Dr Filippo Cagnetti

Senior Lecturer in Mathematics


Contact

Department of Mathematics
University of Sussex
Pevensey 2 Building
Falmer Campus
Brighton BN1 9QH
UNITED KINGDOM

Phone   +44 (0)1273 678311
Email   f.cagnetti@sussex.ac.uk

Mathematical Interests

  • Isoperimetric Inequalities
  • Geometric Measure Theory
  • Free-boundary Problems
  • Homogenization
  • Fracture Mechanics
  • Partial Differential Equations

Education

         2007   PhD in Applied Mathematics, SISSA, Trieste

         2003   MSc in Theoretical Physics, "La Sapienza" University, Rome

Photo

News


Publications

For a preprint version of my publications see CVGMT.
  • F. Cagnetti, M. Perugini, D. Stöger: Rigidity for perimeter inequality under spherical symmetrisation (submitted).

  • L. Caffarelli, F. Cagnetti, A. Figalli: Optimal regularity and structure of the free boundary for minimizers in cohesive zone models (submitted).

  • F. Cagnetti, G. Dal Maso, L. Scardia, C.I. Zeppieri: Stochastic homogenisation of free-discontinuity problems.
    Arch. Ration. Mech. Anal. 233 (2019), no. 2, 935-974.

  • F. Cagnetti, G. Dal Maso, L. Scardia, C.I. Zeppieri: Γ-convergence of free-discontinuity problems.
    Ann. Inst. H. Poincaré Anal. Non Linéaire 36 (2019), no. 4, 1035-1079.

  • F. Cagnetti: Rigidity for Perimeter Inequalities under symmetrization: state of the art and open problems.
    Port. Math. 75 (2018), no. 3, 329-366.

  • F. Cagnetti, M. Colombo, G. De Philippis, F. Maggi: Essential connectedness and the rigidity problem for Gaussian symmetrization.
    J. Eur. Math. Soc. 19 (2017), no. 2, 395-439.

  • M. Artina, F. Cagnetti, M. Fornasier, F. Solombrino: Linearly Constrained Evolutions of Critical Points and an Application to Cohesive Fractures.
    Math. Models Methods Appl. Sci. 27 (2017), no. 2, 231-290.

  • F. Cagnetti, D. Gomes, H. Mitake, H. V. Tran: A new method for large time behavior of degenerate viscous Hamilton-Jacobi equations with convex Hamiltonians.
    Ann. Inst. H. Poincaré Anal. Non Linéaire 32 (2015), no. 1, 183-200.

  • F. Cagnetti, M. Colombo, G. De Philippis, F. Maggi: Rigidity of equality cases in Steiner's perimeter inequality.
    Anal. and PDE 7 (2014), 1535-1593.

  • F. Cagnetti, D. Gomes, H. V. Tran: Convergence of a semi-discretization scheme for the Hamilton-Jacobi equation: a new approach with the adjoint method.
    Appl. Numer. Math. 73 (2013), 2-15.

  • F. Cagnetti, D. Gomes, H. V. Tran: Adjoint methods for Obstacle problems and Weakly coupled systems of PDE.
    ESAIM Control Optim. Calc. Var. 19 (2013), 754-779.

  • M. Barchiesi, F. Cagnetti, N. Fusco: Stability of the Steiner symmetrization of convex sets.
    J. Eur. Math. Soc. 15 (2013), 1245-1278.

  • F. Cagnetti, D. Gomes, H. V. Tran: Aubry-Mather measures in the non convex setting.
    SIAM J. Math. Anal. 43 (2011), no. 6, 2601-2629.

  • F. Cagnetti: k-quasi-convexity reduces to quasi-convexity.
    Proc. Roy. Soc. Edinburgh Sect. A 141 (2011), 673-708.

  • F. Cagnetti, L. Scardia: An extension theorem in SBV and an application to the homogenization of the Mumford-Shah functional in perforated domains.
    J. Math. Pures Appl. 95 (2011), 349-381.

  • F. Cagnetti, R. Toader: Quasistatic crack evolution for a cohesive zone model with different response to loading and unloading: a Young measures approach.
    ESAIM Control Optim. Calc. Var. 17 (2011), 1-27.

  • F. Cagnetti: A vanishing viscosity approach to fracture growth in a cohesive zone model with prescribed crack path.
    Math. Models Methods Appl. Sci. 18 (2008), no. 7, 1027-1071.

  • F. Cagnetti, M. G. Mora, M. Morini: A second order minimality condition for the Mumford-Shah functional.
    Calc. Var. Partial Differential Equations 33 (2008), no. 1, 37-74.


  • Teaching

    My teaching material is available at Study Direct.

    Last updated 16 August 2019