Compilers

Des Watson
January 2009

These notes outline the main topics covered in the Compilers course. They are based on material in [21]
and some sections are taken directly from this book.

Programming languages can be divided into two broad and overlapping categories — these are the low-level
languages and the high-level languages. The key advantage offered by high-level languages is abstraction,
allowing irrelevant detail to be ignored. Other advantages include easier solution of problems, they are
easier to learn and understand, they are more likely to be self-documenting, they result in easier debugging,
modification and maintenance.

1 Comparing high-level languages

This is a list of some of the aspects of high-level languages that can form a basis for comparisons.

e Broad classification — is the language imperative, functional or in the logic programming category? Is
it procedural or non-procedural/declarative? Is the language object-oriented?

e Language structure — language definition, program structuring facilities, subprograms (procedures,
functions, subroutines, methods) and parameter passing, facilities for separate compilation.

e Data access and manipulation — variable declaration, typing and scope, data structuring, operators.

e Control structures and executable statements — range of executable statements, extensibility, concur-
rency.

e Language implementation and debugging — efficiency, interaction with the environment, ease of de-
bugging.

e Readability and writability — correct programs, complexity, portability, orthogonality, layout rules,
comments.

2 Structure of a compiler

A compiler is a program that translates the source form of a program (expressed in a high-level language) into
an equivalent target machine language form. This target machine can be a “real” machine (such as a Pentium
processor) or a virtual machine (such as the Java Virtual Machine).

Simple languages that are suitably defined can be compiled one statement at a time (or at least in groups of
small numbers of statements) by a one-pass compiler. Such compilers are usually simple, fast and potentially
easy to write. But many languages have features that make one-pass compilation difficult or impossible. So
a multi-pass compiler is used.

Compiling is logically split into two phases — analysis of the source program and synthesis of the object
program.

2.1 Lexical analysis

This phase reads the characters of the source program and recognises the basic syntactic components that
they represent. Spaces, newlines and other layout characters are normally discarded (but beware — in some
languages, these “layout” characters may be syntactically significant). Comments are ignored in the lexical
analyser and are not passed to later stages of compilation.

2.2 Syntax analysis

This phase recognises the syntactic structure of the sequence of basic symbols delivered by the lexical anal-
yser. A syntactic check of the program is performed and the abstract syntax tree or equivalent data structure
is built. The tree may be annotated with additional information needed later in compilation (such as type
information, required by the semantic analyser and code generator).

2.3 Semantic analysis (translation)

This pass deals with the scopes of identifiers, declarations, type checking, the allocation of storage and
selection of polymorphic operators and the insertion of automatic type transfers. It can flatten the tree into a
linear sequence of basic operations. It usually creates a representation of the program in some form of linear
intermediate language.

2.4 Code generation
This pass converts the output from the semantic analysis phase into target machine instructions. It has to deal
with the problems of the allocation of machine registers, selection of machine instructions and so on.

2.5 Code optimisation

This is an optional phase, often integrated with the process of code generation, and attempts to produce
smaller and/or faster code from the output of the code generator. Usually, optimisation techniques are built
into the code generator itself, and also into a phase after semantic analysis and before code generation (opti-
misation at the intermediate code stage can be particularly profitable), but there are optimisation techniques
that can be applied as a separate pass once code has been generated.

This multi-module and potentially multi-pass approach outlined above has several important advantages:

e It makes a large task feasible to handle — consider software engineering issues. The job of writing
the compiler may be more easily shared between a group of programmers, each working on separate
passes.

e It is possible to reduce storage requirements of the compiler by overlaying passes.
e Modifications to the compiler often require modification to one pass only, and are thus simpler to make.
e The compiler is easier to describe and understand.

e More of the compiler can be target machine independent. Hence portability can be enhanced.

3 Language description

Typically, the specification of a language will be in three parts:

(a) the set of symbols that can be used in valid programs,

(b) the set of valid programs, and

(c) the “meaning” of each valid program.

Loosely, syntax is concerned with (a) and (b) and the semantics of the language is concerned with (c).

3.1 Syntax description

A language used to talk about another language is called a metalanguage.

3.2 Backus-Naur Form (BNF)

BNF is a metalanguage which was used to used to describe the syntax of ALGOL 60 and many other more
recent languages. The metasymbols of BNF are:
::= separates a phrase name from its definition
| separates alternative definitions of a phrase
<> indicates that the intervening characters are to be considered as a unit.
For example:

<expression>::=<term>|<expression>+<term>
<term>::=<primary>|<term>*<primary>
<primary>::=x | y | z

An example of an expression is therefore x*y+z.
Syntax can also be specified using syntax diagrams. For example, the syntax diagram defining the syntax
of a Pascal constant could be written as in figure 1.

,]l Constantldentifier

UnsignedNumber

CharacterString %

Figure 1: Syntax diagram defining a Pascal constant.

Extended BNF (EBNF) is very similar to BNF but includes several additional metasymbols which result
in more compact and often more comprehensible syntax rules. For example, an AssignmentStatement could
be defined as:

AssignmentStatement = (Variable | Functionldentifier) ”:=" Expression.

3.3 Terminology

The alphabet of a language is the set of all characters that may appear in strings of the language. These are
the terminal symbols (symbols of the object language).
Symbols in the metalanguage that denote strings in the object language are called non-terminal symbols.

ELE TSNS L I T L)

For example, in the grammar defined above, the terminal symbols are “+”, “x”, “x”, “y” and “z”, and the
non-terminals are “expression”, “term” and “primary”.

The starting symbol is a distinguished non-terminal symbol from which all strings in the language are
defined.

A production is a string transformation rule having a left-hand side that is a pattern to match a substring
(possibly all) of the string to be transformed and a right-hand side that indicates a replacement for the matched
part of the string. The grammar above consists of three productions.

The grammar of a language consists of a set of productions having a unique starting symbol. Formally, a
grammar is a 4-tuple G = (N, T, X, P) where
N is the set of non-terminal symbols
T is the set of terminal symbols
¥ is the starting symbol, £ € N
P is the set of productions a — B (& # null)

NNT =0 (i.e. asymbol cannot be both a terminal and a non-terminal).

A sentential form is any string that can be derived from the starting symbol. A sentence is a sentential

form consisting only of terminal symbols.

3.4 Chomsky classification
Type 0

a—f
o must be a member of U™ and 8 must be a member of U*. U™ is the positive closure of the set U —i.e. the

set of all non-empty strings that can be formed by the concatenation of members of U. U* is the closure of U
— that is, the set UT U {e}.

Type 1 (context sensitive)

aAB — ayp

o, 3, v are members of U*, ¥ is not null, A is a single non-terminal symbol.

Type 2 (context free)
A—vy

A is a single non-terminal, ¥ is a member of U*.

Type 3 (finite-state)

A—a
or A— aB

A and B are non-terminal symbols and a is a terminal symbol. The right hand side consists only of a terminal
symbol or a terminal followed by a non-terminal.

3.5 Two-level grammars

BNF (and other similar metalanguages) seems to be well-suited to describe the syntax of many programming
languages. But specification of semantics is also important. The semantics of a language can be considered
in two categories:

e dynamic semantics, defining what will happen when the program actually runs, and

e static semantics, which gives all the information about the form of the program, obviously directed
towards the compiler writer or to the programmer, such as the necessity for the declaration of variables
and so on.

A reasonable aim is to extend the tools of syntax specification to include some of the above semantic
notions. In order to do this, the conventional context-free tools (like BNF) have to be abandoned.

Van Wijngaarden grammars allow the syntactic treatment of context dependencies. One-level Van Wi-
jngaarden grammars are equivalent to the conventional context-free grammars. Two-level Van Wijngaarden
grammars generate the productions of a one-level Van Wijngaarden grammar by means of a grammar. AL-
GOL 68 is a language that has been described in this way.

3.6 Derivation and parsing

It is helpful to look first at the process of derivation; that is, the process of taking the starting symbol and
repeatedly replacing non-terminals according to the production rules. The derivation where the leftmost
non-terminal is replaced at each step is called the leftmost derivation; similarly, the rightmost derivation
involves the replacement of the rightmost non-terminal at each step.

Consider the syntax definition:

<expression> — <term> | <expression> + <term>
<term> — <primary> | <term> * <primary>
<primary> — alb|c

Using this grammar, the leftmost derivation of a * b + ¢ from <expression> is:

<expression>

<expression> + <term>

<term> + <term>

<term> * <primary> + <term>
<primary> % <primary> + <term>
a*x <primary> + <term>

a*b+ <term>

a* b+ <primary>

axb+c

The rightmost derivation is

<expression>
<expression> + <term>
<expression> + <primary>
<expression> +c

<term> —+c

<term> x <primary> +c
<term> xb+c

<primary> xb+c

axb+c

Parsing or syntax analysis is the process of finding the syntactic structure associated with an input sen-
tence. A parse should specify which productions are being used, and in which order. The process of parsing
is the reverse of the process of derivation.

A canonical parse starts at the left hand end of the sentential form and first applies the production that
reduces the characters furthest to the left (in the reverse order of the rightmost derivation). This then produces
a second sentential form, and the process is repeated as required. The substring that is reduced by the first
reduction in the canonical parse is called the handle of the sentential form.

