" About the possible blow up for incompressible 3D Navier-Stokes equation".

The incompressible Navier-Stokes system in \mathbb{R}^{3}

$$
(N S) \quad\left\{\begin{array}{c}
\partial_{t} u+\operatorname{div}(u \otimes u)-\Delta u=-\nabla p \\
\operatorname{div} u=0 \\
u_{\mid t=0}=u_{0}
\end{array}\right.
$$

where

$$
\begin{gathered}
v=\left(v^{1}, \cdots, v^{d}\right), \quad v \cdot \nabla=\sum_{j=1}^{d} v^{j} \frac{\partial}{\partial x_{j}}, \quad \nabla p=\left(\frac{\partial p}{\partial x_{1}}, \cdots, \frac{\partial p}{\partial x_{d}}\right) \\
\Delta=\sum_{j=1}^{d} \frac{\partial^{2}}{\partial x_{j}^{2}} \quad \text { and } \quad \operatorname{div} v=\sum_{j=1}^{d} \frac{\partial v^{j}}{\partial x_{j}}
\end{gathered}
$$

Basic facts

$$
\begin{gathered}
\frac{1}{2}\|u(t)\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2}+\int_{0}^{t}\left\|\nabla u\left(t^{\prime}\right)\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2} d t^{\prime}=\frac{1}{2}\left\|u_{0}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2} \quad \text { and } \\
\lambda u\left(\lambda^{2} t, \lambda x\right) \text { is solution on }\left[0, \lambda^{-2} T\right] \text { if } u \text { is solution on }[0, T] .
\end{gathered}
$$

Global weak solution (J. Leray, 1934) and give the right regularity in Sobolev spaces for the initial data to get uniqueness : $\dot{H}^{\frac{1}{2}}$

The case when the initial data is more regular than the scaling.

Theorem Let u_{0} be in \dot{H}^{s} with s in]1/2,3/2[. Then a unique solution exists in the space in the space

$$
C\left([0, T] ; \dot{H}^{s} \cap L^{2}\left([0, T] ; \dot{H}^{s+1}\right) .\right.
$$

Moreover a constant c_{s} exists such that if $T^{\star}\left(u_{0}\right)$ denotes the maximal time of existence, then

$$
T^{\star}\left(u_{0}\right)\left\|u_{0}\right\|_{H^{s}}^{\frac{4}{2 s-1}} \geq c_{s}
$$

Corollary For such solution, if $T^{\star}\left(u_{0}\right)$ is finite, we have

$$
\|u(t)\|_{\dot{H}^{s}} \geq c_{s}\left(T^{\star}\left(u_{0}\right)-t\right)^{-\frac{1}{2}\left(s-\frac{1}{2}\right)}
$$

We have (Escauriaza, Segerin and Sverak, 2003)

$$
\limsup _{t \rightarrow T^{\star}\left(u_{0}\right)}\|u(t)\|_{\dot{H}^{\frac{1}{2}}}=\infty
$$

With the notation $\sigma_{s} \stackrel{\text { def }}{=} \frac{4}{2 s-1}$ do we have

$$
\limsup _{t \rightarrow T^{\star}\left(u_{0}\right)}\left(T^{\star}\left(u_{0}\right)-t\right)\|u(t)\|_{\dot{H}^{s}}^{\sigma_{s}}=\infty ?
$$

P. Gérard's profiles theory : the concept of scales and cores

Definition A sequence $\left(\lambda_{n, j}, x_{n, j}\right)_{(n, j) \in \mathbb{N}^{2}}$ of $] 0, \infty\left[\times \mathbb{R}^{3}\right.$ is a sequence of scales and cores if

- for all positive j and j^{\prime} such that $j \neq j^{\prime}$, we have

$$
\lim _{n \rightarrow \infty} \frac{\lambda_{n, j}}{\lambda_{n, j^{\prime}}}+\frac{\lambda_{n, j^{\prime}}}{\lambda_{n, j}}=\infty \quad \text { or } \quad \lambda_{n, j} \equiv \lambda^{j^{\prime}}
$$

