A Proof of Onsager's Conjecture for the Incompressible Euler Equations

Philip Isett
UT Austin

September 27, 2017

Outline

- Motivation
- Weak Solutions to the Euler Equations
- Onsager's Conjecture and Turbulence
- Brief Survey of Previous Results
- A Proof of Onsager's Conjecture
- ...
- ...
- ...
- ...
- ...
- ...

Motivation: Weak Solutions to the Euler equations

The incompressible Euler equations for a homogeneous fluid:

$$
\begin{align*}
\partial_{t} v^{\ell}+\nabla_{j}\left(v^{j} v^{\ell}\right)+\nabla^{\ell} p & =0 \tag{1}\\
\nabla_{j} v^{j} & =0 \tag{2}
\end{align*}
$$

Motivation: Weak Solutions to the Euler equations

The incompressible Euler equations for a homogeneous fluid:

$$
\begin{align*}
\partial_{t} v^{\ell}+\nabla_{j}\left(v^{j} v^{\ell}\right)+\nabla^{\ell} p & =0 \tag{1}\\
\nabla_{j} v^{j} & =0 \tag{2}
\end{align*}
$$

make sense in integral form for continuous (v, p) :

Motivation: Weak Solutions to the Euler equations

The incompressible Euler equations for a homogeneous fluid:

$$
\begin{align*}
\partial_{t} v^{\ell}+\nabla_{j}\left(v^{j} v^{\ell}\right)+\nabla^{\ell} p & =0 \tag{1}\\
\nabla_{j} v^{j} & =0 \tag{2}
\end{align*}
$$

make sense in integral form for continuous (v, p) :

$$
\begin{gather*}
\frac{d}{d t} \int_{\Omega} v^{\ell}(t, x) d x= \tag{3}\\
\int_{\partial \Omega} p(t, x) n^{\ell} d \sigma+\int_{\partial \Omega} v^{\ell}(t, x)(v \cdot n) d \sigma \tag{4}\\
\int_{\partial \Omega}(v \cdot n)(t, x) d \sigma(x)=0
\end{gather*}
$$

for all Ω with smooth boundary $\partial \Omega$ and interior unit normal n^{ℓ}.

Motivation: Sufficiently smooth solutions conserve energy

Motivation: Sufficiently smooth solutions conserve energy

Take the dot product of the Euler equations with v^{ℓ}

$$
\begin{aligned}
v_{\ell} \partial_{t} v^{\ell}+v_{\ell} \nabla_{j}\left(v^{j} v^{\ell}\right)+v_{\ell} \nabla^{\ell} p & =0 \\
\nabla_{j} v^{j} & =0
\end{aligned}
$$

Motivation: Sufficiently smooth solutions conserve energy

Take the dot product of the Euler equations with v^{ℓ}

$$
\begin{aligned}
v_{\ell} \partial_{t} v^{\ell}+v_{\ell} \nabla_{j}\left(v^{j} v^{\ell}\right)+v_{\ell} \nabla^{\ell} p & =0 \\
\nabla_{j} v^{j} & =0
\end{aligned}
$$

Then, use the divergence free condition $\operatorname{div} v=\nabla_{\ell} v^{\ell}=0$, and integrate

$$
\frac{d}{d t} \int_{\mathbb{R}^{n}} \frac{|v|^{2}}{2}(t, x) d x=-\int_{\mathbb{R}^{n}} \operatorname{div}\left[\left(\frac{|v|^{2}}{2}+p\right) v\right] d x=0
$$

Motivation: Onsager's Conjecture (1949)

1. Solutions (v, p) to Euler obeying a Hölder estimate

$$
\begin{align*}
& \partial_{t} v^{\ell}+\nabla_{j}\left(v^{j} v^{\ell}\right)+\nabla^{\ell} p=0 \tag{5}\\
& \nabla_{j} v^{j}=0 \\
& |v(t, x+\Delta x)-v(t, x)| \leq C|\Delta x|^{\alpha} \tag{6}
\end{align*}
$$

for some $\alpha>1 / 3$ must conserve energy.

Motivation: Onsager's Conjecture (1949)

1. Solutions (v, p) to Euler obeying a Hölder estimate

$$
\begin{align*}
& \partial_{t} v^{\ell}+\nabla_{j}\left(v^{j} v^{\ell}\right)+\nabla^{\ell} p=0 \tag{5}\\
& \nabla_{j} v^{j}=0 \\
& |v(t, x+\Delta x)-v(t, x)| \leq C|\Delta x|^{\alpha} \tag{6}
\end{align*}
$$

for some $\alpha>1 / 3$ must conserve energy.
2. If the α in (6) is less than $1 / 3$, then v may fail to conserve energy

Motivation: Hydrodynamic turbulence

Kolmogorov (1941): As $\nu \rightarrow 0$ for solutions to $3 D$ Navier-Stokes:

$$
\left\{\begin{align*}
\partial_{t} v^{\ell}+\nabla_{j}\left(v^{j} v^{\ell}\right)+\nabla^{\ell} p & =\nu \Delta v^{\ell} \tag{7}\\
\nabla_{j} v^{j} & =0
\end{align*}\right.
$$

the energy dissipation rate remains strictly positive as $\nu \rightarrow 0$

$$
\varepsilon=\lim _{\nu \rightarrow 0}\left\langle-\frac{d}{d t} \int \frac{\left|v_{\nu}\right|^{2}}{2}(t, x) d x\right\rangle>0
$$

Motivation: Hydrodynamic turbulence

Kolmogorov (1941): As $\nu \rightarrow 0$ for solutions to $3 D$ Navier-Stokes:

$$
\left\{\begin{align*}
\partial_{t} v^{\ell}+\nabla_{j}\left(v^{j} v^{\ell}\right)+\nabla^{\ell} p & =\nu \Delta v^{\ell} \tag{7}\\
\nabla_{j} v^{j} & =0
\end{align*}\right.
$$

the energy dissipation rate remains strictly positive as $\nu \rightarrow 0$

$$
\varepsilon=\lim _{\nu \rightarrow 0}\left\langle-\frac{d}{d t} \int \frac{\left|v_{\nu}\right|^{2}}{2}(t, x) d x\right\rangle>0
$$

The velocity fluctuations on average obey a law

$$
\begin{aligned}
\left.\langle | v(x+\Delta x)-\left.v(x)\right|^{p}\right\rangle^{1 / p} & \sim \varepsilon^{1 / 3}|\Delta x|^{1 / 3} \\
\quad \text { for } \quad|\Delta x| & \geq\left(\nu^{3} / \varepsilon\right)^{1 / 4}
\end{aligned}
$$

Motivation: Hydrodynamic turbulence

Kolmogorov (1941): As $\nu \rightarrow 0$ for solutions to $3 D$ Navier-Stokes:

$$
\left\{\begin{align*}
\partial_{t} v^{\ell}+\nabla_{j}\left(v^{j} v^{\ell}\right)+\nabla^{\ell} p & =\nu \Delta v^{\ell} \tag{7}\\
\nabla_{j} v^{j} & =0
\end{align*}\right.
$$

the energy dissipation rate remains strictly positive as $\nu \rightarrow 0$

$$
\varepsilon=\lim _{\nu \rightarrow 0}\left\langle-\frac{d}{d t} \int \frac{\left|v_{\nu}\right|^{2}}{2}(t, x) d x\right\rangle>0
$$

The velocity fluctuations on average obey a law

$$
\begin{aligned}
\left.\langle | v(x+\Delta x)-\left.v(x)\right|^{p}\right\rangle^{1 / p} & \sim \varepsilon^{1 / 3}|\Delta x|^{1 / 3} \\
\text { for } \quad|\Delta x| & \geq\left(\nu^{3} / \varepsilon\right)^{1 / 4}
\end{aligned}
$$

Onsager considered the case $\nu=0$; argued that "frequency cascades" may lead to energy dissipation in the absence of viscosity.

Onsager and Ideal Turbulence

Onsager considered the Euler equations in Fourier series form (which converges for $v \in L^{2}$)

$$
\begin{gathered}
v(x, t)=\sum_{k} a_{k}(t) e^{i k \cdot x} \\
\frac{d a_{k}}{d t}=i \sum_{m} a_{k-m} \cdot k\left[-a_{m}+\frac{\left(a_{m} \cdot k\right) k}{|k|^{2}}\right]
\end{gathered}
$$

He argued that energy can "cascade" from low wavenumbers to high wavenumbers, and the cascade can happen so rapidly that part of the energy $\sum_{k}\left|a_{k}\right|^{2}$ escapes to infinite frequency (i.e. vanishes to small spatial scales) in finite time.

However, only low regularity solutions could behave this way, and he stated that solutions in C^{α} with $\alpha>1 / 3$ must conserve energy.

Onsager and Ideal Turbulence

Onsager considered the Euler equations in Fourier series form (which converges for $v \in L^{2}$)

$$
\begin{gathered}
v(x, t)=\sum_{k} a_{k}(t) e^{i k \cdot x} \\
\frac{d a_{k}}{d t}=i \sum_{m} a_{k-m} \cdot k\left[-a_{m}+\frac{\left(a_{m} \cdot k\right) k}{|k|^{2}}\right]
\end{gathered}
$$

He argued that energy can "cascade" from low wavenumbers to high wavenumbers, and the cascade can happen so rapidly that part of the energy $\sum_{k}\left|a_{k}\right|^{2}$ escapes to infinite frequency (i.e. vanishes to small spatial scales) in finite time.

By a statistical physics argument, a "typical" turbulent flow should have: $\sum_{\frac{\lambda}{2} \leq|k| \leq 2 \lambda}\left|a_{k}\right|^{2} \sim \lambda^{-2 / 3}$ (hence regularity exactly $1 / 3$).

Motivation: Onsager's Conjecture (1949)

1. Solutions (v, p) to Euler obeying a Hölder estimate

$$
\begin{align*}
& \partial_{t} v^{\ell}+\nabla_{j}\left(v^{j} v^{\ell}\right)+\nabla^{\ell} p=0 \tag{8}\\
& \nabla_{j} v^{j}=0 \\
& |v(t, x+\Delta x)-v(t, x)| \leq C|\Delta x|^{\alpha} \tag{9}
\end{align*}
$$

for some $\alpha>1 / 3$ must conserve energy.
2. If the α in (9) is less than $1 / 3$, then v may fail to conserve energy

Motivation: Onsager's Conjecture (1949)

1. Solutions (v, p) to Euler obeying a Hölder estimate

$$
\begin{align*}
& \partial_{t} v^{\ell}+\nabla_{j}\left(v^{j} v^{\ell}\right)+\nabla^{\ell} p=0 \tag{8}\\
& \nabla_{j} v^{j}=0 \\
& |v(t, x+\Delta x)-v(t, x)| \leq C|\Delta x|^{\alpha} \tag{9}
\end{align*}
$$

for some $\alpha>1 / 3$ must conserve energy.
2. If the α in (9) is less than $1 / 3$, then v may fail to conserve energy

Part 1 is known: (Eyink, '94), (Constantin-E-Titi, '94)

Motivation: Onsager's Conjecture (1949)

1. Solutions (v, p) to Euler obeying a Hölder estimate

$$
\begin{align*}
\partial_{t} v^{\ell}+\nabla_{j}\left(v^{j} v^{\ell}\right)+\nabla^{\ell} p & =0 \tag{8}\\
\nabla_{j} v^{j} & =0 \\
|v(t, x+\Delta x)-v(t, x)| \leq C|\Delta x|^{\alpha} & \tag{9}
\end{align*}
$$

for some $\alpha>1 / 3$ must conserve energy.
2. If the α in (9) is less than $1 / 3$, then v may fail to conserve energy

Part 1 is known: (Eyink, '94), (Constantin-E-Titi, '94)
Refinements: (Duchon-Robert '00), (Cheskidov-Constantin-Shvydkoy-Friedlander '08): $v \in L_{t}^{3} B_{3, c(\mathbb{N})}^{1 / 3}$, but not $L_{t}^{\infty} B_{3, \infty}^{1 / 3}$.

Motivation: Onsager's Conjecture (1949)

1. Solutions (v, p) to Euler obeying a Hölder estimate

$$
\begin{align*}
\partial_{t} v^{\ell}+\nabla_{j}\left(v^{j} v^{\ell}\right)+\nabla^{\ell} p & =0 \tag{8}\\
\nabla_{j} v^{j} & =0 \\
|v(t, x+\Delta x)-v(t, x)| \leq C|\Delta x|^{\alpha} & \tag{9}
\end{align*}
$$

for some $\alpha>1 / 3$ must conserve energy.
2. If the α in (9) is less than $1 / 3$, then v may fail to conserve energy

Part 1 is known: (Eyink, '94), (Constantin-E-Titi, '94)
Refinements: (Duchon-Robert '00), (Cheskidov-Constantin-Shvydkoy-Friedlander '08): $v \in L_{t}^{3} B_{3, c(\mathbb{N})}^{1 / 3}$, but not $L_{t}^{\infty} B_{3, \infty}^{1 / 3}$. Different proof on compact manifolds: (I.-Oh, '13).

Motivation: Onsager's Conjecture (1949)

1. Solutions (v, p) to Euler obeying a Hölder estimate

$$
\begin{align*}
\partial_{t} v^{\ell}+\nabla_{j}\left(v^{j} v^{\ell}\right)+\nabla^{\ell} p & =0 \tag{8}\\
\nabla_{j} v^{j} & =0 \\
|v(t, x+\Delta x)-v(t, x)| \leq C|\Delta x|^{\alpha} & \tag{9}
\end{align*}
$$

for some $\alpha>1 / 3$ must conserve energy.
2. If the α in (9) is less than $1 / 3$, then v may fail to conserve energy

Part 1 is known: (Eyink, '94), (Constantin-E-Titi, '94)
Refinements: (Duchon-Robert '00), (Cheskidov-Constantin-Shvydkoy-Friedlander '08): $v \in L_{t}^{3} B_{3, c(\mathbb{N})}^{1 / 3}$, but not $L_{t}^{\infty} B_{3, \infty}^{1 / 3}$. Different proof on compact manifolds: (I.-Oh, '13).

Motivation: Onsager's Conjecture (1949)

1. Solutions (v, p) to Euler obeying a Hölder estimate

$$
\begin{align*}
& \partial_{t} v^{\ell}+\nabla_{j}\left(v^{j} v^{\ell}\right)+\nabla^{\ell} p=0 \tag{10}\\
& \nabla_{j} v^{j}=0 \\
& |v(t, x+\Delta x)-v(t, x)| \leq C|\Delta x|^{\alpha} \tag{11}
\end{align*}
$$

for some $\alpha>1 / 3$ must conserve energy.
2. If the α in (11) is less than $1 / 3$, then v may fail to conserve energy
3. Energy-dissipating solutions to Euler with Onsager critical regularity arise in the 0 viscosity limit of Navier-Stokes

Shell models and continuous model equations:
(Cheskidov-Friedlander-Pavlović '06, Ches.-Fried. '08,
Ches.-Fried.-Shvydkoy '11, Friedlander-Glatt Holtz-Vicol '14)

Motivation: Onsager's Conjecture (1949)

1. Solutions (v, p) to Euler obeying a Hölder estimate

$$
\begin{align*}
& \partial_{t} v^{\ell}+\nabla_{j}\left(v^{j} v^{\ell}\right)+\nabla^{\ell} p=0 \tag{10}\\
& \nabla_{j} v^{j}=0 \\
& |v(t, x+\Delta x)-v(t, x)| \leq C|\Delta x|^{\alpha} \tag{11}
\end{align*}
$$

for some $\alpha>1 / 3$ must conserve energy.
2. If the α in (11) is less than $1 / 3$, then v may fail to conserve energy
3. Energy-dissipating solutions to Euler with Onsager critical regularity arise in the 0 viscosity limit of Navier-Stokes

Shell models and continuous model equations:
(Cheskidov-Friedlander-Pavlović '06, Ches.-Fried. '08,
Ches.-Fried.-Shvydkoy '11, Friedlander-Glatt Holtz-Vicol '14)

Motivation: Onsager's Conjecture (1949)

1. Solutions (v, p) to Euler obeying a Hölder estimate

$$
\begin{align*}
& \partial_{t} v^{\ell}+\nabla_{j}\left(v^{j} v^{\ell}\right)+\nabla^{\ell} p=0 \tag{10}\\
& \nabla_{j} v^{j}=0 \\
& |v(t, x+\Delta x)-v(t, x)| \leq C|\Delta x|^{\alpha} \tag{11}
\end{align*}
$$

for some $\alpha>1 / 3$ must conserve energy.
2. If the α in (11) is less than $1 / 3$, then v may fail to conserve energy
3. Energy-dissipating solutions to Euler with Onsager critical regularity arise in the 0 viscosity limit of Navier-Stokes

Shell models and continuous model equations:
(Cheskidov-Friedlander-Pavlović '06, Ches.-Fried. '08,
Ches.-Fried.-Shvydkoy '11, Friedlander-Glatt Holtz-Vicol '14)

Weak solutions that fail to conserve energy

Weak solutions that fail to conserve energy

- Weak solutions in $L_{t, x}^{2}\left(\mathbb{R} \times \mathbb{R}^{2}\right)$ with compact support in space and time (Scheffer, '93)
- Weak solutions in $L_{t, x}^{2}\left(\mathbb{R} \times \mathbb{T}^{2}\right)$ (Shnirelman, '97)
- Dissipative solutions in $L_{t}^{\infty} L_{x}^{2}\left(\mathbb{R} \times \mathbb{T}^{3}\right)$ (Shnirelman, '00)

Weak solutions that fail to conserve energy

- Weak solutions in $L_{t, x}^{2}\left(\mathbb{R} \times \mathbb{R}^{2}\right)$ with compact support in space and time (Scheffer, '93)
- Weak solutions in $L_{t, x}^{2}\left(\mathbb{R} \times \mathbb{T}^{2}\right)$ (Shnirelman, '97)
- Dissipative solutions in $L_{t}^{\infty} L_{x}^{2}\left(\mathbb{R} \times \mathbb{T}^{3}\right)$ (Shnirelman, '00)
- Solutions in $L_{t, x}^{\infty} \cap C_{t} L_{x}^{2}\left(\mathbb{R} \times \mathbb{R}^{n}\right)$ with any energy density

$$
\frac{|v|^{2}}{2}=e(t, x)
$$

(De Lellis, Székelyhidi, '07)

Convex Integration and Isometric Embeddings

- (Nash, '54) Constructs surprising, C^{1} isometric embeddings in very low codimension.
- (Borisov, '65, '04) Irregular $C^{1, \alpha}$ isometric embeddings for analytic metric
- (Gromov, '86) Generalizes Nash's idea to the method of "convex integration" in topology and geometry
- (Müller-Sverak, '04) Elliptic systems with Lipschitz but nowhere C^{1} solutions (i.e. $\nabla u \in L^{\infty}$, but $\nabla u \notin C^{0}$).