A language is said to be unambiguous if there exists one and only one canonical parse for every sentence
of the language. One of the most famous examples of ambiguity is the if...then...else statement of several
high-level languages.

Parsing is seldom simple — powerful and/or ad hoc methods may be required to deal with some aspects
of some languages. It may be necessary to employ techniques involving backtracking, but this should be
avoided if at all possible in order to maintain efficiency and simplicity.

4 Lexical analysis

The lexical analyser is the first step of the analysis phase of the compiler and some care in the choice of
implementation algorithms has to be taken since it can account for a significant proportion of the compilation
time. The function of the lexical analyser is to split up the source program into a set of basic symbols (tokens,
atoms, lexemes). Information about these symbols is then passed to the syntax analyser.

The syntax analyser could, in theory, perform the functions of the lexical analyser, but these two modules
are usually separated for several reasons:

e The compiler is split into more manageable pieces.

e Since the syntax of these basic symbols can be specified by a very simple grammar, there is generally
no need to use the heavyweight techniques that usually have to be adopted by the syntax analyser.

e It makes the syntax analyser simpler and faster.

If the syntax of the symbols can be specified by a type 3 grammar (a regular grammar), then it is possible
to construct a simple and efficient lexical analyser.

A regular expression is composed of characters and operators for concatenation (space), alternation (),
repetition (*) and parentheses for grouping. For example, (a b | c)* d is the specification for a set of
strings including d, abd, cd, ababd, abcd, etc.

Using simple rules, regular expressions can be converted to transition diagrams. A transition diagram
can be used as the basis of a recogniser algorithm.

The transition diagram can be drawn as a directed graph with labelled branches. For example,
(a b | ¢)* dcanbe shown as in Figure 2:

start

Figure 2: Directed graph with labelled branches

Each of the nodes is called a state, and each labelled branch is called a transition. Note the close relationship
between this type of diagram and a type 3 grammar.

Implementation of a parser based on the directed graph is made easier by writing the graph as a transition
matrix (the states marked ‘—’ indicate a syntax error). This is illustrated in Figure 3.

input symbol

state | a b ¢ d
1 2 — 1 3
2 — 1 — —
3 finished

Figure 3: Transition matrix for the regular expression (ab|c) *d

In a program using such a technique, each matrix entry could identify a routine to handle the transition
and set up the next matrix row to be used.

This technique is fast and simple, but if used on a large scale, some method should be used for storing the
sparse matrix in a reasonable amount of storage — the transition matrix can become very large.
This parser can be considered as a finite-state automaton which is specified by:

e a finite set of control states,
e the allowable input symbols,

e the initial state,

o the set of final states (i.e. the states indicating acceptance of the input), and

o the state transition function (i.e. given the current state and the current input symbol, the function that
specifies the set of possible next states).

If the state transition function is such that for any pair of current state/input symbol there is only one
possible next state, then the parser is a deterministic finite-state automaton (DFA). However, if several next
states are possible given a current state and an input symbol, then a non-deterministic finite-state automaton
(a NFA) is the result.

An example of a NFA is shown in Figure 4:

a
—_y
b

))

Figure 4: A non-deterministic finite-state automaton

This is nondeterministic because there are two branches labelled “a” emerging from state 1.

Suppose the above machine is in state 1 and it receives an “a”. Then it goes into states 1 and 2 simulta-
neously, replicating itself so that one instance of itself exists for each of its possible new states. The device
accepts the input if any of its parallel existences reaches a final accepting state.

Given a regular grammar, it is possible to construct a state diagram and then a NFA or a DFA. Any sen-
tence of the grammar is accepted by the automaton, so that running the machine is equivalent to performing
a bottom-up parse.

Simple techniques exist for converting a NFA to a DFA — see the standard textbooks for details.

To summarise — it is possible to construct a lexical analyser as a collection of recognisers for tokens
where each token is defined as a regular expression, the regular expression is converted into a NFA, the NFA
is converted into a DFA, the DFA is state-minimised and this final DFA is implemented in software. This
forms a formal and potentially automated technique for constructing a lexical analyser.

4.1 Programming a lexical analyser

If the syntax of the symbols of a programming language can be described as a set of regular expressions,
then the techniques described above may be used. Once the state transition diagram has been constructed,
the actual coding of the program becomes relatively simple. Remember that for most real programming
languages, the transition matrix for all the possible symbols may prove to be too unwieldy to handle and so
other more heuristic methods may have to be adopted, such as using these matrices only when recognising
certain symbols (such as floating point numbers).

Care should be taken to define exactly what the lexical analyser should regard as “atomic symbols”.
Also, some thought should be given to the problems of error detection and recovery, but it is usually the
syntax analyser that takes the main responsibility for handling syntactic errors.

Several lexical analyser generating programs exist. These programs usually work by generating the state
transition matrix given the syntax (expressed in the form of regular expressions or BNF or equivalent) of the
basic symbols. These programs are of general applicability and offer a potentially simple way of generating
an efficient and reliable lexical analyser. Sometimes they are integrated with programs that generate syntax
analysers too.

In practice, lexical analysers for real programming languages are usually either written by hand in an ad
hoc manner or written by machine using a lexical analyser generating program. Hybrid methods are some-
times used too. Syntactic complexity of tokens encourages the use of formal techniques for implementation,
making use of automated tools.

5 Syntax analysis

The aim of the syntax analyser is to take the output of the lexical analyser, making sure that the sequence of
symbols conforms to the syntax of the language, and to construct some representation of the program suitable
for input to the semantic analyser (or direct to the code generator).

Chomsky type 3 grammars are in general too restrictive for any reasonable general purpose programming
languages, and so this section is primarily concerned with type 2 and similar grammars.

A parse of a sentential form is the construction of a derivation and possibly a syntax tree for it. We are
only concerned here with left-to-right parsing. There are many possible parsing strategies. One group of
methods starts at the “top” of the grammar (at the starting symbol) and works down towards the sentential
form. This is top-down parsing.

The other major group of parsers starts “at the bottom” and works up towards the goal symbol. The
operation of many of these botfom-up parsers is based on the syntactic relationships between individual
(adjacent) tokens.

Most bottom-up techniques are deterministic since the parser makes a series of definite decisions leading
directly to the correct parse. Some top-down techniques are non-deterministic since they involve some form
of guessing or exhaustive search, requiring backtracking when the guesses are wrong. But backtracking
should be avoided if at all possible.

Working with type 2 grammars where the meaning of a symbol is not dependent on the context of the
symbol makes many parsing problems disappear. Fortunately, this is the case (or at least very nearly the case)
in most current popular programming languages.

Top-down parsing is a comparatively simple idea, but practical difficulties often appear. The goal of
recognising the starting symbol is repeatedly broken down into a series of sub-goals. For example, in order
to recognise S defined as S — AB, A has to be recognised followed by B. If a sub-goal starts with terminal
symbols, these can be matched with the corresponding terminal symbols in the input string. If the symbols do
not match, the sub-goal is not achieved. Backtracking may be necessary — for example, consider A — B|C.
If the input string does not match the sub-goal B, then the parser has to “put back” the symbols read before
attempting to recognise C.

In contrast, bottom-up parsing starts with the input string and repeatedly matches strings that appear on
the right hand sides of productions with the input string, replacing them by the corresponding symbols on the
left hand sides, until just the starting symbol remains.

Consider the process of derivation — the repeated replacement of non-terminal symbols. A leftmost
derivation is one in which the leftmost non-terminal is replaced at each stage. A rightmost derivation is
one in which the rightmost non-terminal is replaced at each stage. A left-to-right bottom-up parser which
reduces characters furthest to the left first produces the rightmost derivation in reverse.

A grammar is said to be LL(K) if a parser can be written for that grammar that can make a decision of
which production to apply at any stage simply by looking at most at the next k symbols of the input. LL(1)
grammars are a simple and important category — simple and efficient top-down parsers can be written for
them.

A grammar is said to be LR(K) if a parser can be written for that grammar that makes a single left to right
pass over the input with a lookahead of at most £ symbols. These grammars can be parsed with bottom-up
parsers, requiring no backtracking.

5.1 Top-down parsing

The abstract syntax tree is constructed by starting at the root node (which corresponds to the starting symbol)
and working down towards the sentence.

5.1.1 A general approach

It is natural to associate a function or procedure to recognise each non-terminal symbol. Implementing
grammar rules of the form A — BC is trivial (the routine A consists of a call to B followed by a call to C), but
handling alternation may give rise to problems requiring the use of backtracking. Managing the exhaustive

following of all paths through the grammar together with the backtracking may result in a complex and
inefficient parser.

Productions of the form E — E+T are called left recursive and a naive implementation of a top-down
parser for such productions will cause problems. The procedure E will immediately call itself recursively
without consuming any input. Left recursion can also arise because of mutually recursive productions. It can
be shown that given a left-recursive grammar, there is an equivalent grammar that is not left-recursive. Simple
formal techniques exist for transforming such grammars, but it may be possible to use repetition to express
the recursion. For example, E — E + T|T can be rewritten as E — T{+T} using the notation of EBNF. This
form using repetition can be translated into recognising code really easily.

