ
1
2 as the range of the compact interval [0, T ?(ϕj) − ε] by the continuous ap Φj . Thus

it can be covered by a finite number of balls centered at functions the Fourier transform of
which is included in a ring of R3 and of radius

η

2
max{‖Φj‖−1

L∞([0,T ?(ϕj)−ε];Ḣ
1
2 )
, ‖Φk‖−1

L∞([0,T ?(ϕk)−ε];Ḣ
1
2 )

}
.

Then we deduce that for any t in [0, τ εn], it exists two functions fj and gk (which are choosen
a finite family of functions depending on η, on (j, k) and on ε such that∣∣∣∣(Φj

n(t)|Φk
n(t)

)
Ḣ

1
2
− 1

λjnλkn

(
fj

( · − xjn
λjn

)∣∣∣gk( · − xkn
λkn

))
Ḣ

1
2

∣∣∣∣
=
∣∣∣(Φj((λjn)2t)|Φk((λkn)2t)

)
Ḣ

1
2
− (fj |gk)

Ḣ
1
2

∣∣∣ ≤ η.
When

∣∣∣log
λjn
λkn

∣∣∣ large enough, the support of the Fourier transform of two functions

fj

( · − xjn
λjn

)
and gk

( · − xkn
λkn

)
are disjoint; thus the two functions are orthogonal in Ḣ

1
2 and we have, for

∣∣∣log
λjn
λkn

∣∣∣ large

enough ∥∥(Φj
n(t)|Φk

n(t)
)
Ḣ

1
2

∥∥
L∞([0,τεn])

≤ η. (4.23)
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In the case when the two scales (λjn)n∈N and (λkn)n∈N are equal, let us write that because of

the scaling invariance of the space Ḣ
1
2 we have

(Φj
n(t)|Φk

n(t)
)
Ḣ

1
2

=

(
Φj
( t

(λjn)2
, ·
)∣∣Φk

( t

(λjn)2
, · −yj,kn

))
Ḣ

1
2

with yj,kn
def
=

xkn − x
j
n

λkn
·

By definition of the Ḣ
1
2 scalar product, we get

(Φj
n(t)|Φk

n(t)
)
Ḣ

1
2

=
〈

(|D|Φj
( t

(λjn)2
, ·
)
,Φk

( t

(λjn)2
, · −yj,kn

)〉
.

Using that the set {
|D|Φj(t) , t ∈ [0, T ?(ϕj)− ε]

}
is a compact subset of Ḣ−

1
2 , it can be covered with a finite number of ball of radius less than

η

2

(
‖Φj‖−1

L∞([0,T ?(ϕj)−ε] + 1
)−1

and centered on functions of D(R3 \{0}) for the Ḣ−
1
2 topology. The same is true for the set{

Φk(t) , t ∈ [0, T ?(ϕj)− ε]
}

in the Ḣ
1
2 topology. Thus two functions fj and gk exists in D(R3 \{0}) such that∣∣(Φj

n(t)|Φk
n(t)

)
Ḣ

1
2

∣∣ ≤ η +
∣∣∣∫

R3
fj(x)gk(x− yj,kn )dx

∣∣∣.
As lim

n→∞
|yj,kn | =∞, the above integral is 0. With (4.23), the lemma is proved. 2

Continuation of the proof of Theorem 4.3.1. Lemma 4.3.2 implies that, for any J

lim
n→∞

∥∥∥∥∥∥∥ J∑
j=0

Φj
n(t)

∥∥∥2

Ḣ
1
2
−

J∑
j=0

‖Φj
n(t)‖2

Ḣ
1
2

∥∥∥∥
L∞([0,τεn])

= 0.

Let us introduce Jρ0 the set of indices such that the associated profile ϕj does not belong to
the open ball contered at the origin and of radius ρ0 where ρ0 is given by Theorem 3.2.1 on
page 29. It is a finite set. Moreover thanks to Theorem 3.2.1, we have

∀j /∈ Jρ0 , ‖Φj
n‖L∞(R+;Ḣ

1
2 )

= ‖Φj‖
L∞(R+;Ḣ

1
2 )
≤ ‖ϕj‖

Ḣ
1
2
. (4.24)

Thus we infer that

lim sup
n→∞

∥∥∥∥ J∑
j=0

Φj(t)

∥∥∥∥2

L∞([0,τεn];Ḣ
1
2 )

≤Mε
def
=

∑
j∈Jρ0

‖ΦJ‖2
L∞([0,τεn];Ḣ

1
2 )

+
∑
j

‖ϕj‖2
Ḣ

1
2
.

