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Abstract

Dynamic neuro-controllers are incrementally evolved for
reaching and tracking movements by a physically simulated
robot arm. An active vision system capable of controlling
gaze direction and focus replaces the need for internal mod-
els of the robot. It is shown that closing the feedback loop
allows for robot control being robust to changes in environ-
ment, sensors and robot-morphology.

Introduction
The task of controlling a robotic arm can be defined as the
movement of the end-effector to visually identified positions
or along particular trajectories in workspace. For visually
guided movements, computational approaches traditionally
consist of the following stages: i) a visual observation of
the target is translated to desired position and orientation
of the robot’s end-effector by using visual pre-processing,
feature extraction, inverse perspective projections or other
computer vision based methods; ii) inverse kinematics is
used to translate the desired end-position into a set of de-
sired joint angles; iii) trajectory planning: a path, i.e. a se-
ries of intermediate points is calculated in joint space along
which the robot moves from its current state to the desired
state; iv) actuator commands (e.g. torques) are calculated
which when applied to the arm move the end-effector along
the desired intermediate points (dynamics problem). All of
these transformations depend on using a correct model of
the robot. For accurate control, these models must be con-
structed and calibrated so that they correspond with the pa-
rameters of the real robot. This introduces several problems.
First, supervised learning schemes (Massone, 1998; Jordan
and Wolpert, 1999) are difficult to apply if obstacle avoid-
ance or other non-trivial behaviors are to be taken into ac-
count. Representative input-output samples describing the
correct behavior are hard to produce in this case. Secondly,
these controllers rely on static configurations of their envi-
ronment as well as their sensorimotor interfaces. Because
they use models calibrated to a particular environment and
robot morphology, they can’t adapt to changing environ-
ments or bodily reconfigurations. This rigidity leads to high

costs of maintenance and calibration. Lack of flexibility can
be solved either by re-calibrating the internal model during
the robot’s lifetime, or alternatively by foregoing the use of
a model at all. Instead, the robot-environment feedback loop
can be closed and a controller constructed which translates
directly from sensory input to joint dynamics (e.g. (van der
Smagt, 1995)).
This report deals with the second alternative. It shows how a
minimalistic approach inspired by evolutionary robotics and
the dynamical systems perspective allows for flexible and
robust robot control without using prior knowledge about
the robot and its environment in form of internal models. In
summary, neural controllers are evolved to use low-level ac-
tive vision for the guidance of a physically simulated robot
arm. By using a genetic algorithm, the robot controller is
evolved to directly translate from the visual domain to joint
dynamics in order to reach for and track objects in its en-
vironment. Since the controller does not use any models
of the robot or its sensors, there is no need for calibration.
Instead of computationally expensive processes involving
filtering, edge finding, feature extraction, flow field analy-
ses or transformation of data into world-based frames-of-
references, this system relies on active and egocentric low-
level vision only.

Methods

Robot platform
The robot arm in this project is an articulated model
that consists of three segments linked by 1-dimensional
rotational joints which are controlled by angular motors.
The motors apply torque to a joint in order to pivot it at a
desired speed. In the experiments described, torque limits
are set and neural networks control the arm by specifying
the desired velocities for each joint. Also, the range of
motion of two connected bodies is limited by setting stops
on the joint (maximum and minimum angles). Calculation
of the physics (including gravity and inertia) is provided
by ODE (http://opende.sourceforge.net). Figure 1 shows
the configuration of the robot arm. To avoid both complex
image processing (as e.g. in triangulation from stereoscopic



Figure 1: Robot arm, laser range sensors, and camera images.

images) as well as incorporation of prior knowledge (as
in heuristics on the relation between image- and actual
size of objects) a rather atypical sensor system was used
to provide 3-dimensional visual information: a minimal
camera system consisting of a two-dimensional array of
“laser range sensors” (figure 1). Each individual sensor is
a light-ray whose output is proportional to the distance of
its collision with an object in the world. A number of such
rays is arranged in a rectangular grid. The rays all originate
at the same focal point in space and the angle between them
determines the camera’s field-of-view. By changing this
angle, a camera effectively has an adjustable focus and thus
control over image resolution1. In fact, two such cameras
were used in this project. The first one is a world-based
camera mounted above the robot arm. Its position is fixed,
but it is able to move in two degrees-of-freedom: pan
around the vertical axis and tilt around its local x-axis. The
second camera is mounted to the end-effector (eye-in-hand,
or egocentric setup). The advantage of this camera is that
the information it provides is relative to the end-effector
and can be used in the final approach to target objects even
when the arm occludes the first camera.
In addition to visual input, controllers also have access to
proprioceptive information. Angles of the three robot joints
as well as the orientation of the camera can be used by the
modular neurocontrollers.