It is also possible to transform a grammar to make the provision of backtracking unnecessary in some
circumstances using techniques such as factoring.

Note also the problems of ambiguity which can confuse any parser — either rewrite the grammar rules to
remove the ambiguity or use ad hoc rules within the parser to sort the problem out.

After removing the ambiguity and the left recursion, it is possible to write a top-down backtracking
parser for the grammar. But this is not a popular technique due to complexities and inefficiencies in its
implementation. The need for backtracking prevents this from becoming a practically useful technique. The
grammar has to be modified to make backtracking unnecessary.

5.1.2 Recursive descent parsing (predictive parsing)

These are top-down parsers which need no backtracking. The parser is made deterministic by designing
the grammar so that it is possible to determine which of the alternative productions to use by just knowing
the identity of the current input symbol. Instead, practical parsers have to be written so that they do no
backtracking — they are predictive parsers.

For example, consider the grammar:

< assignment > — < identifier >=< expression >;

< expression > — < expression > + < term > | < term >
< term > — < identifier > |(< expression >)

< identifier > — x|y|z

The second production is left-recursive and it can be written as
< expression > — < term > {+ < term >}

Writing in a language something like C, a recogniser for this grammar could be coded as follows:

char token;

/* We assume the presence of a routine nexttoken() which performs the
lexical analysis, returning the next symbol from the input in the
variable token each time it is called. However, a lexical analyser
for anything but the simplest of programming languages would probably
return an ’int’ rather than a ’char’. */

extern char nexttoken();
extern void error(charx);

void expression();

void identifier()

{
if ((token==’x’) || (token == ’y’) || (token == ’z’))
token=nexttoken() ;
else
error ("Identifier expected");
}

void term()
{
if (token == ’(’) {
token=nexttoken() ;
expression();
if (token != ’)’) error(") expected");
else token=nexttoken();
}

else identifier();

}

void expression()
{
term() ;
while (token == ’+’) {
token=nexttoken() ;
term() ;
}
}

void assignment ()
{
identifier();
if (token != ’=’) error("= expected");
else {
token=nexttoken() ;
expression();
if (token != ’;’) error("; expected");
else token=nexttoken();

In this example, the single token lookahead makes the parser deterministic so there is no need for back-
tracking. One character lookahead is sufficient. Note also that the parser contains no code for the production
of a parse tree, or indeed, for any form of code generation. Code to construct the parse tree can be inserted
comparatively easily within the recognising procedures. Furthermore, for very simple target architectures, it
may be possible to combine code generation with the parsing process.

5.1.3 Error recovery

In the example above, the error recovery mechanism is far too crude to be adopted for a practical compiler.
The assumption is that the error routine outputs the error message and then causes the parsing to halt. Error
detection is easy in a recursive descent parser, but error recovery is far more difficult. A standard technique is
to ensure that the parser is “synchronised” with the input at the beginning and at the end of each recognising
procedure. Each procedure works with two sets of symbols — those that can start a construct being recognised
and those that can terminate the construct. This second set may be augmented by additional symbols passed
to the procedure by its caller.

5.2 Bottom-up parsing

In bottom-up parsing, we start with the tokens in the input string rather than with the starting symbol of the
grammar. The problem is really that of the identification of the handle — the substring to be matched by the
RHS of a production and replaced by the LHS.

10

The bottom-up parsers described here all fall into the category of shift-reduce parsers. The shift operation
reads and stores an input symbol, and the reduce operation matches a group of adjacent stored symbols with
the RHS of a production and replaces the stored group with the LHS of the production.

For example, given the grammar

E—E+T[T
T — TP|P
P —a|blc

it is possible to show the actions of a shift-reduce parser when parsing the sentence a*b+c as shown in
Figure 5.

Stack input string action

a*b+c shift a
a *b+c reduce (P—a)
P *b+c reduce (T—P)
T *b+c shift *
T* b+c shift b
T*b +C reduce (P—Db)
TP +c reduce (T—T*P)
T +C reduce (E—T)
E +C shift +
E+ C shift ¢
E+c reduce (P—-c)
E+P reduce (T—P)
E+T reduce (E—E+T)

Figure 5: Actions of a shift-reduce parser

Parsing is now complete and successful because the stack contains the starting symbol and there is no
further input. But this example makes no attempt to illustrate a technique to determine when to shift and
when to reduce.

5.2.1 Syntax analysis using precedence

There is a certain class of grammars called precedence grammars for which it is possible to write relatively
simple parsers. Given a sentential form of this type of grammar, formal methods may be defined for deter-
mining the handle, enabling us to reduce the sentential form in the canonical parse.

The problem is stated in the following terms. Given the stringRS...., is R always the tail of the handle,
or can both R and S appear in the handle together, or what?

There are three possibilities.

1. Ris part of the handle, S is not. Write R > S. R has precedence over S because it must be reduced first.
R must be the tail symbol of some production.

2. R and S are both in the handle. Write R = S. They have the same precedence so they have to be
reduced at the same time. There must be a rule U—...RS...

3. S is part of the handle, R is not. Write R < S. R has lower precedence than S. S must be the head of
some production.

If there is no canonical sentential form ...RS..., then no relationship exists between the ordered pair (R,S).

11

5.2.2 Construction of the precedence matrix

A matrix can be constructed showing the precedence relationships between all pairs of symbols. The follow-
ing rules are used:

1. A = B if there exists a production P — aABf (a, B can be null).
2. A < B if there exists a production P — a Ay and 7y produces Bz for some string 7.

3. A > B if there exists a production P — oyBf3 and y produces A for some T,
or
if there exits a production P — ayd 8 where y produces ptA, & produces Br.

A language where a unique relationship exists between all pairs of alphabet characters (either =, <, > or
no relationship at all) is called a precedence grammar.

We define the left set of a symbol P (written L(P)) as the set of symbols that can occur on the left (the
head) of any production from P. Similarly, the right set of a symbol P (written R(P)) is the set of symbols that
can occur on the right hand end (the tail) of any production from P.

Finally, we are in a position to define the rules for determining the precedence relations.

1. If there is a production A — ...s;S;i4+1... then s; = sy 1.
2. s; <s; where s € L(si41).

3a. sy >s;41 where s; € R(s;).

3b. s, >s; where s; € R(s;) and s; € L(si41).

Sparse matrix techniques may have to be used in order to store a precedence matrix in the parser. But
it may be possible to assign a numerical value to each symbol, so that when the corresponding values are
compared, the appropriate precedence relation is obtained. Two functions f(X) and g(X) can be defined such
that:

if X < Y then f(X) < g(Y)
if X = Y then f(X) =g(Y)
if X > Y then f(X) > g(¥)

Instead of the table being of size n?, just 2n numerical values have to be stored. Note that these functions
are not unique, and that there are many precedence matrices for which no such functions exist. Also note that
in this representation, the information about pairs of symbols that lack a precedence relationship is lost — an
alternative approach must be used to handle error detection.

5.2.3 Example
Consider the grammar:

Z — bMb
M— (L
M—a

L — Ma)

The left and right sets are:

L(Z) = {b}, L(M) = {(a}, L(L) = {M (a}
R(Z)={b},ROM) = {L) a}, R(L) = {)}

The precedence matrix is therefore as shown in Figure 6.

12

VAR

VAV ITHA
Il

-~ o N
\4

Figure 6: Precedence matrix

5.2.4 Parsing using precedence relations

The method of implementation of a shift-reduce parser presented above can be used. Symbols are read from
the input and pushed one by one onto a stack until there is a > relationship between the top of the stack and
the next input symbol. Then the symbols forming the handle must be on the stack, and symbols are taken
off the stack until there is a < relationship between the top of the stack and the symbol just removed. The
symbols just removed constitute the handle, and the LHS of the corresponding production is pushed onto the
stack.

It can be shown that a precedence grammar is unambiguous.

5.2.5 Problems with precedence grammars

At first sight, precedence parsing looks like a good technique — it is simple and implementations can be very
efficient. However, it is a technique that is now rarely used in practice because it is difficult, if not impossible,
to transform an “average” programming language grammar into a precedence form. For example, consider
the grammar:

P— {E}
E—E+T|T
T — T*F|F
F— (E)|I

From the first two rules, we have { = E and { < E showing that this cannot be a precedence grammar.
However, the grammar may be transformed thus:

P—>{E/}

E —E
E—E+T|T
T —-T

T — T«F|F
F— (E)|I

This is, in fact, a precedence grammar. Unfortunately in this transformation, the grammar has become
significantly more complicated, and large precedence matrices are somewhat difficult to handle.

5.2.6 Operator precedence grammars

In an ordinary precedence grammar as described above, relationships may be defined between all pairs of
symbols. In an operator grammar, we are only concerned with relationships between operators.

An operator grammar is one in which there are no productions containing consecutive non-terminal
symbols. In such a grammar, no sentential form contains consecutive non-terminals (simple to prove this).
In deciding whether an operator grammar is an operator precedence grammar, we only have to consider the
relationships between terminal symbols.

13

An operator precedence grammar is an operator grammar where a unique relationship occurs between
pairs of terminal symbols. These relationships are called the precedence relations of the terminal symbols.
The three relationships are defined as follows:

1. a = b if there exists a production P — otabf or P — aaAbB (A non-terminal, a,b terminal).