- for all positive j and j^{\prime} such that $j \neq j^{\prime}$, we have

$$
\lambda_{n, j} \equiv \lambda^{j^{\prime}} \Longrightarrow \lim _{n \rightarrow \infty} \frac{\left|x_{n, j}-x_{n, j^{\prime}}\right|}{\lambda_{n, j}}=\infty
$$

Notation For a given s in $] 0,3 / 2\left[\right.$, defining $p \stackrel{\text { def }}{=} \frac{6}{3-2 s}$,

$$
\left(\wedge_{n}^{j} \varphi\right)(t, x) \stackrel{\text { def }}{=} \lambda_{n, j}^{-\frac{3}{p}} \varphi\left(\frac{t}{\lambda_{n, j}^{2}}, \frac{x-x_{n, j}}{\lambda_{n, j}}\right)
$$

P. Gérard's profiles theory : the decomposition theorem

Theorem (P. Gérard, 1996) Let s be in]0,3/2[. We consider $\left(u_{n}\right)_{n \in \mathbb{N}}$ a bounded sequence in \dot{H}^{s}. Then there exist

- a sequence $\left(\varphi^{j}\right)_{j \in \mathbb{N}}$ of functions in \dot{H}^{s},
- a sequence $\left(\psi_{n}^{j}\right)_{(n, j) \in \mathbb{N}^{2}}$ of functions in \dot{H}^{s},
- a sequence of scales and cores $\left(\lambda_{n, j}, x_{n, j}\right)_{(n, j) \in \mathbb{N}^{2}}$
such that, up to an omitted extraction, we have, for any J in \mathbb{N},

$$
\begin{gathered}
u_{n}=\sum_{j=0}^{J} \wedge_{n}^{j} \varphi^{j}+\psi_{n}^{J} \quad \text { with } \\
\left\|u_{n}\right\|_{\dot{H}^{s}}^{2}=\sum_{j=0}^{J}\left\|\varphi^{j}\right\|_{\dot{H}^{s}}^{2}+\left\|\psi_{n}^{J}\right\|_{\dot{H}^{s}}^{2}+o_{J}(1) \quad \text { and } \\
\lim _{J \rightarrow \infty} \limsup _{n \rightarrow \infty}\left\|\psi_{n}^{J}\right\|_{L^{p}}=0 \quad \text { and } \quad p=\frac{6}{3-2 s} .
\end{gathered}
$$

Remark We have that $\lambda_{n, j}^{\frac{3}{p}} u_{n}\left(\lambda_{n, j}\left(\cdot+x_{n, j}\right)\right) \rightharpoonup \varphi^{j}$.

The non interaction theorem

Theorem [E. Poulon, 2015] Let $\left(u_{0, n}\right)_{n \in \mathbb{N}}$ be a bounded sequence of \dot{H}^{s}. Then, up to an extraction, we have

$$
\lim _{n \rightarrow \infty} T^{\star}\left(u_{0, n}\right) \geq \inf \left\{T^{\star}\left(\varphi^{j}\right), j \in \mathcal{J}_{0}\right\}
$$

where \mathcal{J}_{0} is the set of j such that $\lambda_{n, j} \equiv 1$ in the profile decomposition.

Ideas of the proof

- The scaling gives

$$
N S\left(\wedge_{n}^{j}\left(\varphi^{j}\right)\right)=\wedge_{n}^{j}\left(N S\left(\varphi^{j}\right)\right)
$$

- If $\lambda_{n, j} \not \equiv 1$, then $\lim _{n \rightarrow \infty}\left\|\wedge_{n}^{j} \varphi^{j}\right\|_{\dot{H}^{s \pm \varepsilon}}=0$,
- If $j \neq j^{\prime}, N S\left(\wedge_{n}^{j}\left(\varphi^{j}\right)\right)$ and $N S\left(\wedge_{n}^{j^{\prime}}\left(\varphi^{j^{\prime}}\right)\right)$ do not interact and

$$
\left\|N S\left(u_{0, n}\right)(t)\right\|_{\dot{H}^{s}}^{2} \sim \sum_{j=0}^{J}\left\|N S\left(\wedge_{n}^{j}\left(\varphi^{j}\right)\right)(t)\right\|_{\dot{H}^{s}}^{2}+\left\|e^{t \Delta} \psi_{n}^{J}\right\|_{\dot{H}^{s}}^{2}
$$