Convex Integration and Isometric Embeddings

- (Nash, '54) Constructs surprising, C^{1} isometric embeddings in very low codimension.
- (Borisov, '65, '04) Irregular $C^{1, \alpha}$ isometric embeddings for analytic metric
- (Gromov, '86) Generalizes Nash's idea to the method of "convex integration" in topology and geometry
- (Müller-Sverak, '04) Elliptic systems with Lipschitz but nowhere C^{1} solutions (i.e. $\nabla u \in L^{\infty}$, but $\nabla u \notin C^{0}$).
- (De Lellis-Székelyhidi, '09) Simpler proofs and extensions of Borisov's results on $C^{1, \alpha}$ isometric embeddings

Continuous weak solutions that fail to conserve energy

Theorem (De Lellis, Székelyhidi, '12)
For every $\alpha<1 / 10, \exists$ solutions $(v, p) \in C_{t, x}^{\alpha} \times C_{t, x}^{2 \alpha}\left(\mathbb{R} \times \mathbb{T}^{3}\right)$ that can realize any smooth energy profile

$$
\int \frac{|v|^{2}}{2}(t, x) d x=e(t) \geq c>0
$$

Continuous weak solutions that fail to conserve energy

Theorem (De Lellis, Székelyhidi, '12)
For every $\alpha<1 / 10, \exists$ solutions $(v, p) \in C_{t, x}^{\alpha} \times C_{t, x}^{2 \alpha}\left(\mathbb{R} \times \mathbb{T}^{3}\right)$ that can realize any smooth energy profile

$$
\int \frac{|v|^{2}}{2}(t, x) d x=e(t) \geq c>0
$$

- Extension to $\mathbb{R} \times \mathbb{T}^{2}$ (De Lellis, Székelyhidi '12, Choffrut '12)

Continuous weak solutions that fail to conserve energy

Theorem (De Lellis, Székelyhidi, '12)
For every $\alpha<1 / 10, \exists$ solutions $(v, p) \in C_{t, x}^{\alpha} \times C_{t, x}^{2 \alpha}\left(\mathbb{R} \times \mathbb{T}^{3}\right)$ that can realize any smooth energy profile

$$
\int \frac{|v|^{2}}{2}(t, x) d x=e(t) \geq c>0
$$

- Extension to $\mathbb{R} \times \mathbb{T}^{2}$ (De Lellis, Székelyhidi '12, Choffrut '12)

Improved regularity of energy non-conserving solutions

Theorem (I., '12)
For every $\alpha<1 / 5$ there exist nontrivial weak solutions to the incompressible Euler equations on $\mathbb{R} \times \mathbb{T}^{3}$ in the class

$$
v \in C_{t, x}^{\alpha} \quad p \in C_{t, x}^{2 \alpha}
$$

that are identically 0 outside of a bounded time interval.

Improved regularity of energy non-conserving solutions

Theorem (I., '12)
For every $\alpha<1 / 5$ there exist nontrivial weak solutions to the incompressible Euler equations on $\mathbb{R} \times \mathbb{T}^{3}$ in the class

$$
v \in C_{t, x}^{\alpha} \quad p \in C_{t, x}^{2 \alpha}
$$

that are identically 0 outside of a bounded time interval.

- Shorter proof, solutions with arbitrary smooth $e(t)=\int|v|^{2}(t, x) d x \geq c>0$
(Buckmaster-De Lellis-Székelyhidi, '13)
- Solutions with compact support in $\Omega \subseteq \mathbb{R} \times \mathbb{R}^{3}$ (I.-Oh, '14)

Main Ideas

New ideas for $1 / 10$ (DeL, Sze)

- Euler Reynolds system
- Nonstationary phase
- Transport term vs. oscillatory term
- Beltrami flows (= special stationary solutions to 3D Euler)

Main Ideas

New ideas for $1 / 10$ (DeL, Sze)

- Euler Reynolds system
- Nonstationary phase
- Transport term vs. oscillatory term
- Beltrami flows (= special stationary solutions to 3D Euler)

$$
\text { New ideas for } 1 / 5 \text { (I.) }
$$

- "Frequency Energy Levels" used to measure Hölder regularity (= sharp estimates)
- Nonlinear phase functions and transport of high frequency fluctuations along the coarse scale flow
- Improved bounds for $D_{t}:=\partial_{t}+v \cdot \nabla$

Main Ideas

New ideas for $1 / 10$ (DeL, Sze)

- Euler Reynolds system
- Nonstationary phase
- Transport term vs. oscillatory term
- Beltrami flows (= special stationary solutions to 3D Euler)

$$
\text { New ideas for } 1 / 5 \text { (I.) }
$$

- "Frequency Energy Levels" used to measure Hölder regularity (= sharp estimates)
- Nonlinear phase functions and transport of high frequency fluctuations along the coarse scale flow
- Improved bounds for $D_{t}:=\partial_{t}+v \cdot \nabla$

Onsager's Conjecture in Weaker Topologies

Can the exponent $1 / 5$ be improved if we weaken the topology?

- (Buckmaster, '13) Solutions in $v \in C_{t, x}^{1 / 5-\epsilon}$ with $v(t, \cdot) \in C^{1 / 3-\epsilon}$ for a.e. t
- (Buckmaster-De Lellis-Székelyhidi, '14) C^{0} solutions in $v \in L_{t}^{1} C_{x}^{1 / 3-\epsilon}$
- (Buckmaster-Masmoudi-Vicol, '16) Solutions with $v \in C_{t} H_{x}^{1 / 3-\epsilon}$

Note: The improvement in regularity is in an averaged sense (in L^{1} or L^{2}), but achieves the Onsager critical exponent $1 / 3-$.
To compare: energy conservation requires $L_{t}^{3} B_{3, c_{0}(\mathbb{N})}^{1 / 3}$.

Main Theorem: A Proof of Onsager's Conjecture

Theorem (I. '16)
For every $\alpha<1 / 3$ there exists a weak solution in the class

$$
v \in C_{t, x}^{\alpha}, \quad p \in C_{t, x}^{2 \alpha}, \quad(t, x) \in \mathbb{R} \times \mathbb{T}^{3}
$$

such that v has nonempty, compact support in time.

Main Theorem: A Proof of Onsager's Conjecture

Theorem (I. '16)
For every $\alpha<1 / 3$ there exists a weak solution in the class

$$
v \in C_{t, x}^{\alpha}, \quad p \in C_{t, x}^{2 \alpha}, \quad(t, x) \in \mathbb{R} \times \mathbb{T}^{3}
$$

such that v has nonempty, compact support in time.
New Ideas:

- Using "Mikado Flows" instead of Beltrami Flows to perform the convex integration method (Daneri-Székelyhidi)
- Difficulty controlling interactions between distinct Mikado flows

Main Theorem: A Proof of Onsager's Conjecture

Theorem (I. '16)
For every $\alpha<1 / 3$ there exists a weak solution in the class

$$
v \in C_{t, x}^{\alpha}, \quad p \in C_{t, x}^{2 \alpha}, \quad(t, x) \in \mathbb{R} \times \mathbb{T}^{3}
$$

such that v has nonempty, compact support in time.
New Ideas:

- Using "Mikado Flows" instead of Beltrami Flows to perform the convex integration method (Daneri-Székelyhidi)
- Difficulty controlling interactions between distinct Mikado flows
- Gluing technique
- Hidden special structure in the linearization of the Euler equations to estimate main terms

Main Theorem: A Proof of Onsager's Conjecture

Theorem (I. '16)
For every $\alpha<1 / 3$ there exists a weak solution in the class

$$
v \in C_{t, x}^{\alpha}, \quad p \in C_{t, x}^{2 \alpha}, \quad(t, x) \in \mathbb{R} \times \mathbb{T}^{3}
$$

such that v has nonempty, compact support in time.

Main Theorem: A Proof of Onsager's Conjecture

Theorem (I. '16)
For every $\alpha<1 / 3$ there exists a weak solution in the class

$$
v \in C_{t, x}^{\alpha}, \quad p \in C_{t, x}^{2 \alpha}, \quad(t, x) \in \mathbb{R} \times \mathbb{T}^{3}
$$

such that v has nonempty, compact support in time.

- (Buck., De L., Szé., Vicol, '17) Solutions in $v \in C_{t, x}^{1 / 3-\epsilon}$ with any, smooth energy profile $\int_{\mathbb{T}^{3}}|v|^{2}(t, x) d x=e(t)>0$.

Main Theorem: A Proof of Onsager's Conjecture

Theorem (I. '16)
For every $\alpha<1 / 3$ there exists a weak solution in the class

$$
v \in C_{t, x}^{\alpha}, \quad p \in C_{t, x}^{2 \alpha}, \quad(t, x) \in \mathbb{R} \times \mathbb{T}^{3}
$$

such that v has nonempty, compact support in time.

- (Buck., De L., Szé., Vicol, '17) Solutions in $v \in C_{t, x}^{1 / 3-\epsilon}$ with any, smooth energy profile $\int_{\mathbb{T}^{3}}|v|^{2}(t, x) d x=e(t)>0$.
- (I., '17) Solutions with borderline endpoint regularity

$$
|v(t, x+\Delta x)-v(t, x)| \lesssim|\Delta x|^{\frac{1}{3}-B \sqrt{\frac{\log \log |\Delta x|^{-1}}{\log |\Delta x|^{-1}}}}, B=4 / 3^{+} .
$$

Outline

Convex Integration for Euler (General Strategy):

- The Euler Reynolds Equations (= Approximate solutions)
- Nonstationary Phase Lemma
- \approx Acceptable errors (high frequency \cdot slowly varying)

Outline

Convex Integration for Euler (General Strategy):

- The Euler Reynolds Equations (= Approximate solutions)
- Nonstationary Phase Lemma
- \approx Acceptable errors (high frequency \cdot slowly varying)
- Mikado flows (Daneri-Székelyhidi)
- Convex integration using Mikado flows
- The difficulty with Mikado flows for Onsager's conjecture
- The Gluing technique
- Deriving the Gluing equations
- Dangerous terms
- Special structure in the equations

Continuous Solutions: The Euler-Reynolds Equations

(De Lellis, Székelyhidi): Consider the Euler-Reynolds equations

$$
\begin{align*}
\partial_{t} v^{\ell}+\nabla_{j}\left(v^{j} v^{\ell}\right)+\nabla^{\ell} p & =\nabla_{j} R^{j \ell} \tag{ER}\\
\nabla_{j} v^{j} & =0
\end{align*}
$$

Continuous Solutions: The Euler-Reynolds Equations

(De Lellis, Székelyhidi): Consider the Euler-Reynolds equations

$$
\begin{align*}
\partial_{t} v^{\ell}+\nabla_{j}\left(v^{j} v^{\ell}\right)+\nabla^{\ell} p & =\nabla_{j} R^{j \ell} \tag{ER}\\
\nabla_{j} v^{j} & =0
\end{align*}
$$

The symmetric tensor $R^{j \ell}$ measures the error from solving Euler.

Continuous Solutions: The Euler-Reynolds Equations

(De Lellis, Székelyhidi): Consider the Euler-Reynolds equations

$$
\begin{align*}
\partial_{t} v^{\ell}+\nabla_{j}\left(v^{j} v^{\ell}\right)+\nabla^{\ell} p & =\nabla_{j} R^{j \ell} \tag{ER}\\
\nabla_{j} v^{j} & =0
\end{align*}
$$

The symmetric tensor $R^{j \ell}$ measures the error from solving Euler. Examples: If (v, p) solves the Euler equations then

- $\left(v_{\epsilon}, p_{\epsilon}, R_{\epsilon}^{j \ell}\right), R_{\epsilon}^{j \ell}=v_{\epsilon}^{j} v_{\epsilon}^{\ell}-\left(v^{j} v^{\ell}\right)_{\epsilon}, v_{\epsilon}^{\ell}=\eta_{\epsilon} * v^{\ell}$
- Corollary: Every continuous incompressible Euler flow (v, p) is the uniform limit of a sequence of Euler-Reynolds flows $\left(v_{q}, p_{q}, R_{q}\right)$ with $\left\|R_{q}\right\|_{C^{0}} \rightarrow 0$ as $q \rightarrow \infty$

Continuous Solutions: The Euler-Reynolds Equations

(De Lellis, Székelyhidi): Consider the Euler-Reynolds equations

$$
\begin{align*}
\partial_{t} v^{\ell}+\nabla_{j}\left(v^{j} v^{\ell}\right)+\nabla^{\ell} p & =\nabla_{j} R^{j \ell} \tag{ER}\\
\nabla_{j} v^{j} & =0
\end{align*}
$$

The symmetric tensor $R^{j \ell}$ measures the error from solving Euler. Examples:

- Any v^{ℓ} that is incompressible and conveserves momentum

$$
\begin{aligned}
\partial_{t} v^{\ell}+\nabla_{j}\left(v^{j} v^{\ell}\right) & =U^{\ell} \\
\int_{\mathbb{T}^{3}} U^{\ell}(t, x) d x & =0 \\
\nabla_{j} R^{j \ell} & =U^{\ell}
\end{aligned}
$$

Continuous Solutions: Convex Integration for Euler

We construct a sequence (v_{q}, p_{q}, R_{q}) indexed by q solving

$$
\begin{align*}
\partial_{t} v_{q}^{\ell}+\nabla_{j}\left(v_{q}^{j} v_{q}^{\ell}\right)+\nabla^{\ell} p_{q} & =\nabla_{j} R_{q}^{j \ell} \tag{ERq}\\
\nabla_{j} v_{q}^{j} & =0
\end{align*}
$$

where $v_{q+1}=v_{q}+V_{q}, p_{q+1}=p_{q}+P_{q}$ solve (ERq+1$)$ with much smaller $\left|R_{q+1}\right| \ll\left|R_{q}\right|^{1+\delta}$

Continuous Solutions: Convex Integration for Euler

We construct a sequence (v_{q}, p_{q}, R_{q}) indexed by q solving

$$
\begin{align*}
\partial_{t} v_{q}^{\ell}+\nabla_{j}\left(v_{q}^{j} v_{q}^{\ell}\right)+\nabla^{\ell} p_{q} & =\nabla_{j} R_{q}^{j \ell} \tag{ERq}\\
\nabla_{j} v_{q}^{j} & =0
\end{align*}
$$

where $v_{q+1}=v_{q}+V_{q}, p_{q+1}=p_{q}+P_{q}$ solve (ERq+1$)$ with

$$
\text { much smaller }\left|R_{q+1}\right| \ll\left|R_{q}\right|^{1+\delta}
$$

In the limit as $q \rightarrow \infty$, we get continuous solutions

$$
\left\|R_{q}\right\|_{C^{0}} \rightarrow 0, \quad\left|V_{q}\right| \sim\left|R_{q}\right|^{1 / 2}, \quad\left|P_{q}\right| \sim\left|R_{q}\right|
$$

Continuous Solutions: Convex Integration for Euler

Start with any smooth solution to Euler-Reynolds on $\mathbb{R} \times \mathbb{T}^{3}$

$$
\begin{aligned}
\partial_{t} v^{\ell}+\nabla_{j}\left(v^{j} v^{\ell}\right)+\nabla^{\ell} p & =\nabla_{j} R^{j \ell} \\
\nabla_{j} v^{j} & =0
\end{aligned}
$$

and add high-frequency corrections

$$
v_{1}=v+V, \quad p_{1}=p+P
$$

which are designed to "get rid of" $R^{j \ell}$.