2. a <b if there exists a production P — aaAf3 and A produces bx for some & or A produces Db where
D is non-terminal.

3. a >b if there exists a production P — ocAbf and A produces ma for some 7 or A produces waD where
D is non-terminal.

Note that the rule 3b for simple precedence grammars has no equivalent here since consecutive non-
terminals are not allowed.
For example:

S — [E]
E—E+T|T
T —TxF|F
F— (E)|x

The LEFT and RIGHT sets for all the non-terminal symbols are:

LEFT(S) = {[} RIGHT(S) = {]}
LEFT(E) = {+ * (x} RIGHT(E)={+) x}
LEFT(T) = {* (x} RIGHT(T) = {*) x}
LEFT(F) = {(x} RIGHT(F) = {) x}

The precedence matrix can now be constructed:

[] + = () «x
[= < < < <
]
+ > > < < > <
* > > > < > <
(< < < = <
) > > > >
x > > > >

This grammar is an operator precedence grammar because there are no adjacent non-terminals in any of the
productions (hence an operator grammar) and there are no clashes of precedence.

5.2.7 Parsing of operator precedence grammars

The parser is constructed in a similar manner to the simple precedence parser described above, but note that
in the operator precedence grammar, non-terminals are not directly involved in the parsing process. This
makes parsing much simpler, but puts a greater burden of checking operands etc. on other parts of the
compiler. Unfortunately, the error detecting capabilities of these parsers tend to be rather poor. Again, these
operator precedence parsers are of limited applicability, but there are some constructs commonly found in
programming languages for which they can be used very successfully.

5.2.8 LR(k) parsers

LR parsers are efficient bottom-up parsers which can be constructed for a large class of context-free gram-
mars. An LR(k) grammar is one that generates strings each of which can be parsed during a single determin-
istic scan from left to right without looking ahead more than k symbols.

These parsers are generally very efficient and good at error reporting, but unfortunately they are very
difficult to write without the help of special parser-generating programs.

14

The parser maintains a stack containing numerical state values — the state is a coded indication of the
current left context. A convenient way of implementing an LR(1) parser is via a parsing table. Each entry
(indexed by the current input symbol and the state number at the top of the stack) contains a description of
the next action the parser should perform. The possible actions are shift, reduce, accept and error. The table
contains all the information on the grammar — the parsing program itself is then grammar independent.

6 Semantic analysis (translation)

The role of the semantic analyser is to derive methods by which the structures constructed by the syntax
analyser may be evaluated or executed. For example, the semantic analyser in a C compiler must be able to
define an evaluation procedure for expressions by determining the type attributes of the components, selecting
appropriate forms of the operators, issuing error messages if the types are inappropriate and so on. It must
also check that all names have been declared. The semantic analyser or translator phase of the compiler takes
the syntax tree produced by the syntax analyser and “flattens” it ready for the code generator. In this flattening
process, types and declarations are checked, type transfers are inserted where necessary, etc. It is often very
difficult to distinguish the semantic analyser from parts of the code generator since in some compilers, the
functions are combined.

Many compilers use some form of intermediate code as an interface between the analysis and synthesis
phases. There are good portability reasons for the use of an intermediate code that is independent of the target
machine.

6.1 Symbol tables

The symbol table is a central data structure of the compiler. It contains all the names declared within the
program, together with other information such as types, locations, scopes and so on. Type information may
have to be quite complex so that the storage of a single type identifier will not generally suffice. The means
for identifying the run-time location of the name (for example, if it is a variable) obviously depends on the
method used for run-time storage allocation, but scope rules and other semantic or hardware/operating system
features will almost certainly prevent the simple storage of absolute addresses.

7 Code generation

One of the major problems that has to be solved before the code generator is written is that of storage allo-
cation. For some simple languages, storage allocation is comparatively straightforward — where all variable
storage information can be obtained during compilation. Other languages need more sophisticated tech-
niques.

Static allocation can be used for some simple languages where it is possible to decide at compile time the
address that each object will occupy at run time. This implies that the number and size of all possible objects
is known at compile time. But in languages where one can write code of the form:

procedure x(n:integer);
var a:array[l..n] of integer;
begin

there are problems because in such an example, it would not be possible to determine the value of n and hence
the size of the local array a at compile time.
Consider the function fact (written in C):

int fact(int n)
{

if (n==0) return 1;

15

else return n*fact(n-1);

}

An implementation based on static storage allocation would not work here. For each recursive application
of fact, a new location for storing the local variable n is required, and since the depth of recursion is not
known at compile time, static allocation cannot cope. In order to implement such routines, dynamic allocation
is required.

Dynamic allocation is required for recursive routines and also for arrays with calculated bounds. Usually
a stack is involved, and all local variables are allocated on the stack. The code generated by the compiler
when accessing any of the local variables has to be via a stack pointer. Normally a machine register is used
to contain the value of the current stack pointer.

Some linkage information also has to be stored on the stack, such as a routine return address and the old
stack pointer so that the old environment may be restored on return.

Consider a language like C where variable declarations are allowed in each block.

{
int a,b,c;
{
int c,d,e;
¥
}

In the outer block, variables a, b and ¢ are accessible and in the inner block, variables a, b, ¢, d and e are
accessible, but the variable c is not the same variable c that was accessible in the outer block. This means that
the compiler must maintain some sort of block count associated with each variable so that the code generator
can access the variable in the current stack frame or in one further down the stack. Alternatively, organising
the symbol table as a stack may help. One never makes any reference to any stack frames further up the
stack. For example, if a is accessed in the inner block, the code generator will produce code to access the
stack frame just ‘below’ the current stack frame.

With a single stack pointer, it is possible to:

e access the variables in the current stack frame,

e access the variables in the enclosing blocks (by accessing frames further down the stack — the old stack
pointers in the linkage information permit this), and

e restore the environment on block exit or procedure return.

In order to access the variables of an enclosing block, it is tempting simply to follow the chain of pointers
down the stack. It is clear that if the nesting is deep, this may take an appreciable time. It therefore may seem
reasonable to use several stack pointer registers, one pointing to the current stack frame, another pointing to
the outermost stack frame (the ‘global’ variables) and others pointing to frames in between. Note that this
implementation may help support the use of dynamic subscripts in array declarations.

Unfortunately, this simple scheme is unworkable since the compiler cannot determine at compile time
how far down the stack to go in order to access, for example, a global variable (since it cannot predict the
depth of the run-time procedure nesting). One can, of course, store a block number with each stack frame so
that the right frame can be identified in such a circumstance but this yields a very inefficient solution. Some
extra structure has to be set up to speed such variable access.

The old stack pointers (the P pointers) described above form a dynamic chain, indicating the dynamic
flow of control of the program. We also need a static chain, reflecting the scopes of variables, etc. The
dynamic chain is used for returning to the caller’s environment and the static chain is used to access non-local
variables.

16

Unfortunately, this has not solved all the problems since if the static block nesting is deep, the static chain
has to be followed for a long way in order to access some variables. In order to overcome this inefficiency,
a display may be used. The display is a table containing pointers to the currently active data blocks corre-
sponding to each block in the program. This takes the place of the static chain. It is possible to maintain a
number of displays on the stack in order to overcome the problems of display space management. Each time
a block (with declarations) or a procedure is entered, space is allocated on the stack for the display. In this
display, the only pointers to be stored correspond to the blocks containing data currently accessible by the
block. In such a display scheme, variables are referenced by means of an integer pair — the nesting depth and
the relative offset.

Ideally, one would like the stack pointer and the entire display to be held in machine (index) registers.
Since the number of available registers is usually limited, some sort of compromise has to be achieved.

The implementation of GOTO’s is often a problem when the destination of the jump is outside the current
block/environment. In such circumstances, the stack pointer has to be reset before performing the jump in
order to reflect the environment of the target of the jump.

Remember that pointers up the stack must be avoided. Such references may arise from the use of pointer
variables or by passing procedures as arguments.

A storage area not managed on a dynamic basis is also often required. This area is often called the heap,
and it may be necessary to implement a heap garbage collector.

7.1 Example of dynamic allocation of variable storage using a stack

This example is taken from [21].
Consider a Pascal program of the form:

program static(output);
var i,j:integer;

procedure p/;
var a,b:integer;

procedure pla;
var c,d:integer;
begin ...; pla; ... end;

begin ...; pla; ... end;

procedure p2;
var p,q:integer;
begin ...; pI; ... end;

begin (* main program *)
p2;

end.

If the stack now incorporates the static chain, then three locations have to be set aside in each frame for
linkage information. Immediately after p/a has called itself recursively for the first time — that is, there has
been two activations of pla — the stack has the form shown in Figure 7.

By examining the static chain from the latest invocation of p/a, it can be seen that the variables defined
in the enclosing procedure p/ and in the main program can be accessed by following the static chain back
down the stack. Note that in following this particular chain, the variables for p2 are bypassed since they are
not in scope within pla.

17

dynamic chain

static chain

Figure 7: The static chain

7.2 Code generator design

A vital question to be answered at an early stage is what form of output from the code generator is required.
Possibilities include absolute memory images, assembly language programs, object modules (perhaps relo-
catable) and so on. The choice depends on many factors, but the production of some form of object modules
is now the norm.