Using Cauchy-Schwarz inequality, we get, with the notations of (4.22),

lim sup
n→∞

‖EJ,1n ‖L∞([0,τεn]) ≤ lim sup
n→∞

∥∥∥∥ J∑
j=0

Φj(t)

∥∥∥∥
L∞([0,τεn])

lim sup
n→∞

‖RJn‖L∞([0,τεn];Ḣ
1
2 )

≤ Mε‖RJn‖L∞([0,τεn];Ḣ
1
2 )
.
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Thus, using Inequality (4.13) (which is now proven), we get

lim
J→∞

lim sup
n→∞

‖EJ,1n ‖L∞([0,τεn]) = 0. (4.25)

The estimate of EJ,2n is easy. Indeed, Cauchy-Schwarz inequality implies that∥∥(et∆rJn |RJn(t)
)
Ḣ

1
2

∥∥
L∞([0,τεn])

≤ ‖rJn‖Ḣ 1
2
‖RJn‖L∞([0,τεn];Ḣ

1
2 )
.

Because lim sup
n→∞

‖rJn‖Ḣ 1
2

is less than or equal to M
def
= sup

n
‖u0,n‖

Ḣ
1
2
, we get

lim sup
n→∞

∥∥(et∆rJn |RJn(t)
)
Ḣ

1
2

∥∥
L∞([0,τεn])

≤M lim sup
n→∞

‖RJn‖L∞([0,τεn];Ḣ
1
2 )
.

Using Lemma 4.13, we get

lim
J→∞

lim sup
n→∞

‖EJ,2n ‖L∞([0,τεn]) = 0. (4.26)

The term EJ,3n requires more care. Let us consider an integer J ′ greater than the maximum
of Jρ0 . For any J greater than J ′, we have, because of Lemma 4.3.2 and Assertion (4.24)

lim sup
n→∞

∥∥∥∥ J∑
j=J ′

Φj
n(t)

∥∥∥∥2

L∞([0,τεn];Ḣ
1
2 )

≤ lim sup
n→∞

J∑
j=J ′

‖Φj
n‖2

L∞([0,τεn];Ḣ
1
2 )

≤
J∑

j=J ′

‖Φj‖2
L∞(R+;Ḣ

1
2 )

≤
J∑

j=J ′

‖ϕj‖2
Ḣ

1
2
.

Let us define Jη such that ∑
j≥Jη

‖ϕj‖2
Ḣ

1
2
≤ η

2 supn,J ‖rJn‖Ḣ 1
2

·

Now let us consider J such that Jη. By definition of EJ,3n (t), we have

lim sup
n→∞

‖EJ,3n (t)‖L∞([0,τεn]) ≤
η

2
+

Jη∑
j=0

lim sup
n→∞

∥∥(Φj
n(t)|et∆rJn

)
Ḣ

1
2

∥∥
L∞([0,τεn])

.

Using the scaling properties of the space Ḣ
1
2 , let us write that, by definition of the scalar

product of Ḣ
1
2 ,(
Φj
n(t)|et∆rJn

)
Ḣ

1
2

=
〈
|D|Φj

( t

(λjn)2
, ·
)
, λjn(e(λjn)2t∆)rjn(λjn ·+xn)

〉
.

Using the compactness of
{

Φj(t) , t ∈ [0, T ?(ϕj)− ε]
}

, we can recover the set{
|D|Φj(t) , t ∈ [0, T ?(ϕj)− ε]

}
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by a finite number of balls (for the Ḣ−
1
2 -topology) of radius

η

4Jη supn,J ‖rJn‖Ḣ 1
2

and centered at function of D(R3). Thus we get, for any t in [0, τ εn],∣∣(Φj
n(t)|et∆rJn

)
Ḣ

1
2

∣∣ ≤ η

4Jη
+
〈
f`, λ

j
n(e(λjn)2t∆)rjn(λjn ·+xn)

〉
≤ η

4Jη
+ ‖f`‖Ḃ1

1,1
‖rJn‖Ḃ−1

∞,∞
.

Thus we get

‖EJ,3n ‖L∞([0,τεn] ≤
3

4η
+ Cη‖rJn‖Ḃ−1

∞,∞
.

Using (4.25), (4.26) and Lemma 4.3.2, we conclude the proof of the Theorem. 2

4.4 A blow up theorem

The purpose of this section is to prove the following theorem.

Theorem 4.4.1. Let us consider a maximal solution u to (NS) which belongs to the space

C([0, T ?[; Ḣ
1
2 ) ∩ L2

loc([0, T
?[; Ḣ

3
2 ).