Continuous Solutions: Convex Integration for Euler

Get new solutions $v_{1}=v+V, p_{1}=p+P$ to Euler-Reynolds

$$
\begin{aligned}
\partial_{t} v_{1}^{\ell}+\nabla_{j}\left(v_{1}^{j} v_{1}^{\ell}\right)+\nabla^{\ell} p_{1} & =\nabla_{j} R_{1}^{j \ell} \\
\nabla_{j} v_{1}^{j} & =0
\end{aligned}
$$

with $\left\|R_{1}\right\|_{C_{t, x}^{0}}$ much smaller than $\|R\|_{C_{t, x}^{0}}$.

Continuous Solutions: Convex Integration for Euler

The corrected $v_{1}=v+V, p_{1}=p+P$ satisfy

$$
\begin{aligned}
\partial_{t} v_{1}^{\ell}+\nabla_{j}\left(v_{1}^{j} v_{1}^{\ell}\right)+\nabla^{\ell} p_{1} & =\partial_{t} V^{\ell}+\ldots+\nabla_{j}\left(V^{j} V^{\ell}+P \delta^{j \ell}+R^{j \ell}\right) \\
& =\text { not in the form } \nabla_{j} R_{1}^{j \ell} \\
\nabla_{j} v_{1}^{j} & =0
\end{aligned}
$$

Continuous Solutions: Convex Integration for Euler

The corrected $v_{1}=v+V, p_{1}=p+P$ satisfy

$$
\begin{aligned}
\partial_{t} v_{1}^{\ell}+\nabla_{j}\left(v_{1}^{j} v_{1}^{\ell}\right)+\nabla^{\ell} p_{1} & =\partial_{t} V^{\ell}+\ldots+\nabla_{j}\left(V^{j} V^{\ell}+P \delta^{j \ell}+R^{j \ell}\right) \\
& =\text { not in the form } \nabla_{j} R_{1}^{j \ell} \\
\nabla_{j} v_{1}^{j} & =0
\end{aligned}
$$

so we will have to solve a divergence equation:
$\nabla_{j} R_{1}^{j \ell}=\partial_{t} V^{\ell}+\nabla_{j}\left(v^{j} V^{\ell}\right)+\nabla_{j}\left(V^{j} v^{\ell}\right)+\nabla_{j}\left(V^{j} V^{\ell}+P \delta^{j \ell}+R^{j \ell}\right)$
to define R_{1}.

Continuous Solutions: Convex Integration for Euler

The corrected $v_{1}=v+V, p_{1}=p+P$ satisfy

$$
\begin{aligned}
\partial_{t} v_{1}^{\ell}+\nabla_{j}\left(v_{1}^{j} v_{1}^{\ell}\right)+\nabla^{\ell} p_{1} & =\partial_{t} V^{\ell}+\ldots+\nabla_{j}\left(V^{j} V^{\ell}+P \delta^{j \ell}+R^{j \ell}\right) \\
& =\text { not in the form } \nabla_{j} R_{1}^{j \ell} \\
\nabla_{j} v_{1}^{j} & =0
\end{aligned}
$$

so we will have to solve a divergence equation:
$\nabla_{j} R_{1}^{j \ell}=\partial_{t} V^{\ell}+\nabla_{j}\left(v^{j} V^{\ell}\right)+\nabla_{j}\left(V^{j} v^{\ell}\right)+\nabla_{j}\left(V^{j} V^{\ell}+P \delta^{j \ell}+R^{j \ell}\right)$
to define R_{1}.
The new error $\left\|R_{1}\right\|_{C^{0}}$ will only be small when V and P are very oscillatory and are designed carefully depending on the given v^{ℓ} and $R^{j \ell}$.

The Error terms

Let (v, p, R) be a smooth solution to Euler-Reynolds.

$$
\partial_{t} v^{\ell}+\nabla_{j}\left(v^{j} v^{\ell}\right)+\nabla^{\ell} p=\nabla_{j} R^{j \ell}
$$

Then $v_{1}=v+V$ and $p_{1}=p+P$ satisfy

$$
\begin{aligned}
\partial_{t} v_{1}^{\ell}+\nabla_{j}\left(v_{1}^{j} v_{1}^{\ell}\right)+\nabla^{\ell} p_{1} & =\partial_{t} V^{\ell}+\nabla_{j}\left(v^{j} V^{\ell}\right)+\nabla_{j}\left(V^{j} v^{\ell}\right) \\
& +\nabla_{j}\left(V^{j} V^{\ell}+P \delta^{j \ell}+R^{j \ell}\right) \\
\text { want } & =\nabla_{j} R_{1}^{j \ell} \\
\text { with }\left\|R_{1}\right\|_{C^{0}} & \lesssim \lambda^{-1}
\end{aligned}
$$

where V^{ℓ} oscillates at large frequency λ.

The Error terms

We name the terms as follows

Transport term:

$$
\nabla_{j} R_{T}^{j \ell}=\partial_{t} V^{\ell}+\nabla_{j}\left(v^{j} V^{\ell}\right)+\nabla_{j}\left(V^{j} v^{\ell}\right)
$$

Stress term:

$$
\nabla_{j} R_{S}^{j \ell}=\operatorname{LFreq}\left[\nabla_{j}\left(V^{j} V^{\ell}+P \delta^{j \ell}+R^{j \ell}\right)\right]
$$

High-Frequency Interference terms:

$$
\nabla_{j} R_{H}^{j \ell}=\operatorname{HFreq}\left[\nabla_{j}\left(V^{j} V^{\ell}+P \delta^{j \ell}\right)\right]
$$

Each one of R_{T}, R_{S} and R_{H} must be $\left\|R_{1}\right\|_{C^{0}} \lesssim \lambda^{-1}$.

The Error terms

We name the terms as follows

Transport term:

$$
\nabla_{j} R_{T}^{j \ell}=\partial_{t} V^{\ell}+\nabla_{j}\left(v_{\epsilon}^{j} V^{\ell}\right)+\nabla_{j}\left(V^{j} v_{\epsilon}^{\ell}\right)
$$

Stress term:

$$
\nabla_{j} R_{S}^{j \ell}=\operatorname{LFreq}\left[\nabla_{j}\left(V^{j} V^{\ell}+P \delta^{j \ell}+R_{\epsilon}^{j \ell}\right)\right]
$$

High-Frequency Interference terms:

$$
\nabla_{j} R_{H}^{j \ell}=\operatorname{HFreq}\left[\nabla_{j}\left(V^{j} V^{\ell}+P \delta^{j \ell}\right)\right]
$$

Each one of R_{T}, R_{S} and R_{H} must be $\left\|R_{1}\right\|_{C^{0}} \lesssim \lambda^{-1}$.
(There is also another term involving errors from mollifying $v \mapsto v_{\epsilon}$ and $R \mapsto R_{\epsilon}$ that we are neglecting here.)

The High-Frequency Correction

The correction V^{ℓ} is a high-frequency, divergence free wave. For example, in (I., '12), it has the form

$$
\begin{aligned}
V^{\ell} & =\sum_{I} e^{i \lambda \xi_{I}} v_{I}^{\ell}+\delta V^{\ell} \\
\nabla_{\ell} V^{\ell} & =0 \quad\left(\text { by choice of small } \delta V^{\ell}\right) \\
\left(\partial_{t}+v_{\epsilon}^{j} \nabla_{j}\right) \xi_{I} & =0 \quad(\Rightarrow \text { nonlinear phase functions }) \\
\nabla \times\left(e^{i \lambda \xi_{I}} v_{I}\right) & \approx \lambda e^{i \lambda \xi_{I}} v_{I} \quad\left(\text { by taking }\left(i \nabla \xi_{I}\right) \times v_{I} \approx v_{I}\right)
\end{aligned}
$$

The High-Frequency Correction

The correction V^{ℓ} is a high-frequency, divergence free wave. For example, in (I., '12), it has the form

$$
\begin{aligned}
V^{\ell} & =\sum_{I} e^{i \lambda \xi_{I}} v_{I}^{\ell}+\delta V^{\ell} \\
\nabla_{\ell} V^{\ell} & =0 \quad\left(\text { by choice of small } \delta V^{\ell}\right) \\
\left(\partial_{t}+v_{\epsilon}^{j} \nabla_{j}\right) \xi_{I} & =0 \quad(\Rightarrow \text { nonlinear phase functions }) \\
\nabla \times\left(e^{i \lambda \xi_{I}} v_{I}\right) & \approx \lambda e^{i \lambda \xi_{I}} v_{I} \quad\left(\text { by taking }\left(i \nabla \xi_{I}\right) \times v_{I} \approx v_{I}\right)
\end{aligned}
$$

The High-Frequency Correction

The correction V^{ℓ} is a high-frequency, divergence free wave. For example, in (I., '12), it has the form

$$
\begin{aligned}
V^{\ell} & =\sum_{I} e^{i \lambda \xi_{I}} v_{I}^{\ell}+\delta V^{\ell} \\
\nabla_{\ell} V^{\ell} & =0 \quad\left(\text { by choice of small } \delta V^{\ell}\right) \\
\left(\partial_{t}+v_{\epsilon}^{j} \nabla_{j}\right) \xi_{I} & =0 \quad(\Rightarrow \text { nonlinear phase functions }) \\
\nabla \times\left(e^{i \lambda \xi_{I}} v_{I}\right) & \approx \lambda e^{i \lambda \xi_{I}} v_{I} \quad\left(\text { by taking }\left(i \nabla \xi_{I}\right) \times v_{I} \approx v_{I}\right)
\end{aligned}
$$

The last condition makes V^{ℓ} approximate a Beltrami flow ($\nabla \times V \approx \lambda V$), which are special stationary solutions to 3D Euler. It is used to control

$$
\nabla_{j} R_{H}^{j \ell}=\operatorname{HFreq}\left[\nabla_{j}\left(V^{j} V^{\ell}+P \delta^{j \ell}\right)\right]
$$

The High-Frequency Correction

The correction V^{ℓ} is a high-frequency, divergence free wave. For example, in (I., '12), it has the form

$$
\begin{aligned}
V^{\ell} & =\sum_{I} e^{i \lambda \xi_{I}} v_{I}^{\ell}+\delta V^{\ell} \\
\nabla_{\ell} V^{\ell} & =0 \quad\left(\text { by choice of small } \delta V^{\ell}\right) \\
\left(\partial_{t}+v_{\epsilon}^{j} \nabla_{j}\right) \xi_{I} & =0 \quad(\Rightarrow \text { nonlinear phase functions }) \\
\nabla \times\left(e^{i \lambda \xi_{I}} v_{I}\right) & \approx \lambda e^{i \lambda \xi_{I}} v_{I} \quad\left(\text { by taking }\left(i \nabla \xi_{I}\right) \times v_{I} \approx v_{I}\right)
\end{aligned}
$$

The last condition makes V^{ℓ} approximate a Beltrami flow ($\nabla \times V \approx \lambda V$), which are special stationary solutions to 3D Euler. It is used to control

$$
\nabla_{j} R_{H}^{j \ell}=\operatorname{HFreq}\left[\nabla_{j}\left(V^{j} V^{\ell}+P \delta^{j \ell}\right)\right]
$$

The Error terms again

Each one of R_{T}, R_{S} and R_{H} must have size $\left\|R_{1}\right\|_{C^{0}} \lesssim \lambda^{-1}$, and requires solving a divergence equation:

Transport term:

$$
\nabla_{j} R_{T}^{j \ell}=\partial_{t} V^{\ell}+\nabla_{j}\left(v_{\epsilon}^{j} V^{\ell}\right)+\nabla_{j}\left(V^{j} v_{\epsilon}^{\ell}\right)
$$

Stress term:

$$
\nabla_{j} R_{S}^{j \ell}=\operatorname{LFreq}\left[\nabla_{j}\left(V^{j} V^{\ell}+P \delta^{j \ell}+R_{\epsilon}^{j \ell}\right)\right]
$$

High-Frequency Interference terms:

$$
\nabla_{j} R_{H}^{j \ell}=\operatorname{HFreq}\left[\nabla_{j}\left(V^{j} V^{\ell}+P \delta^{j \ell}\right)\right]
$$

Nonstationary phase

Lemma (Nonstationary Phase Lemma)

Suppose $u^{\ell}(x)$ and $\xi(x)$ are smooth functions on \mathbb{T}^{3} and

$$
\begin{aligned}
U^{\ell}(x ; \lambda) & =e^{i \lambda \xi(x)} u^{\ell}(x) \\
\left\||\nabla \xi|^{-1}\right\|_{C^{0}} & \leq A, \quad \int_{\mathbb{T}^{3}} U^{\ell}(x) d x=0
\end{aligned}
$$

Then U^{ℓ} is very small in C^{-1}. That is, we can solve

$$
\begin{aligned}
\nabla_{j} R^{j \ell} & =e^{i \lambda \xi(x)} u^{\ell}(x) \\
\left\|R^{j \ell}\right\|_{C^{0}} & \lesssim \lambda^{-1}
\end{aligned}
$$

The implicit constant depends on A and C^{k} norms of $\nabla \xi, u^{\ell}$

Nonstationary phase

Lemma (Nonstationary Phase Lemma)

Suppose $u^{\ell}(x)$ and $\xi(x)$ are smooth functions on \mathbb{T}^{3} and

$$
\begin{aligned}
U^{\ell}(x ; \lambda) & =e^{i \lambda \xi(x)} u^{\ell}(x) \\
\left\||\nabla \xi|^{-1}\right\|_{C^{0}} & \leq A, \quad \int_{\mathbb{T}^{3}} U^{\ell}(x) d x=0
\end{aligned}
$$

Then U^{ℓ} is very small in C^{-1}. That is, we can solve

$$
\begin{aligned}
\nabla_{j} R^{j \ell} & =e^{i \lambda \xi(x)} u^{\ell}(x) \\
\left\|R^{j \ell}\right\|_{C^{0}} & \lesssim \lambda^{-1}
\end{aligned}
$$

The implicit constant depends on A and C^{k} norms of $\nabla \xi, u^{\ell}$

Nonstationary phase

Lemma (Nonstationary Phase Lemma)

Suppose $u^{\ell}(x)$ and $\xi(x)$ are smooth functions on \mathbb{T}^{3} and

$$
\begin{aligned}
U^{\ell}(x ; \lambda) & =e^{i \lambda \xi(x)} u^{\ell}(x) \\
\left\||\nabla \xi|^{-1}\right\|_{C^{0}} & \leq A, \quad \int_{\mathbb{T}^{3}} U^{\ell}(x) d x=0
\end{aligned}
$$

Then U^{ℓ} is very small in C^{-1}. That is, we can solve

$$
\begin{aligned}
\nabla_{j} R^{j \ell} & =e^{i \lambda \xi(x)} u^{\ell}(x) \\
\left\|R^{j \ell}\right\|_{C^{0}} & \lesssim \lambda^{-1}
\end{aligned}
$$

The implicit constant depends on A and C^{k} norms of $\nabla \xi, u^{\ell}$

Nonstationary phase Lemma: Cartoon Proof

In 1D, we want to solve

$$
\begin{aligned}
\operatorname{div} R(x)=\frac{d R}{d x} & =e^{i \lambda \xi(x)} u(x) \\
\Rightarrow R(x) & =\int_{0}^{x} e^{i \lambda \xi(X)} u(X) d X \\
& =\int_{0}^{x} \frac{1}{i \lambda \xi^{\prime}(X)} \frac{d}{d X}\left(e^{i \lambda \xi(X)}\right) u(X) d X \\
=\left.\frac{u(X) e^{i \lambda \xi(X)}}{i \lambda \nabla \xi(X)}\right|_{X=0} ^{X=x} & -\frac{1}{i \lambda} \int_{0}^{x} e^{i \lambda \xi(X)} \frac{d}{d X}\left(\frac{1}{\nabla \xi(X)} u(X)\right) d X
\end{aligned}
$$

Using $\left\||\nabla \xi|^{-1}\right\|_{C^{0}} \leq A$, the solution has size $\|R\|_{C^{0}} \lesssim \lambda^{-1}$.

