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The incompressible Navier-Stokes system in R3

(NS)


∂tu+ div(u⊗ u)−∆u = −∇p

div u = 0
u|t=0 = u0

where

v = (v1, · · · , vd), v · ∇ =
d∑

j=1

vj
∂

∂xj
, ∇p =

(
∂p

∂x1
, · · · ,

∂p

∂xd

)
,

∆ =
d∑

j=1

∂2

∂x2
j

and div v =
d∑

j=1

∂vj

∂xj
·
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Basic facts

1

2
‖u(t)‖2

L2(R3)
+
∫ t

0
‖∇u(t′)‖2

L2(R3)
dt′ =

1

2
‖u0‖2L2(Rd) and

λu(λ2t, λx) is solution on [0, λ−2T ] if u is solution on [0, T ].

Global weak solution (J. Leray, 1934) and give the right regularity in Sobolev

spaces for the initial data to get uniqueness : Ḣ
1
2
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The case when the initial data is more regular than the scaling.

Theorem Let u0 be in Ḣs with s in ]1/2,3/2[. Then a unique solution exists

in the space in the space

C([0, T ]; Ḣs ∩ L2([0, T ]; Ḣs+1).

Moreover a constant cs exists such that if T ?(u0) denotes the maximal time

of existence, then

T ?(u0)‖u0‖
4

2s−1
Ḣs ≥ cs.

Corollary For such solution, if T ?(u0) is finite, we have

‖u(t)‖Ḣs ≥ cs(T ?(u0)− t)−
1
2

(
s−1

2

)
.
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We have (Escauriaza, Segerin and Sverak, 2003)

lim sup
t→T ?(u0)

‖u(t)‖
Ḣ

1
2

=∞ .

With the notation σs
def
=

4

2s− 1
do we have

lim sup
t→T ?(u0)

(T ?(u0)− t)‖u(t)‖σs
Ḣs =∞?
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P. Gérard’s profiles theory : the concept of scales and cores

Definition A sequence (λn,j, xn,j)(n,j)∈N2 of ]0,∞[×R3 is a sequence of

scales and cores if

— for all positive j and j′ such that j 6= j′, we have

lim
n→∞

λn,j

λn,j′
+
λn,j′

λn,j
=∞ or λn,j ≡ λj

′

— for all positive j and j′ such that j 6= j′, we have

λn,j ≡ λj
′
=⇒ lim

n→∞
|xn,j − xn,j′|

λn,j
=∞.

Notation For a given s in ]0,3/2[, defining p
def
=

6

3− 2s
,

(Λjnϕ)(t, x)
def
= λ

−3
p

n,jϕ

(
t

λ2
n,j

,
x− xn,j
λn,j

)
·
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P. Gérard’s profiles theory : the decomposition theorem

Theorem (P. Gérard, 1996) Let s be in ]0,3/2[. We consider (un)n∈N a
bounded sequence in Ḣs. Then there exist
– a sequence (ϕj)j∈N of functions in Ḣs,

– a sequence (ψjn)(n,j)∈N2 of functions in Ḣs,
– a sequence of scales and cores (λn,j, xn,j)(n,j)∈N2

such that, up to an omitted extraction, we have, for any J in N,

un =
J∑

j=0

Λjnϕ
j + ψJn with

‖un‖2Ḣs =
J∑

j=0

‖ϕj‖2
Ḣs + ‖ψJn‖2Ḣs + oJ(1) and

lim
J→∞

lim sup
n→∞

‖ψJn‖Lp = 0 and p =
6

3− 2s
·

Remark We have that λ
3
p
n,jun(λn,j(·+ xn,j)) ⇀ ϕj.
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The non interaction theorem

Theorem [E. Poulon, 2015] Let (u0,n)n∈N be a bounded sequence of Ḣs.
Then, up to an extraction, we have

lim
n→∞T

?(u0,n) ≥ inf{T ?(ϕj), j ∈ J0}

where J0 is the set of j such that λn,j ≡ 1 in the profile decomposition.

Ideas of the proof

— The scaling gives

NS(Λjn(ϕj)) = Λjn(NS(ϕj))

— If λn,j 6≡ 1, then lim
n→∞ ‖Λ

j
nϕ

j‖Ḣs±ε = 0,

— If j 6= j′,NS(Λjn(ϕj)) and NS(Λj
′
n(ϕj

′
)) do not interact and

‖NS(u0,n)(t)‖2
Ḣs ∼

J∑
j=0

‖NS(Λjn(ϕj))(t)‖2
Ḣs + ‖et∆ψJn‖2Ḣs.
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The concept of critical solution

Definition Let us define

ρs
def
= inf

{
‖u0‖Ḣs / T

?(u0) = 1
}
.