One of the major aspects of code generation is the treatment of arithmetic expressions. Much of the theory
of such code generation can be carried over into other structures and so such techniques play a very important
part in code generation. The following algorithms are taken from [15].

Consider first a very simple machine with a single accumulator and the following instructions:

LOAD X load accumulator from memory location X
STORE X store accumulator in location X

ADD X add contents of location X to accumulator
SUB X

MUL X

DIV X

For example, the code generated for (a+b)/(c+ d) may be:

LOAD a
ADD b
STORE T1
LOAD c
ADD d
STORE T2
LOAD T1
DIV T2

or

LOAD c
ADD d
STORE T1
LOAD a
ADD b
DIV T1

In this section, no attempt is made to remove common sub-expressions or exploit special properties of
operators or operands in order to optimise the code.

Under these circumstances, if the expression has n operators, then its code will have exactly n ADD,
SUB, MUL, DIV instructions (operator instructions). Only the number of LOAD’s and STORE’s will vary.
Also note that the number of LOAD’s must be one greater than the number of STORE’s so that the answer
may be left in the accumulator. Optimisation is therefore concerned with the minimisation of the number of
LOAD’s or STORE’s.

18

L

L R

Figure 8: Tree node structure

We consider code generation from a tree. Suppose P is an internal node of the tree. L and R are its left
and right subtrees respectively. The operator at node P is ®. See figure 8.

In order to compute L ® R, L and R have to be computed independently and then L ® R is computed.
C(L) and C(R) is the code generated for the left and right expression trees. There are several possibilities in
the calculation of L ® R.

1. Both L and R are leaves (variables a and b respectively).
LOAD a; ®b
2. L is a leaf with variable a, R is not a leaf.
C(R); STORE T1; LOAD a; ® T1

3. Ris a leaf with variable a, L is not a leaf.

CL),®a
4. Neither R nor L are leaves. L computed before R.

C(L); STORE T1; C(R); STORE T2; LOAD T1; ® T2
5. Neither R nor L are leaves. R computed before L.
C(R); STORE T1; C(L); © T1

Since the code of 5 is shorter than that of 4, the method of computing R before L is always used.

Consider the tree for the expression (a + b)/(c+d). Starting at the root, it can be seen that the code
generated by the recursive algorithm defined above is:

LOAD c; ADD d; STORE T1; LOAD a; ADD b; DIV T1

If nothing is assumed about the special properties of the operators, then this algorithm generates optimal
code for the machine described above. However, if we can make use of the commutative properties of
operators, the optimal code may be different.

Consider the tree for the expression a + b c. The code generated by the algorithm above is:

LOAD b; MUL c; STORE T1; LOAD a; ADD T1
If it is assumed that the + operator is commutative (i.e. a + b = b+ a), the optimal code becomes:

LOAD b; MUL c; ADD a

19

The above algorithm may be modified fairly easily to reflect such possibilities.

The machine used above is extremely simple in that it only has one register (accumulator). The effect of
the availability of several registers obviously complicates the generation of code for arithmetic expressions,
but the derivation of the method is comparatively simple — see [15] for further details.

We have assumed throughout that the left and right operands of an operator have to be computed inde-
pendently. If the expression has common sub-expressions, then the “expression tree” becomes a graph, and
generating optimal code under such circumstances becomes very much more difficult.

In general, it is not too difficult to code generate once the tree has been constructed. It is, however, very
difficult to produce excellent code for any particular machine — a great number of constraints have to be
considered. For example, it may be possible to condense pairs of the form LOAD A; STORE B to MOVE A,B.

8 Code optimisation

Optimisation is potentially a very difficult area, full of serious pitfalls. Here, one can only give the outline of
some standard techniques and warn of some of the problems.

There are several general techniques that can be applied at some stage of the code generation process.
Some of these techniques are well-suited for application before code generation starts — i.e. they can be
applied to the intermediate representation. Many production compilers perform aggressive optimisation at
this stage, carrying out an extensive analysis of the program. In particular, flow analysis can be carried
out here. Some techniques can be applied during code generation and others should be applied after target
machine instructions have been generated — target machine dependent optimisations are usually done at this
stage.

8.1 Flow optimisation

Here’s a simple example of how code can be optimised at the intermediate code stage, performing common
sub-expression elimination and the removal of redundant variables.
Consider the two statements:

x = a/(bxb + c*c);
y = b/(bxb + c*c);

Straightforward translation into linear intermediate code yields:

t; =bxb
th =cx*cC
=44+
X = a/t3

ty =bxb
ts =cx*cC
te =1t14+1t5
y=b/te
Common sub-expression elimination yields:
t; =bxb
th =cx*cC
3=t+1t
x=a/ts
W=t

t; =1ty

te =tg+ts
y=Db/t
Removal of redundant variables yields:
t; =bxb
th =cx*cC
B=t+0

20

x:a/t3

te =1t +1t

y=b/te

Common sub-expression elimination applied again yields:
t; =bxb

th =cx*cC

=44+

X = a/t3

tg =13

y=b/t

Finally, removal again of redundant variables yields:
t; =bxb

th =cx*cC

3=t +1

x=a/t3

y=b/t3

8.2 Folding

Folding involves the performing of operations whose operands are known at compile time. For example,
k :=k+2+ 3 should be folded to k := k+ 5. Another useful example is as follows. Suppose x is a real
variable. If the assignment x := 3 is made, the conversion of the integer 3 to the real 3.0 should be done at
compile time rather than at run time. In general, as many of such conversions as possible should be done at
compile time, especially since they are usually quite expensive operations.

8.3 Elimination of redundant expressions

An example of this technique is the factoring out of common sub-expressions. For example, most program-
mers are aware of the fact that it may be better to avoid statements like x := sin(y) = sin(y) * sin(y) and that it
would be better to write it as ¢ := sin(y);x 1=t %t *t.

It is, of course, possible for the compiler to recognise such constructs and make the shown improvement
automatically. But this may have unfortunate effects. Suppose the programmer was using a special routine
called sin that had some side-effect (such as incrementing some global count each time it was called). By
writing the assignment in the first form, the programmer would expect the sin routine to be called three
times. If the compiler made the suggested optimisation, the sin routine would be called just once, against
the wishes of the programmer.

Optimisation of the computation of such expressions can be somewhat more difficult — consider x :=
a+ b+ b+ a where it is perhaps not immediately obvious that the calculation of a 4+ b need be performed
only once.

It may also be possible to remove unreachable code. Techniques of flow analysis can be applied, usually
at the intermediate code stage (see above).

8.4 Statement rearrangement

Consider a :=bx*c;d :=e;f :=a+b;
If the statements are taken in order, the code generated for the above statements may be:

LOAD b; MUL c; STORE a;
LOAD e; STORE d;
LOAD a; ADD b; STORE f£;

But if the statements are rearranged thus: d := e;a := b*c; f := a+ b; the code becomes:

LOAD e; STORE d; LOAD b; MUL c; STORE a; ADD b; STORE f;

21

But such rearrangements cannot always be done — consider a := bxc;c:=e; f := a+c;. Again, techniques
of flow analysis can be applied to determine the validity of such approaches.

So far, only source program optimisation has been considered. It is of course possible to optimise the
object program, and in order to do this, a good knowledge of the target machine is required.

8.5 Register usage

Registers are usually in short supply, and so the code generator must keep careful track of the contents of the
registers at all times in order to use them effectively. When there are few registers available, they may have
to be shared between many different functions, and doing this effectively may be quite difficult.

8.6 Peephole optimisation

Code generators usually operate locally, so that code generators may produce code fragments that can be
locally optimal but suboptimal when juxtaposed. For example, the local code for a source program conditional
ends with a branch — so does the local code for the end of a loop. It is usually easier to implement a separate
optimising pass after code generation to remove such redundant code and so on rather than to build it all into
the code generator.

There are several important optimisations that can be performed in this manner.

e Delete unwanted tests (a previous instruction may set the condition codes).
e Exploit special-case instructions or exotic address calculations.

e Collapse chains of branches.

e Delete unreachable code.

e Simulate register contents so that a register reference may be substituted for a memory reference if
possible.

e Perform pipeline scheduling to ensure good performance on pipelined processors.

Programs that inspect the output of the code generator in this way are called peephole optimisers.

9 Java compilers

Compiling object-oriented languages may pose particular problems if efficient target code is required. It may
be necessary for the compiler to generate runtime type-checking code. Java implementations are traditionally
carried out by translating the Java source into an intermediate representation — code for the Java Virtual
Machine. This JVM code is then interpreted on the target machine. This approach offers many advantages,
including simplicity of implementation, flexibility and portability but the advantages are at the cost of reduced
runtime performance. Java compilers of a more traditional design, producing target code directly, are now
also available.

Another approach to Java implementation is via the just-in-time compiler, where the JVM bytecode is
translated to native code on the fly, on calling a particular method or on loading a class file. Here, compila-
tion is only done when necessary, and repeated calls to the same method result in just a single compilation
overhead. Significant performance gains are possible here over the simpler interpreted approach.

10 Compiler implementation

Firstly, one has to decide the language in which the compiler is to be written. There are many obvious reasons
for writing it in a high-level language.