Nonstationary phase Lemma: Cartoon Proof

In 1D, we want to solve

$$
\begin{aligned}
\operatorname{div} R(x)=\frac{d R}{d x} & =e^{i \lambda \xi(x)} u(x) \\
\Rightarrow R(x) & =\int_{0}^{x} e^{i \lambda \xi(X)} u(X) d X \\
& =\int_{0}^{x} \frac{1}{i \lambda \xi^{\prime}(X)} \frac{d}{d X}\left(e^{i \lambda \xi(X)}\right) u(X) d X \\
=\left.\frac{u(X) e^{i \lambda \xi(X)}}{i \lambda \nabla \xi(X)}\right|_{X=0} ^{X=x} & -\frac{1}{i \lambda} \int_{0}^{x} e^{i \lambda \xi(X)} \frac{d}{d X}\left(\frac{1}{\nabla \xi(X)} u(X)\right) d X
\end{aligned}
$$

Using $\left\||\nabla \xi|^{-1}\right\|_{C^{0}} \leq A$, the solution has size $\|R\|_{C^{0}} \lesssim \lambda^{-1}$.

Nonstationary phase: Proof

Proof: To solve $\nabla_{j} R^{j \ell}=e^{i \lambda \xi(x)} u^{\ell}(x)$, write

$$
\begin{align*}
e^{i \lambda \xi(x)} u^{\ell}(x) & =\nabla_{j}\left(\frac{1}{\lambda} e^{i \lambda \xi(x)} q^{j \ell}(x)\right)+\nabla_{j} \check{R}^{j \ell} \\
i \nabla_{j} \xi q^{j \ell}(x) & =u^{\ell}(x), \quad q^{j \ell} \in C^{\infty}\left(\mathbb{T}^{3} ; \mathbb{R}^{3} \otimes \mathbb{R}^{3}\right) \tag{12}\\
\nabla_{j} \check{R}^{j \ell} & =-\frac{1}{\lambda} e^{i \lambda \xi(x)} \nabla_{j} q^{j \ell}(x) \tag{13}
\end{align*}
$$

Equation (12) is solved pointwise and leads to a bound

$$
\left\|q^{j \ell}\right\|_{C^{0}} \lesssim\left\||\nabla \xi|^{-1}\right\|_{C^{0}}\left\|u^{\ell}\right\|_{C^{0}}
$$

Nonstationary phase: Proof

Proof: To solve $\nabla_{j} R^{j \ell}=e^{i \lambda \xi(x)} u^{\ell}(x)$, write

$$
\begin{align*}
e^{i \lambda \xi(x)} u^{\ell}(x) & =\nabla_{j}\left(\frac{1}{\lambda} e^{i \lambda \xi(x)} q^{j \ell}(x)\right)+\nabla_{j} \check{R}^{j \ell} \\
i \nabla_{j} \xi q^{j \ell}(x) & =u^{\ell}(x), \quad q^{j \ell} \in C^{\infty}\left(\mathbb{T}^{3} ; \mathbb{R}^{3} \otimes \mathbb{R}^{3}\right) \tag{12}\\
\nabla_{j} \check{R}^{j \ell} & =-\frac{1}{\lambda} e^{i \lambda \xi(x)} \nabla_{j} q^{j \ell}(x) \tag{13}
\end{align*}
$$

Equation (12) is solved pointwise and leads to a bound

$$
\left\|q^{j \ell}\right\|_{C^{0}} \lesssim\left\||\nabla \xi|^{-1}\right\|_{C^{0}}\left\|u^{\ell}\right\|_{C^{0}}
$$

We can solve (13) because $\int_{\mathbb{T}^{3}} e^{i \lambda \xi(x)} u^{\ell}(x) d x=0$.
The solution satisfies $\left\|\check{R}^{j \ell}\right\|_{C^{0}} \lesssim \lambda^{-1}$.

Nonstationary phase 2

In order to use Mikado flows:
Lemma (Generalized Nonstationary Phase, Daneri-Székelyhidi)
Suppose $u^{\ell}(x)$ and $\omega(x) \in C^{\infty}\left(\mathbb{T}^{3}\right)$ and $\Gamma \in C^{\infty}\left(\mathbb{T}^{3} ; \mathbb{T}^{3}\right)$

$$
\begin{aligned}
U^{\ell}(x ; \lambda) & =\omega(\lambda \Gamma(x)) u^{\ell}(x) \\
\left\|(\nabla \Gamma)^{-1}\right\|_{C^{0}} \leq A & \quad \int_{\mathbb{T}^{3}} U^{\ell}(x) d x=0 \\
\int_{\mathbb{T}^{3}} \omega(X) d X & =0
\end{aligned}
$$

Then U^{ℓ} is very small in C^{-1}. That is, we can solve

$$
\begin{aligned}
\nabla_{j} R^{j \ell} & =\underbrace{\omega(\lambda \Gamma(x))}_{\text {fast }} \underbrace{u^{\ell}(x)}_{\text {slow }} \\
\left\|R^{j \ell}\right\|_{C^{0}} & \lesssim \lambda^{-1}
\end{aligned}
$$

Nonstationary phase 2

In order to use Mikado flows:
Lemma (Generalized Nonstationary Phase, Daneri-Székelyhidi)
Suppose $u^{\ell}(x)$ and $\omega(x) \in C^{\infty}\left(\mathbb{T}^{3}\right)$ and $\Gamma \in C^{\infty}\left(\mathbb{T}^{3} ; \mathbb{T}^{3}\right)$

$$
\begin{aligned}
U^{\ell}(x ; \lambda) & =\omega(\lambda \Gamma(x)) u^{\ell}(x) \\
\left\|(\nabla \Gamma)^{-1}\right\|_{C^{0}} \leq A, & \quad \int_{\mathbb{T}^{3}} U^{\ell}(x) d x=0 \\
\int_{\mathbb{T}^{3}} \omega(X) d X & =0
\end{aligned}
$$

Then U^{ℓ} is very small in C^{-1}. That is, we can solve

$$
\begin{aligned}
\nabla_{j} R^{j \ell} & =\underbrace{\omega(\lambda \Gamma(x))}_{\text {fast }} \underbrace{u^{\ell}(x)}_{\text {slow }} \\
\left\|R^{j \ell}\right\|_{C^{0}} & \lesssim \lambda^{-1}
\end{aligned}
$$

Nonstationary phase 2

In order to use Mikado flows:
Lemma (Generalized Nonstationary Phase, Daneri-Székelyhidi)
Suppose $u^{\ell}(x)$ and $\omega(x) \in C^{\infty}\left(\mathbb{T}^{3}\right)$ and $\Gamma \in C^{\infty}\left(\mathbb{T}^{3} ; \mathbb{T}^{3}\right)$

$$
\begin{aligned}
U^{\ell}(x ; \lambda) & =\omega(\lambda \Gamma(x)) u^{\ell}(x) \\
\left\|(\nabla \Gamma)^{-1}\right\|_{C^{0}} \leq A & \quad \int_{\mathbb{T}^{3}} U^{\ell}(x) d x=0 \\
\int_{\mathbb{T}^{3}} \omega(X) d X & =0
\end{aligned}
$$

Then U^{ℓ} is very small in C^{-1}. That is, we can solve

$$
\begin{aligned}
\nabla_{j} R^{j \ell} & =\underbrace{\omega(\lambda \Gamma(x))}_{\text {fast }} \underbrace{u^{\ell}(x)}_{\text {slow }} \\
\left\|R^{j \ell}\right\|_{C^{0}} & \lesssim \lambda^{-1}
\end{aligned}
$$

Nonstationary phase 2: Proof outline

To solve $\nabla_{j} R^{j \ell}=\omega(\lambda \Gamma(x)) u^{\ell}(x)$, write (using $\int_{\mathbb{T}^{3}} \omega(X) d X=0$)

$$
\begin{equation*}
\omega(\lambda \Gamma(x)) u^{\ell}(x)=\sum_{m \neq 0} \hat{\omega}(m) e^{i \lambda m \cdot \Gamma(x)} u^{\ell}(x) \tag{14}
\end{equation*}
$$

Nonstationary phase 2: Proof outline

To solve $\nabla_{j} R^{j \ell}=\omega(\lambda \Gamma(x)) u^{\ell}(x)$, write (using $\int_{\mathbb{T}^{3}} \omega(X) d X=0$)

$$
\begin{equation*}
\omega(\lambda \Gamma(x)) u^{\ell}(x)=\sum_{m \neq 0} \hat{\omega}(m) e^{i \lambda m \cdot \Gamma(x)} u^{\ell}(x) \tag{14}
\end{equation*}
$$

Can apply the previous Lemma if we have nonstationary phase functions, which requires

$$
\left\|(\nabla \Gamma)^{-1}\right\|_{C^{0}} \leq A \Rightarrow|\nabla(m \cdot \Gamma)|^{-1} \leq A|m|^{-1}
$$

Applying the Nonstationary Phase Lemma gives a solution with

$$
\left\|R^{j \ell}\right\|_{C^{0}} \lesssim \lambda^{-1}
$$

Motivation for Mikado flows

Theorem (Daneri-Székelyhidi, '16)
For every smooth Euler-Reynolds flow (\bar{v}, p, R) with

$$
\begin{equation*}
-R^{j \ell} \geq c \delta^{j \ell}, \quad c>0 \tag{15}
\end{equation*}
$$

there exist weak solutions to Euler in $v_{(k)} \in C_{t, x}^{1 / 5-\epsilon}$ such that

$$
\begin{align*}
v_{(k)}^{\ell} & \rightharpoonup \bar{v}^{\ell} \quad \text { in } L_{t, x}^{\infty} \tag{16}\\
v_{(k)}^{j} v_{(k)}^{\ell}-\bar{v}^{j} \bar{v}^{\ell} & \rightharpoonup R^{j \ell} \quad \text { in } L_{t, x}^{\infty} \quad \text { as } k \rightarrow \infty \tag{17}
\end{align*}
$$

Motivation for Mikado flows

Theorem (Daneri-Székelyhidi, '16)
For every smooth Euler-Reynolds flow (\bar{v}, p, R) with

$$
\begin{equation*}
-R^{j \ell} \geq c \delta^{j \ell}, \quad c>0 \tag{15}
\end{equation*}
$$

there exist weak solutions to Euler in $v_{(k)} \in C_{t, x}^{1 / 5-\epsilon}$ such that

$$
\begin{align*}
v_{(k)}^{\ell} & \rightharpoonup \bar{v}^{\ell} \quad \text { in } L_{t, x}^{\infty} \tag{16}\\
v_{(k)}^{j} v_{(k)}^{\ell}-\bar{v}^{j} \bar{v}^{\ell} & \rightharpoonup R^{j \ell} \quad \text { in } L_{t, x}^{\infty} \quad \text { as } k \rightarrow \infty \tag{17}
\end{align*}
$$

With Beltrami flows, would require $R^{j \ell}=-a(t, x)\left(\delta^{j \ell}+\right.$ small $)$.
To overcome this restriction, they introduce a different family of stationary solutions to Euler ("Mikado flows") that provide more algebraic flexibility to achieve an arbitrary stress $R^{j \ell}$.

Elementary Mikado flows on \mathbb{T}^{3}

Fix a constant integer vector $f^{\ell} \in \mathbb{Z}^{3}$ and define for $X \in \mathbb{T}^{3}$

$$
W^{\ell}(X)=f^{\ell} \psi_{f}(X), \quad \psi_{f} \in C^{\infty}\left(\mathbb{T}^{3}\right)
$$

Elementary Mikado flows on \mathbb{T}^{3}

Fix a constant integer vector $f^{\ell} \in \mathbb{Z}^{3}$ and define for $X \in \mathbb{T}^{3}$

$$
W^{\ell}(X)=f^{\ell} \psi_{f}(X), \quad \psi_{f} \in C^{\infty}\left(\mathbb{T}^{3}\right)
$$

We choose ψ_{f} whose level surfaces are concentric cylinders with an axis pointed in the f^{ℓ} direction. With this choice we have

$$
\nabla_{\ell} \psi_{f}(X) f^{\ell}=0 \quad \Leftarrow \text { orthogonality }
$$

Then $W^{\ell}(X)$ is a stationary Euler flow with 0 pressure:

$$
\begin{aligned}
\nabla_{\ell} W^{\ell}(X) & =0 \\
\nabla_{j}\left(W^{j} W^{\ell}(X)\right) & =\nabla_{j}\left(\psi_{f}^{2}(X) f^{j} f^{\ell}\right)
\end{aligned}
$$

Elementary Mikado flows on \mathbb{T}^{3}

Fix a constant integer vector $f^{\ell} \in \mathbb{Z}^{3}$ and define for $X \in \mathbb{T}^{3}$

$$
W^{\ell}(X)=f^{\ell} \psi_{f}(X), \quad \psi_{f} \in C^{\infty}\left(\mathbb{T}^{3}\right)
$$

We choose ψ_{f} whose level surfaces are concentric cylinders with an axis pointed in the f^{ℓ} direction. With this choice we have

$$
\nabla_{\ell} \psi_{f}(X) f^{\ell}=0 \quad \Leftarrow \text { orthogonality }
$$

Then $W^{\ell}(X)$ is a stationary Euler flow with 0 pressure:

$$
\begin{aligned}
\nabla_{\ell} W^{\ell}(X) & =0 \\
\nabla_{j}\left(W^{j} W^{\ell}(X)\right) & =2 \psi_{f}(X) \nabla_{j} \psi_{f}(X) f^{j} f^{\ell}
\end{aligned}
$$

Elementary Mikado flows on \mathbb{T}^{3}

Fix a constant integer vector $f^{\ell} \in \mathbb{Z}^{3}$ and define for $X \in \mathbb{T}^{3}$

$$
W^{\ell}(X)=f^{\ell} \psi_{f}(X), \quad \psi_{f} \in C^{\infty}\left(\mathbb{T}^{3}\right)
$$

We choose ψ_{f} whose level surfaces are concentric cylinders with an axis pointed in the f^{ℓ} direction. With this choice we have

$$
\nabla_{\ell} \psi_{f}(X) f^{\ell}=0 \quad \Leftarrow \text { orthogonality }
$$

Then $W^{\ell}(X)$ is a stationary Euler flow with 0 pressure:

$$
\begin{aligned}
\nabla_{\ell} W^{\ell}(X) & =0 \\
\nabla_{j}\left(W^{j} W^{\ell}(X)\right) & =0
\end{aligned}
$$

Elementary Mikado flows on \mathbb{T}^{3}

Fix a constant integer vector $f^{\ell} \in \mathbb{Z}^{3}$ and define for $X \in \mathbb{T}^{3}$

$$
W^{\ell}(X)=f^{\ell} \psi_{f}(X), \quad \psi_{f} \in C^{\infty}\left(\mathbb{T}^{3}\right)
$$

In addition to $\nabla_{j} \psi_{f}(X) f^{j}=0$, we require that

$$
\begin{equation*}
\int_{\mathbb{T}^{3}} \psi_{f}(X) d X=0, \quad \int_{\mathbb{T}^{3}} \psi_{f}^{2}(X) d X=1 \tag{18}
\end{equation*}
$$

With these choices, we have:

$$
\begin{equation*}
\underbrace{\int_{\mathbb{T}^{3}} W^{\ell}(X) d X=0}_{\text {Oscillation }}, \quad \underbrace{\int_{\mathbb{T}^{3}} W^{j} W^{\ell}(X) d X=f^{j} f^{\ell}}_{\text {Nontrivial low-frequency part }} \tag{19}
\end{equation*}
$$

Elementary Mikado flows on \mathbb{T}^{3}

More generally, fix a finite set $\mathbb{F} \subseteq \mathbb{Z}^{3}$ and coefficients γ_{f} and set

$$
\begin{aligned}
W^{\ell}(X) & =\sum_{f \in \mathbb{F}} \gamma_{f} \psi_{f}(X) f^{\ell} \\
\operatorname{supp} \psi_{f} \cap \operatorname{supp} \psi_{f^{\prime}} & =\emptyset, \quad \text { if } f \neq f^{\prime} \in \mathbb{F}
\end{aligned}
$$

We still have $\nabla_{\ell} W^{\ell}=0, \nabla_{j}\left(W^{j} W^{\ell}\right)=0$ and $\int_{\mathbb{T}^{3}} W^{\ell}(X) d X=0$, but now

$$
\int_{\mathbb{T}^{3}} W^{j} W^{\ell}(X) d X=\sum_{f \in \mathbb{F}} \gamma_{f}^{2} f^{j} f^{\ell}
$$

can be an arbitrary, positive definite tensor.