The concept of critical solution

Definition Let us define

$$
\rho_{s} \stackrel{\text { def }}{=} \inf \left\{\left\|u_{0}\right\|_{\dot{H}^{s}} / T^{\star}\left(u_{0}\right)=1\right\} .
$$

The scaling implies that, for any u_{0} such that $T^{\star}\left(u_{0}\right)$ is finite then

$$
T^{\star}\left(u_{0}\right)\left\|u_{0}\right\|_{\dot{H}^{s}}^{\sigma_{s}} \geq \rho_{s}^{\sigma_{s}} \quad \text { with } \quad \sigma_{s} \stackrel{\text { def }}{=} \frac{4}{2 s-1} .
$$

Theorem Let us define

$$
\mathcal{M}_{s} \stackrel{\text { def }}{=}\left\{u_{0} \in \dot{H}^{s} / T^{\star}\left(u_{0}\right)=1 \text { and }\left\|u_{0}\right\|_{\dot{H}^{s}}=\rho_{s}\right\} .
$$

The set \mathcal{M}_{s} is non empty. Moreover it is compact up to translation which means that any sequence $\left(u_{0, n}\right)_{n \in \mathbb{N}}$ of \mathcal{M}_{s}, up to an extraction is such that $u_{0, n}\left(\cdot-x_{n}\right)$ is convergent in \dot{H}^{s} for some sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$.

Ideas of the proof

Let us consider a sequence $\left(u_{0, n}\right)_{n \in \mathbb{N}}$ such that

$$
\lim _{n \rightarrow \infty}\left\|u_{0, n}\right\|_{\dot{H}^{s}}=\rho_{s} \quad \text { and } \quad T^{\star}\left(u_{0, n}\right)=1
$$

Then up to an extraction, we get

$$
1=\limsup _{n \rightarrow \infty} T^{\star}\left(u_{0, n}\right) \geq \inf _{j \in \mathcal{J}_{0}} T^{\star}\left(\varphi^{j}\right)
$$

If there is more than one profils for j in \mathcal{J}_{0}, then their \dot{H}^{s} norm is less than ρ_{s} and thus their life span is greater than 1.

Contradiction

The description of the possible blow up

From now on we assume that some initial data u_{0} exists in \dot{H}^{s} with finite blow up time $T^{\star}\left(u_{0}\right)$ which satisfies

$$
(\mathcal{H}) \sup _{t<T^{\star}\left(u_{0}\right)}\left(T^{\star}\left(u_{0}\right)-t\right)\left\|N S\left(u_{0}\right)(t)\right\|_{\dot{H}^{s}}^{\sigma_{s}} \leq M
$$

Definition Let \mathcal{M}_{s} be the infinum of the M such that (\mathcal{H}) is satisfied. We say that $u=N S\left(u_{0}\right)$ is a sup-critical solution if it satisfies

$$
T^{\star}\left(u_{0}\right)<\infty \quad \text { and } \quad \limsup _{t \rightarrow T\left(u_{0}\right)}\left(T^{\star}\left(u_{0}\right)-t\right)\left\|N S\left(u_{0}\right)(t)\right\|_{\dot{H}^{s}}^{\sigma_{s}}=\mathcal{M}_{s}
$$

Theorem [E. Poulon, 2015] An initial data u_{0} exists in $\dot{B}_{2, \infty}^{\frac{1}{2}} \cap \dot{H}^{s}$ such that $N S\left(u_{0}\right)$ is sup-critical and bounded in time with value in $\dot{B}_{2, \infty}^{\frac{1}{2}}$ where the Besov norm for regularity r in]0, 1 [is defined by

$$
\|a\|_{\dot{B}_{2, \infty}^{r}} \stackrel{\text { def }}{=} \sup _{x \in \mathbb{R}^{3}} \frac{\|a(\cdot-x)-a\|_{L^{2}}}{|x|^{r}} .
$$

Question

Close to Escauriaza-Segerin-Sverak theorem generalized by I. Gallagher, G. Koch and F. Planchon. . or (very) far away ?