22

10.1 Method 1

Suppose a Pascal compiler for a particular machine is required, and it is to be written in C. If there is already
a C implementation on the machine, the Pascal compiler may be written straight away, taking Pascal as input
and generating machine code as output.

If there is no C system available, there are clearly two options - either implement C and then Pascal or
use another machine on which C is already available. In general, the second option involves less effort.

10.2 Method 2

We want a Pascal compiler for machine 1, written in C. C is available on machine 2 and not on machine
1. So the compiler is written (in C) on machine 2, taking Pascal source as input and producing 1’s machine
language as output. In order to run a Pascal program on machine 1, it has to be compiled first on machine
2 and the machine code thus generated transferred to machine 1. Both machines 1 and 2 must always be
available.

10.3 Method 3

Suppose now that the Pascal compiler for machine 1 is not to be written in C, but instead in Pascal. There
is nothing particularly special about this - the compiler is simply a Pascal program that takes Pascal source
statements as input and translates them to the equivalent statements in 1’s machine code. We assume that
Pascal is available on machine 2.

On machine 2, write a compiler in Pascal which takes Pascal source as input and produces 1’s machine
code as output. Once this has been completed, we are in a position to compile Pascal programs on machine 2
to be run on machine 1. Note that the Pascal compiler just written is nothing more that a large Pascal program.
So we take the source of the compiler (for it is written in Pascal) and feed it as input to the newly-written
compiler. This produces a representation of the new Pascal compiler in 1’s machine code. This machine code
can then be run on machine 1 — this is the Pascal compiler running on machine 1, producing 1’s machine
code as output. Note that machine 2 is only used in the compiler bootstrapping process, and is not required
subsequently.

10.4 Method 4

In order to reduce further the total amount of work that has to be done, we make use of the fact that a compiler
may be written in two parts — a machine independent “frontend” and a machine-dependent code generator.
The interface between the two parts is via some intermediate language (machine independent). We call this
intermediate language in the case of our Pascal compiler “Pcode”.

Write a Pcode to 1’s machine code translator (code generator) in Pascal on machine 2. Obtain the Pcode
version of the standard “frontend” (which can always be obtained by passing the source of the frontend
through the frontend of the compiler on machine 2). Using the code generator from the step above, produce
the frontend in 1’s machine code. Obtain the Pcode for the new code generator by using the existing compiler
on machine 2, and by using the code generator from the first step, produce the code generator for machine 1
in 1’s machine code. We now have a frontend and a code generator for Pascal in 1’s machine code —i.e. a
Pascal compiler for machine 1. Note again that machine 2 is no longer required.

This method has an important consequence. The code generator written in the first step need not be
a particularly good one. Once the Pascal system has been implemented on machine 1 with the poor code
generator, it can be improved at leisure, producing better and better versions of the system.

Remember the acid test — a compiler compiling itself should produce itself!

10.5 Method 5

There is yet another technique which is often very useful. This again makes use of the intermediate Pcode,
and it enables an implementation of the language to be performed very quickly indeed.

Instead of writing a Pcode to 1’s machine code translator straight away, we write a Pcode interpreter.
This program is written in any language already available on machine 1 — in assembler if necessary — and it

23

simulates the Pcode instructions. This implies that given the Pcode version of a Pascal program, it can be
run interpretively on machine 1. Once the interpreter has been completed, we obtain the Pcode version of
the frontend of the Pascal compiler. This can be interpreted by our new interpreter, enabling us to produce
Pcode from Pascal sources on machine 1. We can then input such Pcode into the interpreter and interpretively
execute any of our Pascal programs — i.e. we now have an interpretive version of Pascal running on machine
1. We can now write a Pcode to 1’s machine code translator (code generator) in Pascal, and interpret it using
the interpreter, enabling us to produce 1’s machine code from any Pcode segment. Using this code generator,
a complete compiler in 1’s machine code can be produced.

This method has two important advantages. Firstly, only one machine is involved — no other computer
is required for the bootstrapping operation. Secondly, since the Pcode interface is fairly close to a typical
machine’s architecture, writing a Pcode interpreter is usually a fairly simple task, perhaps just a few pages of
FORTRAN or assembler. If the Pcode were written in, say, FORTRAN, the language system is made very
portable indeed, since it is most likely that machine 1 will already have a FORTRAN compiler available.

11 Compiler generating tools

A compiler generating tool is a program that takes as input some specification of the syntax of a source
language, the desired translation (i.e. the correspondence between the source language statements and the
target machine code statements) and constructs an appropriate compiler. These programs can save a great
deal of time in the writing of a compiler. Some of these tools generate compilers that may be a little bulky
and slow but the compilers produced may generate very good code.

Two of the most popular tools are lex and yacc (or flex and bison). Lex generates lexical analysers from a
formal (regular expression) specification of the lexical tokens. Yacc generates syntax analysers from a BNF-
like specification in which syntactic patterns are associated with actions (expressed in C code). Java tools
such as JavaCC (lexer and top-down parser generator), CUP (bottom-up parser generator) and Jlex (lexer
generator) are all popular.

12 Portability

The question of portability is a very important aspect of software design. Writing portable programs can be
very difficult, and the design of some programming languages makes the problem especially difficult in some
cases - e.g. moving a Pentium assembly language program to a SPARC system.

There are many things to consider when determining whether a program can be transported to a new
machine. These include:

e Language incompatibilities — one manufacturer’s C is very unlikely to be exactly the same as that of
another manufacturer. Care has to be taken to write the program in a widely-understood subset of the
language. International standardisation is an important issue here.

e Word lengths — a program should not assume, for example, that 4 characters may be stored in a machine
word. Character sizes are also not always the same.

e Numerical representation and accuracy —in C, a f1loat may give satisfactory accuracy on one machine
but a double is required on another.

e Operating system interfaces — there are vast differences in the type and extent of operating system
services provided by different systems. A program relying on operating system support for network
operations, for example, is not portable.

e Character sets — one must never assume anything about the internal representations of characters.

e Other machine constraints — for example, addressing — some systems have difficulty in handling very
large arrays, and there may be other incompatibilities due to fundamental machine design.

24

e The actual process of data transfer from one machine to another may prove to be unexpectedly dif-
ficult. Software and hardware incompatibilities in a communications network may cause significant
difficulties.

Remember that if a compiler is written in a transportable manner, the language it compiles becomes a
transportable language.

It is sometimes possible to use a macroprocessor to write portable software. A macro is a facility for
replacing one sequence of symbols by another, and the macroprocessor is a piece of software for supporting
such macros. The macroprocessor takes source text and a set of macro definitions as input. These macro
definitions define patterns of symbols that are to be replaced and also what they are to be replaced by.

A compiler could be implemented as a series of macro calls, and it is probably then up to the implementor
to write the actual macros (probably expanding into machine target language) for any particular machine.

13 Reading list and references

This is a list of a few books containing material relevant to the Compilers course. Note that the library
contains many others of relevance.

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers — Principles, Techniques
& Tools. Pearson Education, second edition, 2007.

[2] Henk Alblas and Albert Nymeyer. Practice and Principles of Compiler Building with C. Prentice Hall,
1996.

[3] Andrew W. Appel and Jens Palsberg. Modern Compiler Implementation in Java. Cambridge University
Press, second edition, 2002.

[4] Henri E. Bal and Dick Grune. Programming Language Essentials. Addison-Wesley, 1994.
[5] P. Brinch Hansen. Brinch Hansen on Pascal Compilers. Prentice Hall International, London, 1985.
[6] John Elder. Compiler Construction: A Recursive Descent Model. Prentice Hall International, 1994,

[7] Charles N. Fischer and Richard J. LeBlanc Jr. Crafting a Compiler. The Benjamin/Cummings Publish-
ing Company, 1988.

[8] Charles N. Fischer and Richard J. LeBlanc Jr. Crafting a Compiler With C. The Benjamin/Cummings
Publishing Company, 1991.

[9] D. Gries. Compiler Construction for Digital Computers. John Wiley & Sons, New York, 1971.

[10] Dick Grune, Henri E. Bal, Ceriel J. H. Jacobs, and Koen G. Langendoen. Modern Compiler Design.
Wiley, 2000.

[11] John L. Hennessy and David A. Patterson. Computer Organization and Design — The Hard-
ware/Software Interface. Morgan Kaufmann Publishers, Inc., San Mateo, California, 1994.

[12] John L. Hennessy and David A. Patterson. Computer Architecture — A Quantitative Approach. Morgan
Kaufmann, 2nd edition, 1996.

[13] Allen I. Holub. Compiler Design in C. Prentice Hall International, second edition, 1994.

[14] E. Horowitz, editor. Programming Languages: A Grand Tour. Computer Science Press, second edition,
1985.

[15] Ellis Horowitz and Sartaj Sahni. Fundamentals of Computer Algorithms. Pitman, 1978.

[16] Ronald Mak. Writing Compilers and Interpreters — An Applied Approach. Wiley, 1991.

25

[17] Thomas Pittman and James Peters. The Art of Compiler Design — Theory and Practice. Prentice Hall
International, Englewood Cliffs, New Jersey, 1992.