The scaling implies that, for any u0 such that T ?(u0) is finite then

T ?(u0)‖u0‖σsḢs ≥ ρ
σs
s with σs

def
=

4

2s− 1
·

Theorem Let us define

Ms
def
=

{
u0 ∈ Ḣs / T ?(u0) = 1 and ‖u0‖Ḣs = ρs

}
.

The set Ms is non empty. Moreover it is compact up to translation which

means that any sequence (u0,n)n∈N of Ms, up to an extraction is such

that u0,n(· − xn) is convergent in Ḣs for some sequence (xn)n∈N.
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Ideas of the proof

Let us consider a sequence (u0,n)n∈N such that

lim
n→∞ ‖u0,n‖Ḣs = ρs and T ?(u0,n) = 1 .

Then up to an extraction, we get

1 = lim sup
n→∞

T ?(u0,n) ≥ inf
j∈J0

T ?(ϕj) .

If there is more than one profils for j in J0, then their Ḣs norm is less

than ρs and thus their life span is greater than 1.

Contradiction
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The description of the possible blow up

From now on we assume that some initial data u0 exists in Ḣs with finite

blow up time T ?(u0) which satisfies

(H) sup
t<T ?(u0)

(T ?(u0)− t)‖NS(u0)(t)‖σs
Ḣs ≤M .

Definition Let Ms be the infinum of the M such that (H) is satisfied. We

say that u = NS(u0) is a sup-critical solution if it satisfies

T ?(u0) <∞ and lim sup
t→T (u0)

(T ?(u0)− t)‖NS(u0)(t)‖σs
Ḣs =Ms .
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Theorem [E. Poulon, 2015] An initial data u0 exists in Ḃ
1
2
2,∞ ∩ Ḣ

s such

that NS(u0) is sup-critical and bounded in time with value in Ḃ
1
2
2,∞ where the

Besov norm for regularity r in ]0,1[ is defined by

‖a‖Ḃr2,∞
def
= sup

x∈R3

‖a(· − x)− a‖L2

|x|r
·

Question

Close to Escauriaza-Segerin-Sverak theorem generalized by I. Gallagher, G.

Koch and F. Planchon. . . or (very) far away ?
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Ideas of the proof

The method consists in creating solution with additional properties from a

solution satisfyng (H).

The main tools are the profile decomposition and the almost orthogonality

identity.
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The existence of a sup-critical solution

Let us consider a sequence (u0,n)n∈N such that

lim sup
t→T ?(u0)

(T ?(u0)− t)‖NS(u0,n)(t)‖σs
Ḣs ≤Ms +

1

n
·

A sequence (tn)n∈N tending to T ?(u0) exists such that

sup
t≥tn

(T ?(u0)− t)‖NS(u0,n)(t)‖σs
Ḣs ≤Ms +

2

n
·

Let us define v0,n(y)
def
= (T ?(u0)− tn)

1
2NS(u0,n)(tn, (T ?(u0)− tn)

1
2y). We have

T (v0,n) = 1 , ‖v0,n‖Ḣs ≤Ms and

sup
τ<1

(1− τ)‖NS(v0,n)(τ)‖σs
Ḣs ≤Ms +

2

n
·

The profile decomposition of the sequence (v0,n)n∈N is of the form

v0,n = ϕ(x− xn) +
∑

j≤J,λn,j 6≡1

Λjnϕ
j + ψn,J .

Brighton, the 19th of September 2017 14



The boundedness in the Besov space Ḃ
1
2
2,∞.

Let us write that

NS(u0) = et∆u0 + F (u0) .

Principle The term F (u0) is better that NS(u0). More precisely here

(T ?(u0)− t)‖NS(u0)(t)‖σs
Ḣs ≤M =⇒ ‖F (u0)(t)‖

Ḃ
1
2
2,∞

≤ CM2 .

Then, NS(u0) being a sup-critical solution, let us write

v0,n(y)
def
= (T ?(u0)− tn)

1
2NS(u0)(tn, (T

?(u0)− tn)
1
2y)

= (T ?(u0)− tn)
1
2(et∆u0)((T ?(u0)− tn)

1
2y)

+ (T ?(u0)− tn)
1
2F (u0)(tn, (T

?(u0)− tn)
1
2y) .
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THANK YOU VERY MUCH FOR ATTENTION
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