Neuro-Controller
Continuous-time recurrent neural networks are used for the
neurocontrollers. The state of each node is described by

τiẏi = −yi +
∑

∀j

wjiφj(yj + ϑj) + gIi(t) (1)

1A similar active vision system was evolved in (Kato and Flo-
reano, 2001) to perform shape discrimination

where yi is the cell potential of that neuron, τi its time
constant, wji the weights of incoming synapses, φ the
sigmoidal function φ(x) = 1/(1 + e−x) calculating the
firing rate, ϑ the threshold of the neuron and gI gain-scaled
input respectively. The parameters for each neuron are ob-
tained from appropriate scaling of elements in the genotype
(distributed over the range [0,1]). Weights and biases were
scaled to the interval [−4, 4], time constants to [0.1, 10] and
input gains to [0, 10]. The Euler method with a time step of
0.2 was used for integrating the differential equations.

Genetic Algorithm
A genetic algorithm was used to evolve fixed network archi-
tectures. A linear ranking selection scheme and stochastic
universal sampling were used for reproduction. Also,
elitism was applied by always keeping the best individual
of each generation. Recombination is realized through
an ordinary two-point crossover operator. The particular
form of mutation used is a variation of the creep operator
determined by two parameters: one specifies the maximal
amount of mutation for all components while the other
one determines the probability of mutation for individual
components. Mutated values are clipped to the interval
[0, 1].
An incremental approach to evolution was used in three
different ways. First, the desired behavior was decomposed
into several independent behavioral competencies. The
overall system was then partitioned into sub-modules which
are individually evolved to produce one of the more basic
behaviors. Secondly, some of the modules were evolved
to produce solutions to a series of increasingly complex
evaluation tasks. This was done to avoid local minima of
unsatisfying solutions when the initial search space was
too big. Finally, evolutionary parameters (such as muta-
tion probability) sometimes were interactively decreased
throughout evolution to allow for the population to converge
on and optimize the best solution it had found so far.

Fitness Evaluation
The performance measure to be maximized by the con-
trollers consists of mainly two terms. First, those controllers
receive higher fitness that reduce the Euclidean distance
between the robot end-effector and the target from the
beginning of a trial to its end. From the distance at time
t (dt) and the distance at the start of the trial (d0) this
fitness value is given by fd = 1

T

∑T

t=0
(1 − dt

d0

) where T is
the total number of time steps per trial (in the case of the
camera trying to center the target, angular distance between
direction of view and direction of target was the measure
used). The second fitness term tries to minimize movement
at the end of the trial so that the robot arm finally comes to
a stop: fv = 1 − 1

θ̇max

∑3

i=1
(θ̇i), where θ̇i are the absolute

velocities of all joints and θ̇max the maximum velocity.
Although breaks will be used in some experiments at the



end of movement, smooth deceleration towards targets is
more desirable. Usually, this term is multiplied with the
distance measure at the end of a trial, such that high fitness
values can be achieved only if the robot arm simultaneously
gets close to the target and has minimum velocity.
Each individual in the population is tested in several trials
of fixed length. At the beginning of each trial the robot
arm and the external camera are initialized to their resting
positions, while the target is placed randomly in a cubic
volume within the arm’s workspace. The overall fitness of
a controller is calculated after its last trial by averaging its
individual trial fitnesses.

Experiments
Preliminary experiments without the visual system had
shown that a single feedforward CTRNN can be evolved
to move the robot arm in ways appropriate for reaching
and tracking (using Cartesian coordinates of end-effector
and target as well as joint angles as inputs). When cameras
were included however, the system was broken down into
four neuro-controllers which were evolved successively.
The first one enables the external camera to find and centre
on objects within its visual field. The second module
controls the horizontal orientation of the robot arm and
makes it align with the camera’s direction of view. The
third controller is responsible for finding and closing in on
the target in the vertical plane, while keeping the orientation
of the end-effector such that the target could actually be
grasped. An optional fourth controller is connected to the
eye-in-hand camera, and allows the arm to track an object
even when it is occluded by the arm on the image of the
external camera.