[18] Jean-Paul Tremblay and Paul G. Sorenson. The Theory and Practice of Compiler Writing. McGraw-Hill
Book Company, New York, 1985.

[19] Julian R. Ullman. Compiling in Modula-2: A First Introduction to Classical Recursive Descent Com-
piling. Prentice Hall International, 1994.

[20] William M. Waite and Lynn R. Carter. An Introduction to Compiler Construction. Harper Collins, 1993.

[21] Des Watson. High-Level Languages and their Compilers. International Computer Science Series.
Addison-Wesley Publishing Company, Wokingham, England, 1989.

[22] David A. Watt and Deryck F. Brown. Programming Language Processors in Java. Prentice Hall, 2000.
[23] Reinhard Wilhelm and Dieter Maurer. Compiler Design. Addison-Wesley, 1995.

[24] Niklaus Wirth. Compiler Construction. International Computer Science Series. Addison-Wesley, 1996.

26

14 How to choose a programming language

This is an article that appears regularly in various forms on netnews. It gives a perceptive and accurate view
of many programming languages.

The proliferation of modern programming languages which seem to have stolen countless
features from each other sometimes makes it difficult to remember which language you are using.
This guide is offered as a public service to help programmers in such dilemmas.

APL You hear a gunshot, and there is a hole in your foot, but you do not remember enough
linear algebra to understand what happened.

Ada If you are dumb enough to actually use this language, the United States Department of
Defense will kidnap you, stand you up in front of a firing squad, and tell the soldiers,
“Shoot at his feet.”

Algol You shoot yourself in the foot with a musket. The musket is aesthetically fascinating, and
the wound baffles the adolescent medic in the emergency room.

Assembly You crash the OS and overwrite the root disk. The system administrator arrives and
shoots you in the foot. After a moment of contemplation, the administrator shoots himself
in the foot and then hops around the room rabidly shooting at everyone in sight.

BASIC Shoot self in foot with water pistol. On big systems, continue until entire lower body is
waterlogged.
C++ You accidentally create a dozen instances of yourself and shoot them all in the foot. Emer-

gency medical care is unavailable because you cannot tell which are bitwise copies and
which are just pointing at others and saying, “That’s me, over there.”

CLIPPER You grab a bullet, get ready to insert it in the gun so that you can shoot yourself in
the foot, and discover that the gun that the bullet fits has not yet been built, but should be
arriving in the mail Real Soon Now.

COBOL USEing a COLT45 HANDGUN, AIM gun at LEG.FOOT, THEN place ARM.HAND.FINGER
on HANDGUN.TRIGGER, and SQUEEZE. THEN return HANDGUN to HOLSTER.
Check whether shoelace needs to be retied.

C You shoot yourself in the foot.

DBase IV v 1.0 You pull the trigger, but it turns out that the gun was a poorly-designed grenade
and the whole building blows up.

DBase You squeeze the trigger, but the bullet moves so slowly that by the time your foot feels
the pain you have forgotten why you shot yourself anyway.

English You put your foot in your mouth, then bite it off.

FORTRAN You shoot yourself in each toe, iteratively, until you run out of toes, then you read
in the next foot and repeat. If you run out of bullets, you continue anyway because you
have no exception-processing ability.

Forth Yourself foot shoot.

Java You attempt to shoot yourself in the foot using a bullet that will work in any gun in the
world. But you discover that the “Microsoft Gun” is actually a cross bow.

Lisp You shoot yourself in the appendage which holds the gun with which
you shoot yourself in the appendage which holds the gun with which
you shoot yourself in the appendage which holds the gun with which
you shoot yourself in the appendage which holds...

Modula-2 After realising that you cannot actually accomplish anything in the language, you
shoot yourself in the head.

Pascal The compiler won’t let you shoot yourself in the foot.

27

PL/I You consume all available system resources, including all the offline bullets. The Data
Processing & Payroll Department doubles its sizes, triples it budget, acquires four new
mainframes, and drops the original one on your foot.

Prolog You attempt to shoot yourself in the foot, but the bullet, failing to find its mark, back-
tracks to the gun which then explodes in your face.

SNOBOL You grab your foot with your hand, then rewrite your hand to be a bullet. The act
shooting the original foot then changes your hand/bullet into yet another foot (a left foot).

SQL You cut your foot off, send it out to a service bureau and when it returns it has a hole in it,
but will no longer fit the attachment at the end of your leg.

Scheme You shoot yourself in the appendage which holds the gun with which
you shoot yourself in the appendage which holds the gun with which
you shoot yourself in the appendage which holds the gun with which
you shoot yourself in the appendage which holds...

...but none of the other appendages are aware of this happening.

sh, csh, etc. You cannot remember the syntax for anything, so you spend five hours reading man
pages before giving up. You then shoot the computer and switch to C.

Smalltalk You spend so much time playing with the graphics and windowing system that your
boss shoots you in the foot, takes away your workstation, and makes you develop in
COBOL on a character terminal.

Visual Basic You’ll really only appear to have shot yourself in the foot, but you’ll have had so
much fun doing it that you won’t care.

28

15 Sample questions

Here are some questions to help with revision in the Compilers course. Most of the questions come from
past exam papers (this course used to be called Languages and Compilers). The last section of questions is
very mixed. Some are fairly easy, but others are rather long and involved. Perhaps some are more suited to
thought and discussion rather than to written solution.

15.1
1.

15.2

Informatics — 2008

(a) What is the role of the lexical analyser in a typical compiler? Why separate lexical and syntax
analysis? [5 marks]
What high-level language characteristics make lexical analysis difficult? What factors determine
whether a construct is recognised by the lexical analyser or by the syntax analyser? [5 marks]

(b) Explain carefully why it can be a good idea to implement a compiler for a particular language
in that language. What other factors influence the choice of a programming language for the
coding of a compiler? Illustrate your answer by assessing the suitability of Java (or any other
programming language you know) for compiler implementation. [10 marks]

(a) A language includes a definition of a non-terminal A as follows (upper case letters are non-
terminals, lower case letters are terminals):
A — a|bA
Outline a method for a predictive top-down parser that recognises the construct specified by A.
Suppose the definition of A is changed to:
A — aB|abC
Outline a recognising method for this new A.
Suppose the definition of A is now changed to:
A — a|Ab
Again, outline a recognising method for this new A.
Suppose finally that the definition of A is changed to:
A — a|Ab|cA

Using this definition, show how the sentence cab can be constructed via a rightmost derivation.
Hence explain carefully why a parser would have difficulty with this definition of A. [15 marks]

(b) Why do hand-written parsers nearly always use the top-down, predictive approach? [5 marks]

(a) What are the primary aims of code optimisation? At what
stages of the compilation process should code optimisation be performed? [5 marks]

(b) What is peephole optimisation? Describe some of the optimisations that can be performed effec-
tively using this approach and suggest a strategy for its implementation. [10 marks]

(c) What are the advantages in code generating from a linear intermediate representation rather than
directly from the syntax tree? [5 marks]

Informatics — 2007

(a) Explain carefully the role of the lexical analyser in a typical compiler. Why is it usually sensible
to separate lexical and syntax analysis? [5 marks]

(b) Produce a state transition diagram for a recogniser for a comment in a high-level language where
a comment starts with /* and ends with */. Suggest how this recogniser could be implemented
in software. [7 marks]

(c) A tool is required to convert all switch statements to equivalent if statements in a Java program.
Outline the design of such a tool (don’t worry about low-level syntactic detail in your answer).
[8 marks]

29

2.

15.3

(a)

(®)

(a)

(b)

What is the definition of a Chomsky type 2 grammar? What is the relevance of this formalism to

compiler construction? [4 marks]
Show that the grammar defined below is a precedence grammar. Include your working.
[10 marks]
S — S(E) | E
E—-T
T— P+T,P|P
P — x

Show how a shift/reduce parser can be controlled by the data in the precedence matrix when pars-
ing the sentence x(x + x,x). Verify that this parse is indeed the same as the rightmost derivation
in reverse. [6 marks]

Describe a scheme for run-time memory allocation based on a

stack and static and dynamic chains for the implementation of a block-structured procedural lan-
guage. Show how both local and non-local variables may be accessed at run-time. [12 marks]

You have been asked to investigate why a large number-crunching application written in Java (for
which the source code is available) takes so long to produce its results. How would you tackle
this investigation? Suggest strategies you could adopt to achieve a shorter execution time for this
program. [8 marks]

Informatics — 2006

(a)

(b)

(@)

(b)

What are regular expressions and why are they relevant to the design of lexical analysers in
compilers for high-level languages? [4 marks]

Explain in English the meaning of the regular expression
a(aa)*(blcld)*a

Show how this construct could be expressed in BNF. Outline a formal method for the implemen-
tation of a recogniser for tokens defined by such a regular expression. When is this a reasonable
approach for a practical implementation? [16 marks]

Construct a grammar for simple arithmetic expressions involving

the operators + and *, parentheses for grouping and the operands x, y and z. [5 marks]
Using this grammar, produce the rightmost derivation of the sentence x+y*z. What is the rele-
vance of the rightmost derivation to bottom-up parsing? [4 marks]

A programming language definition contains a rule with the following alternatives:

<command> ::= .
| while <expression> do <command>
| <command> repeatuntil <expression>
|
Why would these productions cause difficulty to a top-down predictive parser? [4 marks]

Consider the string:
while <expression> do <command> repeatuntil <expression>

Is this a valid example of a <command>? Using the productions above, show how this example
string can be parsed to yield two different parse trees. What does this imply about the rule defining

<command>? [5 marks]
Suppose the rule is changed to:
<command> ::= .

| while <expression> do <command>

| repeat <command> until <expression>

30

3.