Ideas of the proof

The method consists in creating solution with additional properties from a solution satisfyng (\mathcal{H}).

The main tools are the profile decomposition and the almost orthogonality identity.

The existence of a sup-critical solution

Let us consider a sequence $\left(u_{0, n}\right)_{n \in \mathbb{N}}$ such that

$$
\limsup _{t \rightarrow T^{\star}\left(u_{0}\right)}\left(T^{\star}\left(u_{0}\right)-t\right)\left\|N S\left(u_{0, n}\right)(t)\right\|_{H^{s}}^{\sigma_{s}} \leq \mathcal{M}_{s}+\frac{1}{n}
$$

A sequence $\left(t_{n}\right)_{n \in \mathbb{N}}$ tending to $T^{\star}\left(u_{0}\right)$ exists such that

$$
\sup _{t \geq t_{n}}\left(T^{\star}\left(u_{0}\right)-t\right)\left\|N S\left(u_{0, n}\right)(t)\right\|_{\dot{H}^{s}}^{\sigma_{s}} \leq \mathcal{M}_{s}+\frac{2}{n}
$$

Let us define $v_{0, n}(y) \stackrel{\text { def }}{=}\left(T^{\star}\left(u_{0}\right)-t_{n}\right)^{\frac{1}{2}} N S\left(u_{0, n}\right)\left(t_{n},\left(T^{\star}\left(u_{0}\right)-t_{n}\right)^{\frac{1}{2}} y\right)$. We have

$$
\begin{gathered}
T\left(v_{0, n}\right)=1,\left\|v_{0, n}\right\|_{\dot{H}^{s}} \leq \mathcal{M}_{s} \quad \text { and } \\
\sup _{\tau<1}(1-\tau)\left\|N S\left(v_{0, n}\right)(\tau)\right\|_{\dot{H}^{s}}^{\sigma_{s}} \leq \mathcal{M}_{s}+\frac{2}{n}
\end{gathered}
$$

The profile decomposition of the sequence $\left(v_{0, n}\right)_{n \in \mathbb{N}}$ is of the form

$$
v_{0, n}=\varphi\left(x-x_{n}\right)+\sum_{j \leq J, \lambda_{n, j} \neq 1} \wedge_{n}^{j} \varphi^{j}+\psi_{n, J}
$$

The boundedness in the Besov space $\dot{B}_{2, \infty}^{\frac{1}{2}}$.

Let us write that

$$
N S\left(u_{0}\right)=e^{t \Delta} u_{0}+F\left(u_{0}\right)
$$

Principle The term $F\left(u_{0}\right)$ is better that $N S\left(u_{0}\right)$. More precisely here

$$
\left(T^{\star}\left(u_{0}\right)-t\right)\left\|N S\left(u_{0}\right)(t)\right\|_{\dot{H}^{s}}^{\sigma_{s}} \leq M \Longrightarrow\left\|F\left(u_{0}\right)(t)\right\|_{\dot{B}_{2, \infty}^{\frac{1}{2}}} \leq C M^{2}
$$

Then, $N S\left(u_{0}\right)$ being a sup-critical solution, let us write

$$
\begin{aligned}
& v_{0, n}(y) \stackrel{\text { def }}{=}\left(T^{\star}\left(u_{0}\right)-t_{n}\right)^{\frac{1}{2}} N S\left(u_{0}\right)\left(t_{n},\left(T^{\star}\left(u_{0}\right)-t_{n}\right)^{\frac{1}{2}} y\right) \\
&=\left(T^{\star}\left(u_{0}\right)-t_{n}\right)^{\frac{1}{2}}\left(e^{t \Delta_{0}} u_{0}\right)\left(\left(T^{\star}\left(u_{0}\right)-t_{n}\right)^{\frac{1}{2}} y\right) \\
& \quad+\left(T^{\star}\left(u_{0}\right)-t_{n}\right)^{\frac{1}{2}} F\left(u_{0}\right)\left(t_{n},\left(T^{\star}\left(u_{0}\right)-t_{n}\right)^{\frac{1}{2}} y\right)
\end{aligned}
$$

THANK YOU VERY MUCH FOR ATTENTION