Designing a wave with Mikado flows

Using these flows, we design our high-frequency wave V^{ℓ} as follows. At time $t=0$ it looks like

$$
V^{\ell}(0, x)=\sum_{f \in \mathbb{F}} \underbrace{\gamma_{f}(0, x)}_{\text {slow }} f^{\ell} \underbrace{\psi_{f}(\lambda x)}_{\text {fast }}+\underbrace{\delta V^{\ell}}_{\text {small }}
$$

Designing a wave with Mikado flows

Using these flows, we design our high-frequency wave V^{ℓ} as follows. At time $t=0$ it looks like

$$
V^{\ell}(0, x)=\sum_{f \in \mathbb{F}} \underbrace{\gamma_{f}(0, x)}_{\text {slow }} f^{\ell} \underbrace{\psi_{f}(\lambda x)}_{\text {fast }}+\underbrace{\delta V^{\ell}}_{\text {small }}
$$

At nonzero times, it has the form:

$$
\begin{gathered}
V^{\ell}(t, x)=\sum_{f \in \mathbb{F}} \gamma_{f}(t, x) \underbrace{\tilde{f}^{\ell}(t, x)}_{\text {slow }} \psi_{f}(\lambda \underbrace{\Gamma(t, x)}_{\text {slow }})+\delta V^{\ell} \\
\left(\partial_{t}+v_{\epsilon} \cdot \nabla\right) \Gamma(t, x)=0, \quad \Gamma(0, x)=x
\end{gathered}
$$

Designing a wave with Mikado flows

The vector field \tilde{f}^{ℓ} satisfies

$$
\begin{aligned}
& V^{\ell}(t, x)=\sum_{f \in \mathbb{F}} \gamma_{f}(t, x) \tilde{f}^{\ell}(t, x) \psi_{f}(\lambda \Gamma(t, x))+\delta V^{\ell} \\
& \quad \tilde{f}^{\ell}=\left(\nabla \Gamma^{-1}\right)_{a}^{\ell} f^{a} \\
& \Rightarrow \tilde{f}^{\ell} \nabla_{\ell}\left[\psi_{f}(\lambda \Gamma(t, x))\right]=0, \quad \text { since } f^{a} \nabla_{a} \psi_{f}=0
\end{aligned}
$$

Designing a wave with Mikado flows

The vector field \tilde{f}^{ℓ} satisfies

$$
\begin{aligned}
& V^{\ell}(t, x)=\sum_{f \in \mathbb{F}} \gamma_{f}(t, x) \tilde{f}^{\ell}(t, x) \psi_{f}(\lambda \Gamma(t, x))+\delta V^{\ell} \\
& \quad \tilde{f}^{\ell}=\left(\nabla \Gamma^{-1}\right)_{a}^{\ell} f^{a} \\
& \Rightarrow \tilde{f}^{\ell} \nabla_{\ell} {\left[\psi_{f}(\lambda \Gamma(t, x))\right]=0, \quad \text { since } f^{a} \nabla_{a} \psi_{f}=0 }
\end{aligned}
$$

We can then make V^{ℓ} divergence free by solving

$$
\begin{gathered}
\nabla_{\ell} V^{\ell}=0=\sum_{f \in \mathbb{F}} \underbrace{\nabla_{\ell}\left[\gamma_{f}(t, x) \tilde{f}^{\ell}(t, x)\right]}_{\text {slow }} \underbrace{\psi_{f}(\lambda \Gamma(t, x))}_{\text {fast }}+\nabla_{\ell} \delta V^{\ell} \\
\Rightarrow\left\|\delta V^{\ell}\right\|_{C^{0}} \lesssim \lambda^{-1} \quad \text { (starting now we will neglect this term...) }
\end{gathered}
$$

Designing a wave with Mikado flows

The vector field \tilde{f}^{ℓ} satisfies

$$
\begin{aligned}
& V^{\ell}(t, x)=\sum_{f \in \mathbb{F}} \underbrace{\gamma_{f}(t, x) \tilde{f}^{\ell}(t, x)}_{\text {slow }} \underbrace{\psi_{f}(\lambda \Gamma(t, x))}_{\text {fast }}+\delta V^{\ell} \\
& \tilde{f}^{\ell}=\left(\nabla \Gamma^{-1}\right)_{a}^{\ell} f^{a} \\
& \Rightarrow \tilde{f}^{\ell} \nabla_{\ell}\left[\psi_{f}(\lambda \Gamma(t, x))\right]=0, \quad \text { since } f^{a} \nabla_{a} \psi_{f}=0
\end{aligned}
$$

We can then make V^{ℓ} divergence free by solving

$$
\begin{gathered}
\nabla_{\ell} V^{\ell}=0=\sum_{f \in \mathbb{F}} \underbrace{\nabla_{\ell}\left[\gamma_{f}(t, x) \tilde{f}^{\ell}(t, x)\right]}_{\text {slow }} \underbrace{\psi_{f}(\lambda \Gamma(t, x))}_{\text {fast }}+\nabla_{\ell} \delta V^{\ell} \\
\Rightarrow\left\|\delta V^{\ell}\right\|_{C^{0}} \lesssim \lambda^{-1} \quad \text { (starting now we will neglect this term...) }
\end{gathered}
$$

Recalling the Error terms again

Each one of R_{T}, R_{S} and R_{H} must have size $\left\|R_{1}\right\|_{C^{0}} \lesssim \lambda^{-1}$, and requires solving a divergence equation:

Transport term:

$$
\nabla_{j} R_{T}^{j \ell}=\partial_{t} V^{\ell}+\nabla_{j}\left(v_{\epsilon}^{j} V^{\ell}\right)+\nabla_{j}\left(V^{j} v_{\epsilon}^{\ell}\right)
$$

Stress term:

$$
\nabla_{j} R_{S}^{j \ell}=\text { LFreq }\left[\nabla_{j}\left(V^{j} V^{\ell}+P \delta^{j \ell}+R_{\epsilon}^{j \ell}\right)\right]
$$

High-Frequency Interference terms:

$$
\nabla_{j} R_{H}^{j \ell}=\operatorname{HFreq}\left[\nabla_{j}\left(V^{j} V^{\ell}+P \delta^{j \ell}\right)\right]
$$

Recalling the Error terms again

Each one of R_{T}, R_{S} and R_{H} must have size $\left\|R_{1}\right\|_{C^{0}} \lesssim \lambda^{-1}$, and requires solving a divergence equation:

Transport term:

$$
\nabla_{j} R_{T}^{j \ell}=\partial_{t} V^{\ell}+\nabla_{j}\left(v_{\epsilon}^{j} V^{\ell}\right)+\nabla_{j}\left(V^{j} v_{\epsilon}^{\ell}\right)
$$

Stress term:

$$
\nabla_{j} R_{S}^{j \ell}=\text { LFreq }\left[\nabla_{j}\left(V^{j} V^{\ell}+P \delta^{j \ell}+R_{\epsilon}^{j \ell}\right)\right]
$$

High-Frequency Interference terms:

$$
\nabla_{j} R_{H}^{j \ell}=\mathrm{HFreq}\left[\nabla_{j}\left(V^{j} V^{\ell}+P \delta^{j \ell}\right)\right]
$$

The Main Error Terms

With this Ansatz the Transport term is under control:
Letting $D_{t}:=\left(\partial_{t}+v_{\epsilon}^{j} \nabla_{j}\right)$ be the "advective derivative" we have

$$
\begin{aligned}
\partial_{t} V^{\ell} & +\nabla_{j}\left(v_{\epsilon}^{j} V^{\ell}\right)+\nabla_{j}\left(V^{j} v_{\epsilon}^{\ell}\right)=\left(\partial_{t}+v_{\epsilon}^{j} \nabla_{j}\right) V^{\ell}+V^{j} \nabla_{j} v_{\epsilon}^{\ell} \\
& =\sum_{f \in \mathbb{F}} D_{t}\left[\gamma_{f} \tilde{f}^{\ell} \psi_{f}(\lambda \Gamma(t, x))\right]+\gamma_{f} \tilde{f}^{j} \psi_{f}(\lambda \Gamma(t, x)) \nabla_{j} v_{\epsilon}^{\ell} \\
\nabla_{j} R_{T}^{j \ell} & =\sum_{f \in \mathbb{F}} \underbrace{\left(D_{t}\left[\gamma_{f} \tilde{f}^{\ell}\right]+\gamma_{f} \tilde{f}^{j} \nabla_{j} v_{\epsilon}^{\ell}\right.}_{\text {slow }} \underbrace{\psi_{f}(\lambda \Gamma(t, x))}_{\text {fast }}
\end{aligned}
$$

The Main Error Terms

With this Ansatz the Transport term is under control:
Letting $D_{t}:=\left(\partial_{t}+v_{\epsilon}^{j} \nabla_{j}\right)$ be the "advective derivative" we have

$$
\begin{aligned}
\partial_{t} V^{\ell} & +\nabla_{j}\left(v_{\epsilon}^{j} V^{\ell}\right)+\nabla_{j}\left(V^{j} v_{\epsilon}^{\ell}\right)=\left(\partial_{t}+v_{\epsilon}^{j} \nabla_{j}\right) V^{\ell}+V^{j} \nabla_{j} v_{\epsilon}^{\ell} \\
& =\sum_{f \in \mathbb{F}} D_{t}\left[\gamma_{f} \tilde{f}^{\ell} \psi_{f}(\lambda \Gamma(t, x))\right]+\gamma_{f} \tilde{f}^{j} \psi_{f}(\lambda \Gamma(t, x)) \nabla_{j} v_{\epsilon}^{\ell} \\
\nabla_{j} R_{T}^{j \ell} & =\sum_{f \in \mathbb{F}} \underbrace{\left(D_{t}\left[\gamma_{f} \tilde{f}^{\ell}\right]+\gamma_{f} \tilde{f}^{j} \nabla_{j} v_{\epsilon}^{\ell}\right.}_{\text {slow }} \underbrace{\psi_{f}(\lambda \Gamma(t, x))}_{\text {fast }}
\end{aligned}
$$

(Used $\left.\nabla_{j} V^{j}=0.\right)$

The Main Error Terms

The Stress term is controlled as follows:
LFreq $\left[\nabla_{j}\left(V^{j} V^{\ell}+P \delta^{j \ell}+R_{\epsilon}^{j \ell}\right)\right]$

$$
\begin{aligned}
& =\operatorname{LFreq}[\nabla_{j}(\sum_{f_{1}, f_{2} \in \mathbb{F}} \gamma_{f_{1}} \gamma_{f_{2}} \overbrace{\psi_{f_{1}} \psi_{f_{2}}(\lambda \Gamma)}^{\text {disjoint if } \neq} \tilde{f}_{1}^{j} \tilde{f}_{2}^{\ell}+P \delta^{j \ell}+R_{\epsilon}^{j \ell})] \\
& =\operatorname{LFreq}\left[\nabla_{j}\left(\sum_{f \in \mathbb{F}} \gamma_{f}^{2} \psi_{f}^{2}(\lambda \Gamma) \tilde{f}^{j} \tilde{f}^{\ell}+P \delta^{j \ell}+R_{\epsilon}^{j \ell}\right)\right] \\
& \quad:=\nabla_{j}\left[\sum_{f \in \mathbb{F}} \gamma_{f}^{2}(t, x) \tilde{f}^{j} \tilde{f}^{\ell}+P(t, x) \delta^{j \ell}+R_{\epsilon}^{j \ell}\right] \\
& \quad=\nabla_{j}[0]=0
\end{aligned}
$$

Here we solve for the $\gamma_{f}^{2}(t, x)$ at each point using that the $\left(\tilde{f}^{j} \tilde{f}^{\ell}\right)_{f \in \mathbb{F}}$ span the space of symmetric tensors.

The Main Error Terms

The remaining High-Frequency Interference term is controlled as follows using the orthogonality $\tilde{f}^{j} \nabla_{j}\left[\psi_{f}^{2}(\lambda \Gamma)\right]=0$

$$
\begin{aligned}
\text { HFreq }\left[\nabla_{j}\left(V^{j} V^{\ell}\right)\right] & =\nabla_{j}\left[\sum_{f \in \mathbb{F}} \gamma_{f}^{2} \tilde{f}^{j} \tilde{f}^{\ell}\left(\psi_{f}^{2}(\lambda \Gamma(t, x))-1\right)\right] \\
\nabla_{j} R_{H}^{j \ell} & =\sum_{f \in \mathbb{F}} \nabla_{j}\left[\gamma_{f}^{2} \tilde{f}^{j} \tilde{f}^{\ell}\right]\left(\psi_{f}^{2}(\lambda \Gamma(t, x))-1\right)
\end{aligned}
$$

The Main Error Terms

The remaining High-Frequency Interference term is controlled as follows using the orthogonality $\tilde{f}^{j} \nabla_{j}\left[\psi_{f}^{2}(\lambda \Gamma)\right]=0$

$$
\begin{aligned}
\text { HFreq }\left[\nabla_{j}\left(V^{j} V^{\ell}\right)\right] & =\nabla_{j}\left[\sum_{f \in \mathbb{F}} \gamma_{f}^{2} \tilde{f}^{j} \tilde{f}^{\ell}\left(\psi_{f}^{2}(\lambda \Gamma(t, x))-1\right)\right] \\
\nabla_{j} R_{H}^{j \ell} & =\sum_{f \in \mathbb{F}} \underbrace{\nabla_{j}\left[\gamma_{f}^{2} \tilde{f}^{j} \tilde{f}^{\ell}\right]}_{\text {slow }} \underbrace{\left(\psi_{f}^{2}(\lambda \Gamma(t, x))-1\right)}_{\text {fast }:=\omega(\lambda \Gamma(t, x))}
\end{aligned}
$$

The last term is "fast-oscillating" since $\int_{\mathbb{T}^{3}}\left(\psi_{f}^{2}(X)-1\right) d X=0$. (Using Beltrami flows, the corresponding term is under control only for a very short period of time.)

Can we use Mikado flows for Onsager's conjecture?

All the error terms discussed above appear sufficiently small for the method of convex integration to yield regularity $1 / 3-\epsilon$.

However, there is a substantial difficulty standing in the way of using Mikado flows to prove Onsager's conjecture, namely:

Can we use Mikado flows for Onsager's conjecture?

All the error terms discussed above appear sufficiently small for the method of convex integration to yield regularity $1 / 3-\epsilon$.

However, there is a substantial difficulty standing in the way of using Mikado flows to prove Onsager's conjecture, namely:

Problem: To iterate the previous construction again and again (i.e. perform convex integration) we need to use multiple waves (see next slide). The difficulty comes in dealing with the interactions of distinct Mikado flows that start from different times.

Why we Need Multiple Waves

A crucial assumption we are using is the bound $\left\|\left(\nabla \Gamma^{-1}\right)\right\|_{C^{0}} \leq A$ for the solution to

$$
\left(\partial_{t}+v_{\epsilon}^{j} \nabla_{j}\right) \Gamma(t, x)=0, \quad \Gamma(0, x)=x
$$

We can see that this assumption holds only for times of the order $|t| \lesssim\|\nabla v\|_{C^{0}}^{-1}$ from the PDE:

$$
\begin{aligned}
\left(\partial_{t}+v_{\epsilon}^{j} \nabla_{j}\right)\left(\nabla \Gamma^{-1}\right)_{b}^{a} & =\nabla_{j} v_{\epsilon}^{a}\left(\nabla \Gamma^{-1}\right)_{b}^{j} \\
\left(\nabla \Gamma^{-1}\right)_{b}^{a} & =\operatorname{ld}_{b}^{a} \quad \text { at } t=0
\end{aligned}
$$

Since $\|\nabla v\|_{C^{0}} \rightarrow \infty$ as v converges to a $C^{1 / 3-\epsilon}$ vector field, we need to use more and more waves starting at different times!