We have
T ? <∞ =⇒ lim sup

t→T ?
‖u(t)‖

Ḣ
1
2

=∞.

Proof. We argue by contradiction. Let us denote by IB the interval of real numbers A such
that it exists a solution u to (NS) which blows up for some finite T ? and is such that

lim sup
t→T ?

‖u(t)‖
Ḣ

1
2
≤ A.

The theorem claims that IB is empty. Let us assume that IB is not empty; this will lead to
some contradiction.

Because of Theorem 3.2.1 on page 29, IB does not intersect the ball centered at the origin
and of radius ρ0 defined in this theorem. Thus if we denote by Ac the infimum of IB, we have

Ac ≥ ρ0. (4.27)

Now let us consider a sequence (un)n∈N of solutions to (NS) which blow up for finite
time (T ?n)n∈N such that

Ac ≤ lim sup
t→T ?n

‖un(t)‖
Ḣ

1
2
≤ Ac +

1

2n
· (4.28)

By definition of the upper limit, a sequence (tn)n∈N exists such that

‖un(tn)‖
Ḣ

1
2
≥ Ac −

1

n
and ‖un‖

L∞([tn,T ?n [;Ḣ
1
2 )
≤ Ac +

1

n
· (4.29)

Let us consider the sequence

v0,n
def
=
√
T ?n − tn un

(
tn,
√
T ?n − tn x

)
·
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By definition of (un)n∈N, the sequence (v0,n)n∈N gives birth to a family of solutions (vn)n∈N
to (NS) the life span of which is 1; because of (4.29), we have

∀n ∈ N , ‖v0,n‖
Ḣ

1
2
≥ Ac −

1

n
and ‖vn‖

L∞([0,1[;Ḣ
1
2 )
≤ Ac +

1

n
· (4.30)

Let us prove the following proposition, which is the one of the main step of the proof.

Proposition 4.4.1. Let (v0,n)n∈N be a family of initial data such that for any n, the life
span of the solution associated with v0,n is 1 and which satisfies (4.30). Let us consider an
extraction, a sequence of scales and cores, and a sequence of profiles given by Theorem 2.1.1
on page 13. For any j, we have that λjn is less than or equal to 1.

Proof. Let us apply Theorem 2.1.1. We have

v0,φ(n) =
J∑
j=0

1

λjn
ϕj
(
· − xjn
λjn

)
+ rJn . (4.31)

A consequence of (4.30) is that

lim
n→∞

‖vn‖
L∞([0,τεn];Ḣ

1
2 )

= Ac.

Inequality (4.14) of Theorem 4.3.1 allows us to write that, for any t in [0, τ εn],

‖vn(t)‖2
Ḣ

1
2
≥
∥∥∥∥ 1

λ0
n

Φ0
( t

(λ0
n)2

,x− x
0
n

λ0
n

)∥∥∥∥2

Ḣ
1
2

+

J∑
j=1

∥∥∥∥ 1

λjn
Φj
( t

(λjn)2
,x− x

j
n

λjn

)∥∥∥∥2

Ḣ
1
2

− oJn

where oJn is non negative and lim
J→∞

lim sup
n→∞

oJn = 0. We deduce that, for any t in [0, τ εn] we get

‖vn(t)‖2
Ḣ

1
2
≥
∥∥∥∥ 1

λ0
n

Φ0
( t

(λ0
n)2

,x− x
0
n

λ0
n

)∥∥∥∥2

Ḣ
1
2

+
J∑
j=1

inf

{
‖Φj(t)‖2

Ḣ
1
2
, t ∈

[
0,
(λ0

n

λjn

)2
(T ?(ϕ0)− ε)

]}
− oJn.

Passing to the supremum in time gives

‖vn‖2
L∞([0,τεn];Ḣ

1
2 )
≥ ‖Φ0‖2

L∞([0,T ?(ϕ0)−ε];Ḣ
1
2 )

+

J∑
j=1

inf

{
‖Φj(t)‖2

Ḣ
1
2
, t ∈

[
0,
(λ0

n

λjn

)2
(T ?(ϕ0)− ε)

]}
− oJn.

(4.32)

Let us analyze this inequality. First of all, we get,

‖vn‖2
L∞([0,τεn];Ḣ

1
2 )

+ oJn ≥ ‖Φ0‖2
L∞([0,T ?(ϕ0)−ε];Ḣ

1
2 )
.

Passing to the limit in n and J gives that

‖Φ0‖2
L∞([0,T ?(ϕ0)−ε];Ḣ

1
2 )
≤ A2

c .