External Camera
The external camera has a global view on the scene, and
if it’s able to centre on the target, its angular position
and the distance information of its sensors can be used to
inform the arm about the location of the target. The neural
network controlling this camera (figure 2) was designed
taking into account the symmetries (vertical and horizontal)
of the task as well as the sensor arrangement. Through
this ‘quadlaterally symmetric’ architecture, incorporating
knowledge about the task (not the robot or its environment),
the control problem is simplified and evolutionary search
made easier. Parameters of the 104 neurons in the controller
were encoded by 42 real numbers (in addition to symmet-
rical connections, biases and time constants were shared
extensively). The initial angle of the camera’s focus and the
random positions of the target were initialized such that the
target was always located within the camera’s field-of-view.
However, since the space between sensory rays increases
with distance from the focal point, objects sometimes lay
in between the rays, thus not producing any input. An
individual’s fitness was equal to the averaged fraction of
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Figure 2: The network has one input neuron per distance sensor
of the camera. All input neurons in a given row or column project
to a hidden neuron using the same weight. Connections from the
left half of the image are mirrored by connections from the right.
Also, rows and columns share the same weights. The hidden neu-
rons symmetrically project to three pairs of output neurons which
control the camera’s pan and tilt angle as well as its focus. To allow
for richer dynamics the pairs of output neurons are interconnected
fully recurrent.

angular distance covered from the beginning to the end of a
trial (fd). After only a few generations valid solutions were
found for reaching for static targets. Near optimal fitness
was achieved by generation 100. The best individuals from
the last 100 generations on average received 98.2% of the
maximum fitness, the population average 89.1%. For static
targets without interference of the arm, the camera within
a few steps reduces the angular distance to less than 0.1◦.
The focus is used by the controller to adjust the camera’s
resolution to the size of the target. While the camera has a
tendency to close the focus, the outer sensory rays are used
to interrupt this behavior. Consequently, the rays optimally
cover the surface of the target object. This behavior is
independent of the size or the shape of the target. The
tendency to reduce the angle between individual rays has
another advantage. If a target initially is positioned between
some of the rays, the focusing behavior makes it likely
that one of the rays will eventually intersect the object.
The evolved focus mechanism turned out to be essential to
achieve a high precision centering response, as well as a
robust way of avoiding distraction through the robot.

Controlling Arm Orientation
Orienting the robot arm is easy if the active external camera
is centred on the target. In this case, all the neurocontroller



has to do is to use the angles of the robot and the camera
to reduce the distance between both. The basic network
evolved for this task is shown in figure 3. A power-switch
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Figure 3: Module controlling rotation around vertical axis.

is used to allow movement (horizontal rotation) of the robot
arm only if the output of the corresponding neuron exceeds
a threshold of 0.5. The controller can thus decide when
to start and stop moving depending on its input (e.g. the
camera’s focus). With this information available, controllers
can evolve which wait until the camera has found the target
before making the arm interfere with its sensors. Given a
population size of 60, a valid solution was existent in the
first randomly initialized population. Using the distance
between arm and target as well as the arm’s velocity at
the end of a trial for the fitness function (F = fda

∗ fv),
the averaged performance of the last 10 generations was
99.94% of the maximum for the best individual and 96.93%
for the population average. In 100 trials, the best controller
of the last generation on average reduces the angular error
to 0.56◦ (with a standard deviation of 0.14◦). The velocity
of the arm at the end of a trial is negligible. It can also be
observed, that the arm only starts to move after the camera
has focused on the target.

Reaching
In the next step, the eye-in-hand camera was included
for approaching the target in the vertical plane. The task
to be solved consists of two parts. First, because in the
initial state targets will most likely not be located within
the field-of-view of the eye-in-hand camera, the arm has
to be moved to a position from which the object can be
perceived in the first place. Such a behavior necessitates
spontaneous internal dynamics of the controller, since no
sensory information will be present at this stage (possible in
CTRNNs through (self-)recurrent connections and non-zero
biases). Once the object intersects the internal camera’s
sensors, the arm can be guided towards the target position.
After experimenting with different neural architectures,
it became apparent that the two joints can be assigned
different roles. While the third joint (controlling the limb to
which the camera is attached) mainly has to centre the target
on the camera’s field-of-view, the second joint can and must
be used to approach the target. This task-decomposition
inspired the neural architecture shown in figure 4. The
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Figure 4: Neuronal modules controlling second and third joint.