Difficulty with Mikado Flows

It seems very difficult to control the interactions between two
Mikado flow based waves. Suppose we have two such waves

$$
V_{1}^{\ell}=\sum_{f \in \mathbb{F}_{1}} \gamma_{f, 1} f^{j} f^{\ell} \psi_{f}\left(\lambda \Gamma_{1}\right), \quad V_{0}^{\ell}=\sum_{f \in \mathbb{F}_{0}} \gamma_{f, 0} f^{j} f^{\ell} \psi_{f}\left(\lambda \Gamma_{0}\right)
$$

where Γ_{1} and Γ_{0} both solve $\left(\partial_{t}+v_{\epsilon} \cdot \nabla\right) \Gamma_{I}=0$, but start as the identity at different times

$$
\left|t_{1}-t_{0}\right| \sim\|\nabla v\|_{C^{0}}^{-1}
$$

Difficulty with Mikado Flows

It seems very difficult to control the interactions between two Mikado flow based waves. Suppose we have two such waves

$$
V_{1}^{\ell}=\sum_{f \in \mathbb{F}_{1}} \gamma_{f, 1} f^{j} f^{\ell} \psi_{f}\left(\lambda \Gamma_{1}\right), \quad V_{0}^{\ell}=\sum_{f \in \mathbb{F}_{0}} \gamma_{f, 0} f^{j} f^{\ell} \psi_{f}\left(\lambda \Gamma_{0}\right)
$$

where Γ_{1} and Γ_{0} both solve $\left(\partial_{t}+v_{\epsilon} \cdot \nabla\right) \Gamma_{I}=0$, but start as the identity at different times

$$
\left|t_{1}-t_{0}\right| \sim\|\nabla v\|_{C^{0}}^{-1}
$$

Then the supports of the $\psi_{f}\left(\lambda \Gamma_{I}\right)$ (which are unions of long, λ^{-1}-thin, λ^{-1}-separated cylinders deformed by the flow) will in general overlap and we will lose control over the interference term

$$
\nabla_{j}\left[V_{1}^{j} V_{0}^{\ell}+V_{0}^{j} V_{1}^{\ell}\right]
$$

Strategy to Fix the Problem

Idea: Find a new stress error \widetilde{R} that is supported in disjoint time intervals of width $\theta \sim|\nabla v|^{-1}$

$$
\operatorname{supp}_{t} \widetilde{R} \subseteq \bigcup_{I}[t(I)-\theta, t(I)+\theta]
$$

so that the new velocity field is a perturbation of the old one $v \mapsto \tilde{v}=v+y$ and \widetilde{R} obeys the same estimates as the original R.

Strategy to Fix the Problem

Idea: More precisely, starting with (v, p, R), find a new Euler-Reynolds flow ($\tilde{v}, \tilde{p}, \widetilde{R}$) with \tilde{v} close to v such that

$$
\begin{aligned}
\partial_{t} \tilde{v}^{\ell}+\nabla_{j}\left(\tilde{v}^{j} \tilde{v}^{\ell}\right)+\nabla^{\ell} \tilde{p} & =\nabla_{j} \widetilde{R}^{j \ell}, \quad \widetilde{R}=\sum_{I \in \mathbb{Z}} R_{I} \\
\operatorname{supp} R_{I} & \subseteq[t(I)-\theta, t(I)+\theta], \quad \theta \sim|\nabla v|^{-1} \\
\left|t(I)-t\left(I^{\prime}\right)\right| & \geq 4 \theta, \quad I \neq I^{\prime}
\end{aligned}
$$

Strategy to Fix the Problem

Idea: More precisely, starting with (v, p, R), find a new Euler-Reynolds flow ($\tilde{v}, \tilde{p}, \widetilde{R}$) with \tilde{v} close to v such that

$$
\begin{aligned}
\partial_{t} \tilde{v}^{\ell}+\nabla_{j}\left(\tilde{v}^{j} \tilde{v}^{\ell}\right)+\nabla^{\ell} \tilde{p} & =\nabla_{j} \widetilde{R}^{j \ell}, \quad \widetilde{R}=\sum_{I \in \mathbb{Z}} R_{I} \\
\operatorname{supp} R_{I} & \subseteq[t(I)-\theta, t(I)+\theta], \quad \theta \sim|\nabla v|^{-1} \\
\left|t(I)-t\left(I^{\prime}\right)\right| & \geq 4 \theta, \quad I \neq I^{\prime}
\end{aligned}
$$

Rules: $(\tilde{v}, \tilde{p}, \tilde{R})$ must obey the same C^{k} estimates as (v, p, R). In particular, the new error R cannot be much larger than the previous error R ! ($\|\widetilde{R}\|_{C^{0}} \lesssim\|R\|_{C^{0}}$ is OK.) Also, we require \tilde{v} to be close to $v:\|v-\tilde{v}\|_{C^{0}} \lesssim\|R\|_{C^{0}}^{1 / 2}$

Constructing the new $(\tilde{v}, \tilde{p}, \widetilde{R})$

We introduce the velocity increment y^{ℓ} and pressure increment \bar{p}, which satisfy $\quad \tilde{v}^{\ell}=v^{\ell}+y^{\ell}, \quad \tilde{p}=p+\bar{p} \quad$ and

$$
\begin{aligned}
\partial_{t} y^{\ell}+v^{j} \nabla_{j} y^{\ell}+y^{j} \nabla_{j} v^{\ell}+\nabla_{j}\left(y^{j} y^{\ell}\right)+\nabla^{\ell} \bar{p} & =\nabla_{j} \widetilde{R}^{j \ell}-\nabla_{j} R^{j \ell} \\
\nabla_{j} y^{j} & =0
\end{aligned}
$$

Constructing the new $(\tilde{v}, \tilde{p}, \widetilde{R})$

We introduce the velocity increment y^{ℓ} and pressure increment \bar{p}, which satisfy $\quad \tilde{v}^{\ell}=v^{\ell}+y^{\ell}, \quad \tilde{p}=p+\bar{p} \quad$ and

$$
\begin{aligned}
\partial_{t} y^{\ell}+v^{j} \nabla_{j} y^{\ell}+y^{j} \nabla_{j} v^{\ell}+\nabla_{j}\left(y^{j} y^{\ell}\right)+\nabla^{\ell} \bar{p} & =\nabla_{j} \widetilde{R}^{j \ell}-\nabla_{j} R^{j \ell} \\
\nabla_{j} y^{j} & =0
\end{aligned}
$$

Need $\widetilde{R}=\sum_{I} R_{I}$ where $\operatorname{supp}_{t} R_{I} \subseteq[t(I)-\theta, t(I)+\theta]$, $\theta \sim\|\nabla v\|_{C^{0}}^{-1}$. Also need

$$
\begin{aligned}
&\|y\|_{C^{0}} \lesssim e_{R}^{1 / 2} \sim\|R\|_{C^{0}}^{1 / 2} \\
& \text { and } \quad\|\widetilde{R}\|_{C^{0}} \lesssim e_{R} \sim\|R\|_{C^{0}}
\end{aligned}
$$

The Gluing Technique

Want the new error $\widetilde{R}=\sum_{I} R_{I}$ supported in disjoint intervals:

$$
\begin{array}{r}
\operatorname{supp}_{t} R_{I} \subseteq[t(I)-\theta, t(I)+\theta] \\
\Rightarrow \widetilde{R} \equiv 0 \text { outside of } \bigcup_{I}[t(I)-\theta, t(I)+\theta]
\end{array}
$$

The Gluing Technique

Want the new error $\widetilde{R}=\sum_{I} R_{I}$ supported in disjoint intervals:

$$
\begin{array}{r}
\operatorname{supp}_{t} R_{I} \subseteq[t(I)-\theta, t(I)+\theta] \\
\Rightarrow \widetilde{R} \equiv 0 \text { outside of } \bigcup_{I}[t(I)-\theta, t(I)+\theta]
\end{array}
$$

So the new \tilde{v}^{ℓ} should solve the Euler equations exactly in the gaps between the intervals

$$
[t(I)-\theta, t(I)+\theta] \text { and }[t(I+1)-\theta, t(I+1)+\theta]
$$

Also, \tilde{v}^{ℓ} needs to be a close approximation to v^{ℓ}.

The Gluing Technique

Let $u_{I}^{\ell}=v^{\ell}+y_{I}^{\ell}$ be the unique, smooth solution to Euler starting at the middle of the I th gap $t_{0}(I)$ with initial data

$$
u_{I}^{\ell}\left(t_{0}(I), x\right)=v^{\ell}\left(t_{0}(I), x\right), \quad y_{I}^{\ell}\left(t_{0}(I), x\right)=0
$$

The Gluing Technique

Let $u_{I}^{\ell}=v^{\ell}+y_{I}^{\ell}$ be the unique, smooth solution to Euler starting at the middle of the I th gap $t_{0}(I)$ with initial data

$$
u_{I}^{\ell}\left(t_{0}(I), x\right)=v^{\ell}\left(t_{0}(I), x\right), \quad y_{I}^{\ell}\left(t_{0}(I), x\right)=0
$$

Then set $y^{\ell}=\sum_{I} \eta_{I} y_{I}^{\ell}, \tilde{v}^{\ell}=\sum_{I} \eta_{I} u_{I}^{\ell}$ with a partition of unity

The Gluing Technique

Let $u_{I}^{\ell}=v^{\ell}+y_{I}^{\ell}$ be the unique, smooth solution to Euler starting at the middle of the I th gap $t_{0}(I)$ with initial data

$$
u_{I}^{\ell}\left(t_{0}(I), x\right)=v^{\ell}\left(t_{0}(I), x\right), \quad y_{I}^{\ell}\left(t_{0}(I), x\right)=0
$$

Then set $y^{\ell}=\sum_{I} \eta_{I} y_{I}^{\ell}, \tilde{v}^{\ell}=\sum_{I} \eta_{I} u_{I}^{\ell}$ with a partition of unity

Theorem (Classical Existence Result)

There exists a unique open interval \widetilde{J}_{I} containing $t_{0}(I)$ such that u_{I} is smooth on $\widetilde{J}_{I} \times \mathbb{T}^{3}$ and for all $T^{*} \in \partial \widetilde{J}_{I}$ endpoints of \widetilde{J}_{I},

$$
\limsup _{t \rightarrow T^{*}}\left\|\nabla u_{I}(t)\right\|_{C^{0}}=\infty
$$

(We will have to prove that $\operatorname{supp}_{t} \eta_{I} \subseteq \widetilde{J}_{I}$ to know the formula is well-defined).

The New Stress

With y_{I}^{ℓ} and $y^{\ell}=\sum_{I} \eta_{I} y_{I}^{\ell}$ as above, the new $\widetilde{R}^{j \ell}$ is a solution to

$$
\begin{aligned}
\nabla_{j} \widetilde{R}^{j \ell} & =\sum_{I} \eta_{I}^{\prime}(t) y_{I}^{\ell}+\sum_{I} \eta_{I} \eta_{I+1} \nabla_{j}\left(y_{I}^{j} y_{I+1}^{\ell}+y_{I+1}^{j} y_{I}^{\ell}\right) \\
& +\sum_{I}\left(\eta_{I}^{2}-\eta_{I}\right) \nabla_{j}\left(y_{I}^{j} y_{I}^{\ell}\right)
\end{aligned}
$$

where each $y_{I}^{\ell}=u_{I}^{\ell}-v^{\ell}$ solves

$$
\begin{aligned}
\partial_{t} y_{I}^{\ell}+v^{j} \nabla_{j} y_{I}^{\ell}+y_{I}^{j} \nabla_{j} v^{\ell}+\nabla_{j}\left(y_{I}^{j} y_{I}^{\ell}\right)+\nabla^{\ell} \bar{p}_{I} & =-\nabla_{j} R^{j \ell} \\
\nabla_{j} y_{I}^{j} & =0 \\
y_{I}^{\ell}\left(t_{0}(I), x\right) & =0
\end{aligned}
$$

The New Stress

With y_{I}^{ℓ} and $y^{\ell}=\sum_{I} \eta_{I} y_{I}^{\ell}$ as above, the new $\widetilde{R}^{j \ell}$ is a solution to

$$
\begin{aligned}
\nabla_{j} \widetilde{R}^{j \ell} & =\sum_{I} \eta_{I}^{\prime}(t) y_{I}^{\ell}+\sum_{I} \eta_{I} \eta_{I+1} \nabla_{j}\left(y_{I}^{j} y_{I+1}^{\ell}+y_{I+1}^{j} \ell_{I}^{\ell}\right) \\
& +\sum_{I}\left(\eta_{I}^{2}-\eta_{I}\right) \nabla_{j}\left(y_{I}^{j} y_{I}^{\ell}\right),
\end{aligned}
$$

Choosing $r_{I}^{j \ell}$ such that $\nabla_{j} r_{I}^{j \ell}=y_{I}^{\ell}$, the new stress will be

$$
\begin{aligned}
\widetilde{R}^{j \ell} & =\sum_{I} \eta_{I}^{\prime}(t) r_{I}^{j \ell}+\sum_{I} \eta_{I} \eta_{I+1}\left(y_{I}^{j} y_{I+1}^{\ell}+y_{I+1}^{j} y_{I}^{\ell}\right) \\
& +\sum_{I}\left(\eta_{I}^{2}-\eta_{I}\right) y_{I}^{j} y_{I}^{\ell}
\end{aligned}
$$

Note that $\operatorname{supp}_{t} \widetilde{R} \subseteq \bigcup_{I} \operatorname{supp}_{t} \eta_{I}^{\prime} \subseteq \bigcup_{I}[t(I)-\theta, t(I)+\theta]$.

The New Stress

With y_{I}^{ℓ} and $y^{\ell}=\sum_{I} \eta_{I} y_{I}^{\ell}$ as above, the new $\widetilde{R}^{j \ell}$ is a solution to

$$
\begin{aligned}
\nabla_{j} \widetilde{R}^{j \ell} & =\sum_{I} \eta_{I}^{\prime}(t) y_{I}^{\ell}+\sum_{I} \eta_{I} \eta_{I+1} \nabla_{j}\left(y_{I}^{j} y_{I+1}^{\ell}+y_{I+1}^{j} \ell_{I}^{\ell}\right) \\
& +\sum_{I}\left(\eta_{I}^{2}-\eta_{I}\right) \nabla_{j}\left(y_{I}^{j} y_{I}^{\ell}\right),
\end{aligned}
$$

Choosing $r_{I}^{j \ell}$ such that $\nabla_{j} r_{I}^{j \ell}=y_{I}^{\ell}$, the new stress will be

$$
\begin{aligned}
\widetilde{R}^{j \ell} & =\sum_{I} \eta_{I}^{\prime}(t) r_{I}^{j \ell}+\sum_{I} \eta_{I} \eta_{I+1}\left(y_{I}^{j} y_{I+1}^{\ell}+y_{I+1}^{j} y_{I}^{\ell}\right) \\
& +\sum_{I}\left(\eta_{I}^{2}-\eta_{I}\right) y_{I}^{j} y_{I}^{\ell}
\end{aligned}
$$

Note that $\operatorname{supp}_{t} \widetilde{R} \subseteq \bigcup_{I} \operatorname{supp}_{t} \eta_{I}^{\prime} \subseteq \bigcup_{I}[t(I)-\theta, t(I)+\theta]$.

Finding a good Anti-Divergence: Attempt 1

Problem: we get bad estimates from solving

$$
\begin{equation*}
\nabla_{j} r_{I}^{j \ell}=y_{I}^{\ell} \tag{20}
\end{equation*}
$$

Suppose that e_{R} is the size of the error $\left(\|R\|_{C^{0}} \leq e_{R}\right)$ and suppose (optimistically) that $\left\|y_{I}^{\ell}\right\|_{C^{0}} \sim e_{R}^{1 / 2}$ obeys the bound we desire for $y^{\ell}=\tilde{v}^{\ell}-v^{\ell}$. Then our new error has size

$$
\begin{aligned}
\|\widetilde{R}\|_{C^{0}}= & \left\|\eta_{I}^{\prime}(t) r_{I}+\ldots\right\|_{C^{0}} \\
& \lesssim \theta^{-1}\left\|r_{I}\right\|_{C^{0}} \lesssim \theta^{-1}\left\|y_{I}\right\|_{C^{0}} \\
\|\widetilde{R}\|_{C^{0}} & \lesssim \theta^{-1} e_{R}^{1 / 2}+\ldots
\end{aligned}
$$

Our goal was e_{R}. Having $e_{R}^{1 / 2}$ is already too big, and having θ^{-1} makes this bound diverge to ∞ !