By definition of Ac, this implies the following proposition.

51



Proposition 4.4.2. A solution Φ to (NS) exists such that ‖Φ‖
L∞([0,T ?[;Ḣ

1
2 )

is equal to Ac
and lim sup

t→T ?
‖Φ(t)‖

Ḣ
1
2

= Ac.

Let us continue the proof of Proposition 4.4.1. Let us consider in Inequality (4.32) the
indices j such that j does not belongs to G. Because of Theorem 3.2.1 on page 29, we get

inf
{
‖Φj(t)‖

Ḣ
1
2
, t ∈ [0, T ?(ϕj)[

}
≥ ρ0.

Inequality (4.32) implies that this set is empty. Let us consider that the set of j such that

ϕj ∈ G and lim
n→∞

λ0
n

λjn
= 0.

As the solution is continuous in time with value in Ḣ
1
2 , we have

lim
n→∞

inf

{
‖Φj(t)‖2

Ḣ
1
2
, t ∈

[
0,
(λ0

n

λjn

)2
(T ?(ϕ0)− ε)

]}
= ‖ϕj‖2

Ḣ
1
2
.

Thus for such indices j, ϕj ≡ 0 and the proposition is proved. 2

Continuation of the proof of Theorem 4.4.1 It reduces to a backward uniqueness argument
once we have proved the following proposition.

Proposition 4.4.3. Let Φ be a maximal solution of (NS) given by Proposition 4.4.2. Then,
for all s in [−3/2, 1/2[,

Φ ∈ C([0, T ?[; Ḣs) and lim
t→T ?

‖Φ(t)‖Ḣs = 0.

Proof. Now let us consider a critical blow up solution given by Proposition 4.4.2. Let us
consider a sequence (tn)n∈N which tends to T ? such that ‖Φ(tn)‖

Ḣ
1
2

tends to Ac. Let us apply

Proposition 4.4.1 to the sequence

v0,n(x)
def
=
√
T ? − tnΦ(tn,

√
T ? − tn x).

Profiles decomposition of v0,n contains only scales less than or equal to 1. By rescaling, we
deduce that

Φ(tn, x) =

J∑
j=0

1

λjn
ϕj
(x− xjn

λjn

)
+ rJn with ∀j ∈ N , λjn ≤

√
T ? − tn.

This implies that the sequence (Φ(tn))n∈N tends weakly to 0.
Thanks to law of product in Sobolev spaces, the fact that Φ is a solution of Navier-Stokes

equation gives that

‖∂tΦ‖
L∞([0,T ?[;Ḣ−

3
2 )
≤ ‖∆Φ‖

L∞([0,T ?[;Ḣ−
3
2 )

+
∥∥div(Φ⊗ Φ)

∥∥2

L∞([0,T ?[;Ḣ−
3
2 )

. ‖Φ‖
L∞([0,T ?[;Ḣ

1
2 )

+ ‖Φ‖2
L∞([0,T ?[;Ḣ

1
2 )
. (4.33)

This implies that the function Φ̃(t)
def
= Φ(t)− Φ(0) in time with value in Ḣ−

3
2 and satisfies a

Cauchy condition when t tends to T ? which means that

∀ε > 0 , ∃tε > 0 / ∀(t, t′) ∈]T ? − tε, T ?[ , ‖Φ̃(t)− Φ̃(t′)‖
Ḣ−

3
2
< ε.

This implies that the function Φ̃ has a limit in the space Ḣ−
3
2 when t tend to T ?. As the

sequence (Φ(tn))n∈N tends weakly to 0 when n tends to infinity, we deduce that Φ(0) belongs

to Ḣ−
3
2 and then (4.33) implies the result after interpolation. 2
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Continuation of the proof of Theorem 4.4.1 Now, we are going to explain why such a solution
must be 0 which gives a contradiction.

Let us introduce the conpcet of suitable solution of Navier-Stokes equations on a domain
of R+×R3.

Definition 4.4.1. Let ω be an open set in R3 . We say that a pair (u, p) is a suitable weak
solution of the NavierStokes equations on the set ω×]−T1, T [ if the following conditions hold:

u ∈ L∞(]− T1, T [;L2(Ω)) ∩ L2(−T1, T [; Ḣ1(ω)) and p ∈ L
3
2 (]− T1, T [×ω)

and (u, p) satisfy the Navier-Stokes equations in the distribution sense and in addition the
following local energy inequality∫

ω
ϕ(t, x)|u(x, t)|2dx+ 2

∫ T

−T1

∫
ω
ϕ(t, x)|∇u(t, x)|2dxdt

≤
∫ T

−T1

∫
ω

(
|u(t, x)|2

(
∆ϕ(t, x) + ∂tϕ(t, x)

)
+ u(t, x) · ∇ϕ(t, x)(|u(t, x)|2 + 2p(t, x))

)
dxdt

for almost all t in ] − T1, T [ and for any non-negative function ϕ in D(R+×R3) in a neigh-

bourhood of the parabolic boundary ∂′Q
def
= ω × {t = −T1} ∪ ∂ω × [−T1, T ].