idea is analogous to the controller for the external camera.
Instead of having an array of input neurons however, a
hidden neuron directly receives the average of all sensory
activations from one row of the camera array. Also, because
of the task decomposition employed, all information needed
for controlling joint j2 is the relative distance of the target.
Directional information is only needed for centering the
target(j3). Hence, the module controlling θ2 only receives
the overall average of sensor activation.
The controller was evolved using a fitness function consist-
ing of several different terms. First, throughout the trial an
individual was rewarded for maximizing the average sensor
activation so as to favour individuals which came as close to
the target as possible. Secondly, controllers were rewarded
for reducing the angular distance to the target. This term
enforced the arm to approach the target full frontal rather
than from an angle which would not allow to actually
grasp the object. This was necessary because there were no
additional degrees of freedom in the wrist which could be
used to independently orient the hand relative to the target.
Third, controllers were punished whenever their joint angles
reached their limits. This way, individuals were filtered out
which took over the population by producing stereotypic
movements. Finally, at the end of a trial the product of
the terms for reducing angular distance and minimizing
velocity was added to the fitness. Individuals which did no
move at all or got stuck on the robot base or the camera
fixture were assigned a fitness of zero.
A first evolutionary step produced controllers which made
the arm centre the target on the image of the camera but
failed in actually approaching it. Also, it produced small
oscillations around the direction of the target. To make the
arm approach the target, in a second incremental step the
best solution so far was further evolved using a fitness func-
tion having larger weights on the absolute distance covered
and the final velocity. Additionally, another power-switch
was included which depending on the averaged activation
level of the camera could stop the second and third limb
from moving.
From the trajectory in figure 5 and figure 6 it can be seen
that the distance is now minimized in each of the three
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Figure 5: Positioning task: trajectories of end-effector and elbow
joint and projection on three planes. Dots mark the position of the
target. End-effector and target are initially positioned on opposite
sides of the robot base along the y-Axis.

dimensions. In 100 trials, the average Euclidean distance
at the end of a trial was 0.24 (which is roughly 1% of the
length of the arm). The behavioral strategy is as follows:
after the target is found (t ≈ 90), the arm rotates and lifts
its second limb while slowly lowering the third limb. As
soon as the target object enters the eye-in-hand camera
however (t ≈ 220), the second limb is now lowered in
order to approach the target, while the third limb centers
the object (oscillating movements). The change in camera
activation during approach leads to deceleration of the robot
arm towards the target.

0 100 200 300 400 500 600 700 800 900 1000

0

2

4

θ
1

θ
2

θ
3

0 100 200 300 400 500 600 700 800 900 1000
−0.01

0

0.01

0.02

θ´
1

θ´
2

θ´
3

0 100 200 300 400 500 600 700 800 900 1000
0

50
|d|

Figure 6: Joint angles(top), joint velocities(middle) and distance
from the target for the same positioning task.

At time step 800 the controller uses the power-switch to
stop the arm from moving.

Tracking
Since the arm is almost perfectly aligned with the external
camera and thus occludes the target object whenever it is
close to it, object tracking can not be guided by the external
camera. Instead, the pan angle has to be determined by

the eye-in-hand camera. Consequently, to evolve tracking
behavior, another controller was introduced. Its connectivity
is similar to the controller depicted in figure 4 on the left.
It gets as inputs the averaged activations from individual
columns in the sensory array. This controller however
has feedforward connections only, and as a consequence
of its symmetry does not produce any output if no input
is available. This property in turn allows for a simple
(hand-coded) override mechanism coordinating the two
modules which influence the pan angle (j1). As long as
there is no output from the new controller (in absence of the
target), the corresponding angle is controlled by the external
camera. As soon as the eye-in-hand camera has found the
target however, the resulting input drives the new controller
and its output is used instead. The final evolved behavior
of the robot arm trying to track moving objects is shown
in figure 7. Clearly, the arm is now able to follow moving
targets in all three dimensions.
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Figure 7: Trajectories and projections for a tracking task.

Robustness
The experiments described so far showed that modular neu-
ral networks can be evolved to implement robot controllers
which are able to position the end-effector appropriately for
grasping visually identified objects. The main advantage of
such a controller is that it is not based on calibrated models
of the robot, the sensors or the environment. Hence, it
should be robust to all kinds of alterations in these factors
without the need to re-evolve. In order to check for this
property, the final controller was tested on a series of
different conditions. Table 1 summarizes the average results
from 13 tests of 100 trials each. In the first three tests the di-
ameter of the spherical target object was varied. Obviously,
the smaller the target, the higher the precision. Two reasons
can be given for this result. First, a smaller target leads to a
smaller angle of the external camera’s focus, and hence to
a better resolution and precision in its centering response.
Secondly, if all sensors are equally activated (very close to