Finding a good Anti-Divergence: Attempt 2

We can find a better solution to $\nabla_{j} r_{I}^{j \ell}=y_{I}^{\ell}$ using the equation

$$
\partial_{t} y_{I}^{\ell}=-v^{j} \nabla_{j} y_{I}^{\ell}-y_{I}^{j} \nabla_{j} v^{\ell}-\nabla_{j}\left(y_{I}^{j} y_{I}^{\ell}\right)-\nabla^{\ell} \bar{p}_{I}-\nabla_{j} R^{j \ell}
$$

Finding a good Anti-Divergence: Attempt 2

We can find a better solution to $\nabla_{j} r_{I}^{j \ell}=y_{I}^{\ell}$ using the equation

$$
\partial_{t} y_{I}^{\ell}=-\nabla_{j}\left(v^{j} y_{I}^{\ell}+y_{I}^{j} v^{\ell}+y_{I}^{j} y_{I}^{\ell}+\bar{p}_{I} \delta^{j^{\ell}}+R^{j \ell}\right)
$$

Finding a good Anti-Divergence: Attempt 2

We can find a better solution to $\nabla_{j} r_{I}^{j \ell}=y_{I}^{\ell}$ using the equation

$$
\begin{aligned}
& \partial_{t} y_{I}^{\ell}=-\nabla_{j}\left(v^{j} y_{I}^{\ell}+y_{I}^{j} v^{\ell}+y_{I}^{j} y_{I}^{\ell}+\bar{p}_{I} \delta^{j \ell}+R^{j \ell}\right) \\
&=-r_{I}^{j}(t, \cdot)
\end{aligned} \overbrace{y_{I}^{\ell}(t, \cdot)}=-\nabla_{j} \overbrace{\int_{0}^{t}\left(v^{j} y_{I}^{\ell}(\tau, \cdot)+y_{I}^{j} v^{\ell}(\tau, \cdot)+\ldots+R^{j \ell}(\tau, \cdot)\right) d \tau} .
$$

Finding a good Anti-Divergence: Attempt 2

We can find a better solution to $\nabla_{j} r_{I}^{j \ell}=y_{I}^{\ell}$ using the equation

$$
\begin{aligned}
& \partial_{t} y_{I}^{\ell}=-\nabla_{j}\left(v^{j} y_{I}^{\ell}+y_{I}^{j} v^{\ell}+y_{I}^{j} y_{I}^{\ell}+\bar{p}_{I} \delta^{j \ell}+R^{j \ell}\right) \\
& =-r_{I}^{\ell \ell}(t, \cdot) \\
& y_{I}^{\ell}(t, \cdot)=-\nabla_{j} \overbrace{\int_{0}^{t}\left(v^{j} y_{I}^{\ell}(\tau, \cdot)+y_{I}^{j} v^{\ell}(\tau, \cdot)+\ldots+R^{j \ell}(\tau, \cdot)\right) d \tau} \\
& \|\widetilde{R}\|_{C^{0}} \lesssim \theta^{-1}\left\|r_{I}\right\|_{C^{0}}+\ldots \lesssim\|v\|_{C^{0}}\left\|y_{I}\right\|_{C^{0}}+\ldots \\
& \|\widetilde{R}\|_{C^{0}} \lesssim e_{R}^{1 / 2}+\ldots
\end{aligned}
$$

Still not the desired $\|\widetilde{R}\|_{C^{0}} \lesssim e_{R}$.

Finding a good Anti-Divergence: Attempt 3

Idea: Set $r_{I}^{j \ell}\left(t_{0}(I), x\right)=0$ and solve a transport equation

$$
\begin{aligned}
\left(\partial_{t}+v^{i} \nabla_{i}\right)\left[\nabla_{j} r_{I}^{j \ell}\right] & =\left(\partial_{t}+v^{i} \nabla_{i}\right) y_{I}^{\ell}, \\
\left(\partial_{t}+v^{i} \nabla_{i}\right)\left[\nabla_{j} r_{I}^{j \ell}\right] & =-y_{I}^{j} \nabla_{j} v^{\ell}-\nabla_{j}\left(y_{I}^{j} y_{I}^{\ell}\right)-\nabla^{\ell} \bar{p}_{I}-\nabla_{j} R^{j \ell}
\end{aligned}
$$

(Motivation: "integration" over trajectories is more natural than integrating in time at fixed x.)

Finding a good Anti-Divergence: Attempt 3

Idea: Set $r_{I}^{j \ell}\left(t_{0}(I), x\right)=0$ and solve a transport equation

$$
\begin{aligned}
\left(\partial_{t}+v^{i} \nabla_{i}\right)\left[\nabla_{j} r_{I}^{j \ell}\right] & =\left(\partial_{t}+v^{i} \nabla_{i}\right) y_{I}^{\ell}, \\
\left(\partial_{t}+v^{i} \nabla_{i}\right)\left[\nabla_{j} r_{I}^{j \ell}\right] & =-y_{I}^{j} \nabla_{j} v^{\ell}-\nabla_{j}\left(y_{I}^{j} y_{I}^{\ell}\right)-\nabla^{\ell} \bar{p}_{I}-\nabla_{j} R^{j \ell}
\end{aligned}
$$

Setting $r_{I}^{j \ell}=\rho_{I}^{j \ell}+z_{I}^{j \ell}$, we can solve away the last few terms:

$$
\begin{equation*}
\left(\partial_{t}+v^{j} \nabla_{j}\right) z_{I}^{j \ell}=-y_{I}^{j} y_{I}^{\ell}-\bar{p}_{I} \delta^{j \ell}-R^{j \ell} \tag{21}
\end{equation*}
$$

Then $\left\|z_{I}\right\|_{C^{0}}$ looks good if we have

$$
\left\|y_{I}\right\|_{C^{0}} \lesssim e_{R}^{1 / 2}, \quad\left\|\bar{p}_{I}\right\|_{C^{0}} \lesssim e_{R}
$$

Finding a good Anti-Divergence: Attempt 3

Idea: Set $r_{I}^{j \ell}\left(t_{0}(I), x\right)=0$ and solve a transport equation

$$
\begin{aligned}
\left(\partial_{t}+v^{i} \nabla_{i}\right)\left[\nabla_{j} r_{I}^{j \ell}\right] & =\left(\partial_{t}+v^{i} \nabla_{i}\right) y_{I}^{\ell}, \\
\left(\partial_{t}+v^{i} \nabla_{i}\right)\left[\nabla_{j} r_{I}^{j \ell}\right] & =-y_{I}^{j} \nabla_{j} v^{\ell}-\nabla_{j}\left(y_{I}^{j} y_{I}^{\ell}\right)-\nabla^{\ell} \bar{p}_{I}-\nabla_{j} R^{j \ell}
\end{aligned}
$$

To handle the linear term, let $r_{I}^{j \ell}=\rho_{I}^{j \ell}+z_{I}^{j \ell}$ where

$$
\nabla_{j}\left[\left(\partial_{t}+v^{i} \nabla_{i}\right) \rho_{I}^{j \ell}\right]=\nabla_{j} v^{i} \nabla_{i} r_{I}^{j \ell}-y_{I}^{j} \nabla_{j} v^{\ell}
$$

(Obtained by commuting ∇_{j} and $\left(\partial_{t}+v^{i} \nabla_{i}\right)$.)

Finding a good Anti-Divergence: Attempt 3

To handle the linear term, let $r_{I}^{j \ell}=\rho_{I}^{j \ell}+z_{I}^{j \ell}$ where

$$
\begin{equation*}
\nabla_{j}\left[\left(\partial_{t}+v^{i} \nabla_{i}\right) \rho_{I}^{j \ell}\right]=\nabla_{j} v^{i} \nabla_{i} r_{I}^{j \ell}-y_{I}^{i} \nabla_{i} v^{\ell} \tag{22}
\end{equation*}
$$

Equation (22) can only be solved if we can invert the divergence on both sides. We need to know the right hand side has integral 0 :

$$
\nabla_{j} v^{i} \nabla_{i} r_{I}^{j \ell}-y_{I}^{j} \nabla_{j} v^{\ell}=\nabla_{i}\left[\nabla_{j} v^{i} r_{I}^{j \ell}-y_{I}^{i} v^{\ell}\right]
$$

Here we use that $\nabla_{i} v^{i}=\nabla_{i} y_{I}^{i}=0$.
We now invert the divergence to obtain an equation for ρ_{I}.

Finding a good Anti-Divergence: Attempt 3

We let $\rho_{I}^{j \ell}$ solve a "transport-elliptic" equation:

$$
\left(\partial_{t}+v^{i} \nabla_{i}\right) \rho_{I}^{j \ell}=\mathcal{R}^{j \ell}\left[\nabla_{a} v^{i} \nabla_{i}\left(\rho_{I}^{a b}+z_{I}^{a b}\right)-y_{I}^{i} \nabla_{i} v^{b}\right]
$$

where $\mathcal{R}^{j \ell}=\operatorname{div}^{-1}$ is an order -1 operator that inverts divergence. This type of equation can be solved as in (I. '12) as long as y_{I} and z_{I} are smooth.

Question: Are the estimates good enough? (e.g. Do we have $\|\widetilde{R}\|_{C^{0}} \lesssim e_{R}$?)

Finding a good Anti-Divergence: Attempt 3

We let $\rho_{I}^{j \ell}$ solve a "transport-elliptic" equation:

$$
\left(\partial_{t}+v^{i} \nabla_{i}\right) \rho_{I}^{j \ell}=\mathcal{R}^{j \ell}\left[\nabla_{a} v^{i} \nabla_{i}\left(\rho_{I}^{a b}+z_{I}^{a b}\right)-y_{I}^{i} \nabla_{i} v^{b}\right]
$$

The corresponding estimate for $\widetilde{R}^{j \ell}=\eta_{I}^{\prime}(t) r_{I}+\ldots$ is:

$$
\begin{aligned}
\|\widetilde{R}\|_{C^{0}} & \lesssim \theta^{-1}\left\|\rho_{I}\right\|_{C^{0}}+\ldots \lesssim\left\|\left(\partial_{t}+v \cdot \nabla\right) \rho_{I}\right\|_{C^{0}}+\ldots \\
& \lesssim\left\|\mathcal{R}^{j \ell}\left[y_{I}^{i} \nabla_{i} v^{b}\right]\right\|_{C^{0}}+\text { other terms } \\
& \lesssim e_{R}^{1 / 2} \cdot \theta^{-1}+\ldots
\end{aligned}
$$

Finding a good Anti-Divergence: Attempt 3

We let $\rho_{I}^{j \ell}$ solve a "transport-elliptic" equation:

$$
\left(\partial_{t}+v^{i} \nabla_{i}\right) \rho_{I}^{j \ell}=\mathcal{R}^{j \ell}\left[\nabla_{a} v^{i} \nabla_{i}\left(\rho_{I}^{a b}+z_{I}^{a b}\right)-y_{I}^{i} \nabla_{i} v^{b}\right]
$$

The corresponding estimate for $\widetilde{R}^{j \ell}=\eta_{I}^{\prime}(t) r_{I}+\ldots$ is:

$$
\begin{aligned}
\|\widetilde{R}\|_{C^{0}} & \lesssim \theta^{-1}\left\|\rho_{I}\right\|_{C^{0}}+\ldots \lesssim\left\|\left(\partial_{t}+v \cdot \nabla\right) \rho_{I}\right\|_{C^{0}}+\ldots \\
& \lesssim\left\|\mathcal{R}^{j \ell}\left[y_{I}^{i} \nabla_{i} v^{b}\right]\right\|_{C^{0}}+\text { other terms } \\
& \lesssim e_{R}^{1 / 2} \cdot \theta^{-1}+\ldots
\end{aligned}
$$

Finding a good Anti-Divergence: Attempt 3

We let $\rho_{I}^{j \ell}$ solve a "transport-elliptic" equation:

$$
\left(\partial_{t}+v^{i} \nabla_{i}\right) \rho_{I}^{j \ell}=\mathcal{R}^{j \ell}\left[\nabla_{a} v^{i} \nabla_{i}\left(\rho_{I}^{a b}+z_{I}^{a b}\right)-y_{I}^{i} \nabla_{i} v^{b}\right]
$$

The corresponding estimate for $\widetilde{R}^{j \ell}=\eta_{I}^{\prime}(t) r_{I}+\ldots$ is:

$$
\begin{aligned}
\|\widetilde{R}\|_{C^{0}} & \lesssim \theta^{-1}\left\|\rho_{I}\right\|_{C^{0}}+\ldots \lesssim\left\|\left(\partial_{t}+v \cdot \nabla\right) \rho_{I}\right\|_{C^{0}}+\ldots \\
& \lesssim\left\|\mathcal{R}^{j \ell} \nabla_{i}\left[y_{I}^{i} v^{b}\right]\right\|_{C^{0}}+\text { other terms } \\
& \lesssim e_{R}^{1 / 2} \cdot 1+\ldots \\
& \text { (if we pretend } \mathcal{R} \nabla=\operatorname{div}^{-1} \nabla \text { is bounded on } C^{0} \text {) }
\end{aligned}
$$

But that is still not good enough for $\|\widetilde{R}\|_{C^{0}} \lesssim e_{R} \ldots$

Finding a good Anti-Divergence: Attempt 3

We let $\rho_{I}^{j \ell}$ solve a "transport-elliptic" equation:

$$
\left(\partial_{t}+v^{i} \nabla_{i}\right) \rho_{I}^{j \ell}=\mathcal{R}^{j \ell}\left[\nabla_{a} v^{i} \nabla_{i}\left(\rho_{I}^{a b}+z_{I}^{a b}\right)-y_{I}^{i} \nabla_{i} v^{b}\right]
$$

The corresponding estimate for $\widetilde{R}^{j \ell}=\eta_{I}^{\prime}(t) r_{I}+\ldots$ is:

$$
\begin{aligned}
\|\widetilde{R}\|_{C^{0}} & \lesssim \theta^{-1}\left\|\rho_{I}\right\|_{C^{0}}+\ldots \lesssim\left\|\left(\partial_{t}+v \cdot \nabla\right) \rho_{I}\right\|_{C^{0}}+\ldots \\
& \lesssim\left\|\mathcal{R}^{j \ell} \nabla_{i}\left[y_{I}^{i} v^{b}\right]\right\|_{C^{0}}+\text { other terms } \\
& \lesssim e_{R}^{1 / 2} \cdot 1+\ldots
\end{aligned}
$$

(if we pretend $\mathcal{R} \nabla=\operatorname{div}^{-1} \nabla$ is bounded on C^{0})
But that is still not good enough for $\|\widetilde{R}\|_{C^{0}} \lesssim e_{R} \cdots$
Key point: We can actually prove $\left\|\mathcal{R}^{j \ell}\left[y_{I}^{i} \nabla_{i} v^{b}\right]\right\|_{C^{0}} \lesssim e_{R}$! (almost)

The Pressure Has a Similar Bad Term

The pressure increment has a similar bad term

$$
\bar{p}_{I}=-2 \Delta^{-1} \nabla_{\ell}\left[y_{I}^{j} \nabla_{j} v^{\ell}\right]-\Delta^{-1} \nabla_{\ell} \nabla_{j}\left[y_{I}^{j} y_{I}^{\ell}+R^{j \ell}\right]
$$

Note that the highlighted operator is of order -1 , similar to $\mathcal{R}^{j \ell}$. Let us show how to (almost) estimate this term by

$$
\left\|\Delta^{-1} \nabla_{\ell}\left[y_{I}^{j} \nabla_{j} v^{\ell}\right]\right\|_{C^{0}} \lesssim e_{R}
$$

The Pressure Has a Similar Bad Term

Notation: We define the Littlewood-Paley projections

$$
\begin{aligned}
P_{q} u^{\ell}(x) & =\int_{\mathbb{R}^{3}} u^{\ell}(x-h) \eta_{q}(h) d h \\
\operatorname{supp} \hat{\eta}_{q}(\xi) & \subseteq\left\{2^{q-2} \leq|\xi| \leq 2^{q+2}\right\} \\
\eta_{q}(h) & =2^{3 q} \eta_{0}\left(2^{q} h\right) \\
u^{\ell}(x) & =\Pi_{0} u^{\ell}+\sum_{q=0}^{\infty} P_{q} u^{\ell}(x), \quad x \in \mathbb{T}^{3}
\end{aligned}
$$

The Pressure Has a Similar Bad Term

Choose $\widehat{\Xi}$ such that $\theta^{-1} \sim\|\nabla v\|_{C^{0}} \lesssim \widehat{\Xi} e_{R}^{1 / 2}$ and choose $\hat{q} \in \mathbb{Z}$ such that $2^{\hat{q}-1} \leq \widehat{\Xi}<2^{\hat{q}}$. Then

$$
\begin{aligned}
\Delta^{-1} \nabla_{\ell}\left[y_{I}^{j} \nabla_{j} v^{\ell}\right] & =\Delta^{-1} \nabla_{\ell} P_{\leq \hat{q}}\left[y_{I}^{j} \nabla_{j} v^{\ell}\right]+\sum_{q>\hat{q}} \Delta^{-1} \nabla_{\ell} P_{q}\left[y_{I}^{j} \nabla_{j} v^{\ell}\right] \\
& =\quad \bar{p}_{I, L}+\bar{p}_{I, H}
\end{aligned}
$$

The Pressure Has a Similar Bad Term

Choose $\widehat{\Xi}$ such that $\theta^{-1} \sim\|\nabla v\|_{C^{0}} \lesssim \widehat{\Xi} e_{R}^{1 / 2}$ and choose $\hat{q} \in \mathbb{Z}$ such that $2^{\hat{q}-1} \leq \widehat{\Xi}<2^{\hat{q}}$. Then

$$
\begin{aligned}
\Delta^{-1} \nabla_{\ell}\left[y_{I}^{j} \nabla_{j} v^{\ell}\right] & =\Delta^{-1} \nabla_{\ell} P_{\leq \hat{q}}\left[y_{I}^{j} \nabla_{j} v^{\ell}\right]+\sum_{q>\hat{q}} \Delta^{-1} \nabla_{\ell} P_{q}\left[y_{I}^{j} \nabla_{j} v^{\ell}\right] \\
& =\quad \bar{p}_{I, L}+\bar{p}_{I, H}
\end{aligned}
$$

The high frequency term is bounded by

$$
\begin{aligned}
\left\|\bar{p}_{I, H}\right\|_{C^{0}} & \leq \sum_{q>\hat{q}}\left\|\Delta^{-1} \nabla_{\ell} P_{q}\left[y_{I}^{j} \nabla_{j} v^{\ell}\right]\right\|_{C^{0}} \\
& \leq \sum_{q>\hat{q}} \underbrace{\left\|\Delta^{-1} \nabla_{\ell} P_{q}\right\|}_{\left(C^{0} \mapsto C^{0}\right) \text { norm }}\left\|y_{I}^{j} \nabla_{j} v^{\ell}\right\|_{C^{0}}
\end{aligned}
$$

(Note the operator convolves with an L^{1} Schwartz kernel.)