The following statement is a local regularity criterion proved in [11]

Lemma 4.4.1. There exist positive absolute constants ε0 and (ck)k∈N with the following

property: If a suitable weak solution (u,p) of (NSE) on Q1 where Qr
def
= ] − r2, 0[×B(0, r)

satisfies the condition ∫
Q1

(
|u(t, x)|3 + |p(t, x)|

3
2dxdt < ε0,

then u is smooth on Q 1
2

and satisfies the estimate

sup
(t,x)∈Q 1

2

|∇k−1u(t, x)| ≤ ck.

Let us observe that because of Sobolev embeddings, Φ belongs to L∞([0, T ?];L3). Because

Riesz operators maps L
3
2 (R3) into itsself, we have the pressure p belongs to L∞([0, T ?];L

3
2 ).

Thus ∫ T ?

0

∫
R3

(
|Φ(t, x)|3 + |p(t, x)|

3
2dxdt

)
<∞.

It implies that, for any positive ε, a radius Rε exists such that, for any x0 such that |x0|
greater than or equal to R,∫ T ?

0

∫
B(x0,

√
T ?)

(
|Φ(t, x)|3 + |p(t, x)|

3
2
)
dxdt ≤ ε.

Then applying Lemma 4.4.1 after a rescaling and time translation we get that Φ is smooth
on [(3/4)T ?, T ?]× (R3 \B(0, Rε)). Let us write the vorticity equation

∂tΩ−∆Ω + Φ · ∇Ω + Ω · ∇Φ = 0
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on the set [(3/4)T ?, T ?]× (R3 \B(0, Rε)). Because Φ is smooth up to T ?, the vorticity Ω(T?)
is identically equal to 0 on R3 \B(0, Rε)). As Φ in bounded in [(3/4)T ?, T ?]× (R3 \B(0, Rε)),
we have the pointwise inequality∣∣∂tΩ(t, x)−∆Ω(t, x)

∣∣ ≤ C(|Ω(t, x)|+ |∇Ω(t, x)|
)
.

Then we can apply the following backward uniqueness result proved in [12].

Theorem 4.4.2 (Backwards uniqueness). Let us consider a vector valued distribution Ω
in Ḣ2

loc((R
3 \B(0, Rε))×]− δ, 0]) and satisfies∣∣∂tΩ(t, x)−∆Ω(t, x)

∣∣ ≤ C(|Ω(t, x)|+ |∇Ω(t, x)|
)

on (R3 \B(0, Rε))×]− δ, 0]. If Ω(0, x) = 0 on B(R3 \B(0, Rε)), then

Ω ≡ 0 on the set (R3 \B(0, Rε))×]− δ, 0].

In order to conclude the proof of Theorem 4.4.1, let us notice that for any time t in ]0, T ?[,
the vector field u has components which are analytic in the variable x on the whole space R3

(see for instance [6] and [23]) . Thus for any t in [3/4T ?, T ?], Ω(t) ≡ 0 and thus Φ(t) ≡ 0
which is obviously in contradiction with the definition of Φ. 2
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[11] L. Escauriaza, G. A. Serëgin and V. Sverak, L3,∞ -solutions of Navier-Stokes equations
and backward uniqueness, (Russian) Uspekhi Mat. Nauk, 58 (2003), no. 2(350), 3-44;
translation in Russian Math. Surveys, 58 (2003), no. 2, 211-250.
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équations de Navier-Stokes dans R3, (French) [Further remarks on the analyticity of
mild solutions for the Navier-Stokes equations in R3] Compte Rendus de l’Académie des
Sciences de Paris, Série I 338 (6), 2004, pages 443446.

[24] J. Leray, Essai sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Matem-
atica, 63, 1933, pages 193–248.

[25] F. Lin, A new proof of the Caffarelli-Kohn-Nirenberg theorem, Communication in Pure
and Applied Mathematics, 51, 1998, pages 241257.

[26] Y. Meyer, Wavelets, Paraproducts and Navier-Stokes, Current Developments in Mathe-
matics, International Press, Cambridge, Massachussets, 1996.
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