Condition µend σend µavg σavg

�t = 2.0 0.35 0.69 13.76 2.62
�t = 1.5 0.24 0.3 11.26 1.73
�t = 1.0 0.22 0.16 11.50 2.34
no switch 0.43 1.12 11.81 2.48
1/2 ∗ θ̇max 0.86 1.61 20.12 3.02
1/2 ∗ θ̇max, g/9.0 0.2 0.15 22.52 4.34
2 ∗ θ̇max 6.17 5.51 12.32 5.51
IO-input 0.3 0.59 11.13 1.75
|l3| + 3.0 0.27 0.24 10.9 1.19
|l3| + 6.0 0.47 0.32 10.75 1.11
|l2| + 10.0 0.44 0.29 18.05 1.79
|l2|, |l3| + 10.0 0.57 0.40 16.66 0.88
|l2| + 10.0, |l3| + 5.0 0.50 0.36 16.96 1.36
g/9.0 0.31 0.27 12.8 3.12

Table 1: Performance measured over 100 trials. µend and σend

denote the mean and standard deviation of the distance measured
at the end of the trials. µavg and σavg are the corresponding values
averaged over all time steps per trial.

the target), the arm exhibits no centering response anymore
and is being lowered until some rays do not intersect the
target anymore. Now, the bigger the object, the bigger the
range of movement the arm can produce until the centering
response is elicited again. Consequently, there is a bigger
variance in positioning and hence a lower precision (if the
target gets too small however, the external camera will have
problems finding it). In another test, the functionality of
the power-switch was deactivated. The result is an increase
in the variance of the final position, because the arm starts
producing small oscillations around the target again. Next,
the output-gains determining the maximal velocity of the
joint motors (θ̇max) were changed2. A robot arm producing
only half of the velocity usually produced during evolution,
performs somewhat worse than under normal circum-
stances. The reason is identified by looking at the next
test. Having the same gain but less gravity (g/9.0), restores
performance to the expected level. Hence, it is likely that
having a decreased maximum velocity, and thus less force
because ODE applies an amount of force that is needed
to achieve the desired velocity, it is harder for the arm to
compensate for gravitational force. Doubling the velocity
gain, in contrast, leads to movements so erratic that the arm
can not reliably center on the target anymore and thus often
misses the target completely. To test for independence from
details of the sensors, in one test the inputs to the module
controlling the centering response were changed to binary
mode rather than continuous values encoding the distance
of intersection (IO-input). Thus a sensor’s response is 1 if
intersection occurs and 0 otherwise. As can be seen from
the table, there is no considerable decrease in performance.
This setup could be useful when implementing a real robot

2The length of the trial was also changed to allow the robot to
move the same distance.

system. A sampling mechanism combined with a threshold
function applied to a traditional camera image could provide
the same kind of visual feedback as used in the simulation.
Another set of tests varied the length of the limbs (|li|).
Since the usual lengths were 16 and 9 units for the second
and third limb respectively, adding 10 units to each limb
means a lengthening by 110% for limb 3 and 62.5% for
limb 2. However, even in the most extreme cases the
performance decreases only gradually. The accuracy would
still be good enough to actually grasp the object. Finally,
reducing gravity to a ninth of the usual value does not affect
performance either.

Conclusions
Robotic sensorimotor-coordination was re-formulated as the
problem of designing embodied, situated and adaptive con-
trollers which are dynamically coupled to an ever chang-
ing environment. This was seen in contrast to classical ap-
proaches in which a series of internal representations is gen-
erally constructed. It was shown that simple modular neu-
ral networks can be evolved as model-free controllers for
visually-guided robot motion. Spatial coordination (align-
ment of gaze direction and arm orientation) and temporal
coordination (delaying movements until target is identified)
were achieved by coupling individual modules through pro-
prioceptive feedback. In this approach, neither were explicit
coordinate-transformations necessary, nor the learning of
robot models or sensor calibration. The resulting system is
able to reliably position and track objects in its environment
and is robust to changes in sensory-, environmental- and
morphological parameters. Its behavior is general enough
to allow for the desired outcome even without the need for
adaptation. For validation of these results, future experi-
ments will aim at evolving a similar control scheme on a real
robot in order to compare it with the simulation. Also, the
particular form of end-effector trajectories can be improved
by adding additional costs to the fitness function which are
analogous to well-known trajectory optimization principles
like minimum variance, minimum torque-change or mini-
mum jerk (Jordan and Wolpert, 1999).
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