The Pressure Has a Similar Bad Term

Choose $\widehat{\Xi}$ such that $\theta^{-1} \sim\|\nabla v\|_{C^{0}} \lesssim \widehat{\Xi} e_{R}^{1 / 2}$ and choose $\hat{q} \in \mathbb{Z}$ such that $2^{\hat{q}-1} \leq \widehat{\Xi}<2^{\hat{q}}$. Then

$$
\begin{aligned}
\Delta^{-1} \nabla_{\ell}\left[y_{I}^{j} \nabla_{j} v^{\ell}\right] & =\Delta^{-1} \nabla_{\ell} P_{\leq \hat{q}}\left[y_{I}^{j} \nabla_{j} v^{\ell}\right]+\sum_{q>\hat{q}} \Delta^{-1} \nabla_{\ell} P_{q}\left[y_{I}^{j} \nabla_{j} v^{\ell}\right] \\
& =\quad \bar{p}_{I, L}+\bar{p}_{I, H}
\end{aligned}
$$

The high frequency term is bounded by

$$
\begin{aligned}
\left\|\bar{p}_{I, H}\right\|_{C^{0}} & \leq \sum_{q>\hat{q}}\left\|\Delta^{-1} \nabla_{\ell} P_{q}\right\|\left\|y_{I}^{j} \nabla_{j} v^{\ell}\right\|_{C^{0}} \\
& \lesssim \sum_{q>\hat{q}} 2^{-q}\left\|y_{I}^{j} \nabla_{j} v^{\ell}\right\|_{C^{0}} \\
& \lesssim \widehat{\Xi}^{-1} e_{R}^{1 / 2}\left(\theta^{-1}\right)=e_{R}
\end{aligned}
$$

It now remains to bound the low frequency term.

The Low Frequency Term

The low frequency term has the form

$$
\bar{p}_{I, L}=\Delta^{-1} \nabla_{\ell} P_{\leq \hat{q}}\left[y_{I}^{j} \nabla_{j} v^{\ell}\right]=\sum_{q=0}^{\hat{q}} \Delta^{-1} \nabla_{\ell} P_{q}\left[y_{I}^{j} \nabla_{j} v^{\ell}\right]
$$

In this case, we do not gain smallness from bounding

$$
\left\|\Delta^{-1} \nabla_{\ell} P_{q}\right\| \lesssim 2^{-q} \lesssim 1
$$

The Low Frequency Term

Step 2: Decompose v into high and low frequencies

$$
\begin{aligned}
\bar{p}_{I, L} & =\bar{p}_{I, L L}+\bar{p}_{I, L H} \\
\bar{p}_{I, L L} & =\Delta^{-1} \nabla_{\ell} P_{\leq \hat{q}}\left[y_{I}^{j} \nabla_{j} P_{\leq \hat{q}} v^{\ell}\right] \\
\bar{p}_{I, L H} & =\sum_{q>\hat{q}} \Delta^{-1} \nabla_{\ell} P_{\leq \hat{q}}\left[y_{I}^{j} \nabla_{j} P_{q} v^{\ell}\right]
\end{aligned}
$$

The Low Frequency Term

Step 2: Decompose v into high and low frequencies

$$
\begin{aligned}
\bar{p}_{I, L} & =\bar{p}_{I, L L}+\bar{p}_{I, L H} \\
\bar{p}_{I, L L} & =\Delta^{-1} \nabla_{\ell} P_{\leq \hat{q}}\left[y_{I}^{j} \nabla_{j} P_{\leq \hat{q}} v^{\ell}\right] \\
\bar{p}_{I, L H} & =\sum_{q>\hat{q}} \Delta^{-1} \nabla_{\ell} P_{\leq \hat{q}}\left[y_{I}^{j} \nabla_{j} P_{q} v^{\ell}\right]
\end{aligned}
$$

And bound the LH term using $\nabla_{j} y_{I}^{j}=0$:

$$
\begin{aligned}
\left\|\bar{p}_{I, H}\right\|_{C^{0}} & \leq \sum_{q>\hat{q}}\left\|\Delta^{-1} \nabla_{\ell} \nabla_{j} P_{\leq \hat{q}}\right\|\left\|y_{I}\right\|_{C^{0}}\left\|P_{q} v\right\|_{C^{0}} \\
& \lesssim \sum_{q>\hat{q}} \log \widehat{\Xi} e_{R}^{1 / 2}\left(2^{-q}\|\nabla v\|_{C^{0}}\right) \\
& \lesssim \log \widehat{\Xi} e_{R}^{1 / 2} \widehat{\Xi}^{-1}\left(\widehat{\Xi} e_{R}^{1 / 2}\right) \lesssim \log \widehat{\Xi} e_{R}
\end{aligned}
$$

Remaining Problematic Term

The remaining problematic term is

$$
\begin{gathered}
\bar{p}_{I, L L}=\Delta^{-1} \nabla_{\ell} P_{\leq \hat{q}}\left[y_{I}^{j} \nabla_{j} P_{\leq \hat{q}} v^{\ell}\right] \\
\text { or } \\
\bar{p}_{I, L L}=\Delta^{-1} \nabla_{\ell} P_{\leq \hat{q}}\left[P_{\leq \hat{q}+3} y_{I}^{j} \nabla_{j} P_{\leq \hat{q}} v^{\ell}\right]
\end{gathered}
$$

using that high frequencies of y_{I} do not contribute.

Remaining Problematic Term

The remaining problematic term is

$$
\bar{p}_{I, L L}=\Delta^{-1} \nabla_{\ell} P_{\leq \hat{q}}\left[y_{I}^{j} \nabla_{j} P_{\leq \hat{q}} v^{\ell}\right]
$$

We treat this term by decomposing into frequency increments

$$
\begin{gathered}
\bar{p}_{I, L L}=\sum_{q=-1}^{\hat{q}} \delta_{q} \bar{p}_{I, L L} \\
\delta_{q} \bar{p}_{I, L L}=\Delta^{-1} \nabla_{\ell} P_{\leq q+1}\left[y_{I}^{j} \nabla_{j} P_{\leq q+1} v^{\ell}\right]-\Delta^{-1} \nabla_{\ell} P_{\leq q}\left[y_{I}^{j} \nabla_{j} P_{\leq q} v^{\ell}\right]
\end{gathered}
$$

Note: Starting now, 2^{q} is in the low to medium range of frequencies.

Frequency Increments

The frequency increment can either fall on the operator or on v :

$$
\delta_{q} \bar{p}_{I, L L}=\Delta^{-1} \nabla_{\ell} P_{q+1}\left[y_{I}^{j} \nabla_{j} P_{\leq q+1} v^{\ell}\right]+\Delta^{-1} \nabla_{\ell} P_{\leq q}\left[y_{I}^{j} \nabla_{j} P_{q+1} v^{\ell}\right]
$$

Frequency Increments

The frequency increment can either fall on the operator or on v :

$$
\delta_{q} \bar{p}_{I, L L}=\Delta^{-1} \nabla_{\ell} P_{q+1}\left[y_{I}^{j} \nabla_{j} P_{\leq q+1} v^{\ell}\right]+\Delta^{-1} \nabla_{\ell} P_{\leq q}\left[y_{I}^{j} \nabla_{j} P_{q+1} v^{\ell}\right]
$$

Consider the second term. Using $\nabla_{j} y_{I}^{j}=0$, we have

$$
\begin{aligned}
\Delta^{-1} \nabla_{\ell} P_{\leq q}\left[y_{I}^{j} \nabla_{j} P_{q+1} v^{\ell}\right] & =\Delta^{-1} \nabla_{\ell} \nabla_{j} P_{\leq q}\left[y_{I}^{j} P_{q+1} v^{\ell}\right] \\
& =\Delta^{-1} \nabla_{\ell} \nabla_{j} P_{\leq q}\left[P_{\leq q+6} y_{I}^{j} P_{q+1} v^{\ell}\right]
\end{aligned}
$$

Frequency Increments

The frequency increment can either fall on the operator or on v :

$$
\delta_{q} \bar{p}_{I, L L}=\Delta^{-1} \nabla_{\ell} P_{q+1}\left[y_{I}^{j} \nabla_{j} P_{\leq q+1} v^{\ell}\right]+\Delta^{-1} \nabla_{\ell} P_{\leq q}\left[y_{I}^{j} \nabla_{j} P_{q+1} v^{\ell}\right]
$$

Consider the second term. Using $\nabla_{j} y_{I}^{j}=0$, we have

$$
\begin{aligned}
\Delta^{-1} \nabla_{\ell} P_{\leq q}\left[y_{I}^{j} \nabla_{j} P_{q+1} v^{\ell}\right] & =\Delta^{-1} \nabla_{\ell} \nabla_{j} P_{\leq q}\left[y_{I}^{j} P_{q+1} v^{\ell}\right] \\
& =\Delta^{-1} \nabla_{\ell} \nabla_{j} P_{\leq q}\left[P_{\leq q+6} y_{I}^{j} P_{q+1} v^{\ell}\right]
\end{aligned}
$$

In the last line, we observe that frequencies of y_{I}^{ℓ} above 2^{q+4} do not contribute to the product by the frequency localization.

Frequency Increments

Now use that we can solve $y_{I}^{j}=\nabla_{i} r_{I}^{i j}$ to write

$$
\begin{aligned}
& \Delta^{-1} \nabla_{\ell} \nabla_{j} P_{\leq q}\left[P_{\leq q+6} y_{I}^{j} P_{q+1} v^{\ell}\right] \\
& =\Delta^{-1} \nabla_{\ell} \nabla_{j} P_{\leq q}\left[P_{\leq q+6} \nabla_{i} r_{I}^{i j} P_{q+1} v^{\ell}\right] \\
\|\cdot\|_{C^{0}} & \lesssim\left\|\Delta^{-1} \nabla_{\ell} \nabla_{j} P_{\leq q}\right\|\left\|P_{\leq q+6} \nabla_{i}\right\|\left\|r_{I}\right\|_{C^{0}}\left[2^{-q}\|\nabla v\|_{C^{0}}\right] \\
& \lesssim(2+q) 2^{q}\left\|r_{I}\right\|_{C^{0}} 2^{-q} \widehat{\Xi} e_{R}^{1 / 2}
\end{aligned}
$$

Note how the 2^{q} and 2^{-q} cancel out.

Frequency Increments

Now use that we can solve $y_{I}^{j}=\nabla_{i} r_{I}^{i j}$ to write

$$
\begin{aligned}
& \Delta^{-1} \nabla_{\ell} \nabla_{j} P_{\leq q}\left[P_{\leq q+6} y_{I}^{j} P_{q+1} v^{\ell}\right] \\
& =\Delta^{-1} \nabla_{\ell} \nabla_{j} P_{\leq q}\left[P_{\leq q+6} \nabla_{i} r_{I}^{i j} P_{q+1} v^{\ell}\right] \\
\|\cdot\|_{C^{0}} & \lesssim\left\|\Delta^{-1} \nabla_{\ell} \nabla_{j} P_{\leq q}\right\|\left\|P_{\leq q+6} \nabla_{i}\right\|\left\|r_{I}\right\|_{C^{0}}\left[2^{-q}\|\nabla v\|_{C^{0}}\right] \\
& \lesssim(2+q)\left\|r_{I}\right\|_{C^{0}}\left(\widehat{\Xi} e_{R}^{1 / 2}\right)
\end{aligned}
$$

Almost closes if there exists r_{I} such that $\left\|r_{I}\right\|_{C^{0}} \widehat{\Xi} \lesssim e_{R}^{1 / 2}$

Frequency Increments

Now use that we can solve $y_{I}^{j}=\nabla_{i} r_{I}^{i j}$ to write

$$
\begin{aligned}
& \Delta^{-1} \nabla_{\ell} \nabla_{j} P_{\leq q}\left[P_{\leq q+6} y_{I}^{j} P_{q+1} v^{\ell}\right] \\
& =\Delta^{-1} \nabla_{\ell} \nabla_{j} P_{\leq q}\left[P_{\leq q+6} \nabla_{i} r_{I}^{i j} P_{q+1} v^{\ell}\right] \\
\|\cdot\|_{C^{0}} & \lesssim\left\|\Delta^{-1} \nabla_{\ell} \nabla_{j} P_{\leq q}\right\|\left\|P_{\leq q+6} \nabla_{i}\right\|\left\|r_{I}\right\|_{C^{0}}\left[2^{-q}\|\nabla v\|_{C^{0}}\right] \\
& \lesssim(2+q)\left\|r_{I}\right\|_{C^{0}}\left(\widehat{\Xi} e_{R}^{1 / 2}\right)
\end{aligned}
$$

Idea: impose a bootstrap assumption on ρ_{I} and z_{I} that implies

$$
\widehat{\Xi}\left\|r_{I}\right\|_{C^{0}} \lesssim e_{R}^{1 / 2}
$$

Then summing over $q \leq \hat{q} \sim \log \widehat{\Xi}$ leads to $\left\|\widetilde{R}_{I}\right\|_{C^{0}} \lesssim(\log \widehat{\Xi})^{2} e_{R}$, which is the correct estimate (except for the $\left.(\log \widehat{\Xi})^{2}\right)$!

Loss of Derivatives

It turns out that (if one furthermore shrinks the time scale θ by a logarithmic factor) it is possible to close the argument implying the above estimates by using certain weighted $C^{3, \alpha}$ norms.

But there is a catch...

Loss of Derivatives

It turns out that (if one furthermore shrinks the time scale θ by a logarithmic factor) it is possible to close the argument implying the above estimates by using certain weighted $C^{3, \alpha}$ norms.

But there is a catch, namely this gluing construction loses derivatives. E.g., ∇v and ∇R both enter in the equation for y_{I}

$$
\partial_{t} y_{I}^{\ell}+v^{j} \nabla_{j} y_{I}^{\ell}+y_{I}^{j} \nabla_{j} v^{\ell}+\nabla_{j}\left(y_{I}^{j} y_{I}^{\ell}\right)+\nabla^{\ell} \bar{p}_{I}=-\nabla_{j} R^{j \ell}
$$

Similarly, bounds on $\nabla^{2} v$ and $\nabla^{2} R$ are required to estimate ∇y_{I} and so on...

Loss of Derivatives

To fully close the argument, we first regularize the Euler-Reynolds flow $(v, p, R) \mapsto\left(v_{\epsilon}, p_{\epsilon}, R_{\epsilon}\right)$ using a mollifier $\eta_{\epsilon} *$

$$
\begin{aligned}
\partial_{t} v^{\ell}+\nabla_{j}\left(v^{j} v^{\ell}\right)+\nabla^{\ell} p & =\nabla_{j} R^{j \ell} \\
\Rightarrow \partial_{t} v_{\epsilon}^{\ell}+\nabla_{j}\left(v_{\epsilon}^{j} v_{\epsilon}^{\ell}\right)+\nabla^{\ell} p_{\epsilon} & =\nabla_{j}\left[v_{\epsilon}^{j} v_{\epsilon}^{\ell}-\left(v^{j} v^{\ell}\right)_{\epsilon}+\eta_{\epsilon} * R^{j \ell}\right]
\end{aligned}
$$

We apply the Constantin-E-Titi commutator estimate to bound the resulting Stress for $\epsilon \sim \widehat{\Xi}^{-1}$ not too small.

This regularization gains derivatives (with acceptable bounds on higher, "borrowed" derivatives), and allows the whole scheme (i.e. Regularize \mapsto Gluing \mapsto Convex integration with Mikado flows \mapsto repeat) to close.

Thank you!