Does this remove the difficulties? [2 marks]

Describe an algorithm for the code generation of algebraic expressions using the operators +, -, * and
/ stored in the form of a tree. Assume that the machine for which you are generating code has a single
register and instructions are available to load this register from memory, store this register to memory
and to perform add, subtract, multiply and divide operations on the values in the register and a memory
location (leaving the result in the register). [10 marks]

What code is generated by your algorithm when presented with the tree for the expression
(a+b*c)*(cxb+a)? [4 marks]

How could the code generated for this expression be improved? Discuss where in the compiler this
optimisation should be done. [6 marks]

15.4 Informatics — 2005

1.

15.5

(a) Explain carefully the key functions of the lexical analyser, the syntax analyser, the semantic anal-
yser and the code generator of a typical compiler, and outline appropriate interfaces between
these phases. Why should the analysis phase of compilation ideally be target machine indepen-
dent? Why is this sometimes difficult? [10 marks]

(b) Using BNF, define a <comment> for a high-level language. A comment consists of the character
{ followed by a string of zero or more arbitrary characters (not containing }) followed by the
character }. You can assume that a non-terminal <any> has already been defined that matches

any single character other than { and }. [6 marks]
(c) Modify your definition of <comment> to allow comments to be nested. Suggest why the nesting
of comments is rarely supported in programming languages. [4 marks]
(a) What are the fundamental differences between top-down and bottom-up parsers? [4 marks]

(b) Describe the operation of a predictive top-down parser, and suggest why it is such a popular tech-
nique. Explain why left recursive productions can cause difficulties in the writing of a predictive
parser. Show how these particular difficulties may be overcome. [8 marks]

(c) Show how an abstract syntax tree can be constructed by a top-down parser. How can type infor-
mation be added to leaf nodes in the tree and then propagated throughout the tree? [8 marks]
(a) What are the primary aims of code optimisation? At what stages of the compilation process
should code optimisation be performed? [4 marks]

(b) Why is it important for the code generator to generate code making effective use of target machine
registers? Why is it in general hard to write a good register allocator? [6 marks]

(c) What is peephole optimisation? Describe some of the optimisations that can be performed effec-
tively using this approach and suggest a strategy for its implementation. [10 marks]

Informatics — 2004

(a) What are Chomsky type 3 grammars? What are regular expressions? Why are these formalisms
important to the design of lexical analysers for high-level language compilers? [5 marks]

(b) Suppose that a construct A is defined as follows:

A — B

B — 0C | 1C

c —-oc|i1Cc|!
Express A as (i) a regular expression, (ii) a state transition diagram, and (iii) an English descrip-
tion of the sentences that it generates. [9 marks]

(c) By first considering a formal approach for specifying the syntax of an email address, outline a
possible design for a software tool to search text files for character strings that could represent
email addresses. [6 marks]

31

2.

(a) What is a shift/reduce parser? What is a precedence grammar? What is bottom-up parsing?
[6 marks]

(b) Consider the precedence grammar:
S — S(E) |E
E—-T
T— T+ x|x

This grammar has the precedence matrix:

S E T () + X
S =
E > | =
T > | > | =
(= | < <
) >
+ =
X > > | >

Show how a shift/reduce parser can be controlled by the data in this precedence matrix when
parsing the sentence x(x+x). Show also the parse tree that would be generated. [8 marks]

(c) Suppose you had to write a parser for Java. Explain why an approach based on precedence is
unlikely to succeed. Which other approach would you use, and why? [6 marks]

(a) Outline advantages and disadvantages of programming in a high-level language rather than in a
low-level language. [6 marks]

(b) One criticism sometimes made of the use of high-level languages for time- or space-critical ap-
plications is that their compilers can’t produce sufficiently fast or compact code — instead, the
coding should be done directly in assembly language. To what extent do you believe that this is
true? [8 marks]

(c) Why is Java often implemented via an interpreted intermediate representation? Discuss whether
this means that Java is always an inappropriate language for time-critical applications? [6 marks]

15.6 Others

1.

Although the syntax rules of Java have context-dependent aspects (e.g. names have to be declared), a
Chomsky type 1 grammar is not used to define the syntax of Java. Why is this?

. Devise a grammar in which addition takes precedence over multiplication. Devise a grammar in which

neither addition nor multiplication have precedence but in which they are performed (a) in the order
encountered (left-to-right) and (b) right-to-left.

Produce a grammar for the definition of an identifier consisting of one to four letter or digits, where the
first character must be a letter.
What is a finite-state grammar and what is its relevance to lexical analysis?

Define a DFA describing the syntax of a reasonable representation for floating point numbers in a
programming language. Show how it can be implemented in software. How can this parser be modified
to compute the value of the floating point number it is parsing?

Develop the procedures for predictive (recursive descent parsing for the following grammar:

S — aAB|b
A — a|bBA
B — c|bAB

What features of a grammar make it difficult or impossible to construct a predictive parser for the
grammar?

32

6.
7.

10.

11.

12.

What are LL(k) and LR(k) grammars? Explain why an LL(1) grammar is not ambiguous.

Can a predictive (recursive descent) parser be used in a lexical analyser, recognising a Chomsky type 3
grammar? Would there be any disadvantages in implementing a lexical analyser in this way?

. State what is meant by the following terms: terminal vocabulary, non-terminal vocabulary, production,

context-free grammar, sentence, sentential form, operator grammar, precedence grammar, operator
precedence grammar.

Determine whether the following grammar is an operator precedence grammar:

S — A

A — A%B|B
B - B+C|C
C — (A)x

. Derive the rules for filling in the precedence matrix (using the left and right sets etc.) from the defini-

tions of the precedence relations.

Describe how variables may be accessed in a block-structured language using a display. Explain how
the display may be set up and restored on procedure call and return using (a) a static environment chain
on the stack, and (b) complete copies of the display in the stack at each level. Compare the relative
merits of these two methods for the implementation of a block-structured language on a machine with
which you are familiar.

A C compiler is to be implemented on a machine with eight general-purpose registers. These registers
may be used as “accumulators” for arithmetic operations, as index registers to access main memory, and
so on. Suggest for what purposes these registers could be used in the code generated by the compiler.
Discuss the advantages and disadvantages of having a rigid predefined allocation strategy. Describe a
suitable storage allocation scheme (based on a stack) for this C system, showing how both local and
global variables may be accessed at run-time. What information has to be stored on the stack during a
procedure call?

Outline an algorithm to compile assembly code from a suitable internal representation (such as a tree)
of an arithmetic expression composed of integer variables and the basic operations +, -, * and /. The
algorithm should attempt to minimise the number of locations used for anonymous results. Give the
code sequence that your algorithm would generate for the expression (a+bxc)/(f*xg-(d+e)/(h+k)).

13. “Itis one thing to write a compiler that translates syntactically correct programs in a high-level language
into a low-level target machine code; it is quite another matter to produce a workable system.” Why?
14. List some software tools which should be included in a package for the development of software in a
high-level language such as Java. Estimate the effort required to implement the various components of
such a package.
15. Describe the overall structure of a typical compiler. Which part or parts would you prefer to write?
Which part or parts would you least like to write? Why?
Des Watson
January 2009

33

	1 Comparing high-level languages
	2 Structure of a compiler
	2.1 Lexical analysis
	2.2 Syntax analysis
	2.3 Semantic analysis (translation)
	2.4 Code generation
	2.5 Code optimisation

	3 Language description
	3.1 Syntax description
	3.2 Backus-Naur Form (BNF)
	3.3 Terminology
	3.4 Chomsky classification
	3.5 Two-level grammars
	3.6 Derivation and parsing

	4 Lexical analysis
	4.1 Programming a lexical analyser

	5 Syntax analysis
	5.1 Top-down parsing
	5.1.1 A general approach
	5.1.2 Recursive descent parsing (predictive parsing)
	5.1.3 Error recovery

	5.2 Bottom-up parsing
	5.2.1 Syntax analysis using precedence
	5.2.2 Construction of the precedence matrix
	5.2.3 Example
	5.2.4 Parsing using precedence relations
	5.2.5 Problems with precedence grammars
	5.2.6 Operator precedence grammars
	5.2.7 Parsing of operator precedence grammars
	5.2.8 LR(k) parsers

	6 Semantic analysis (translation)
	6.1 Symbol tables

	7 Code generation
	7.1 Example of dynamic allocation of variable storage using a stack
	7.2 Code generator design

	8 Code optimisation
	8.1 Flow optimisation
	8.2 Folding
	8.3 Elimination of redundant expressions
	8.4 Statement rearrangement
	8.5 Register usage
	8.6 Peephole optimisation

	9 Java compilers
	10 Compiler implementation
	10.1 Method 1
	10.2 Method 2
	10.3 Method 3
	10.4 Method 4
	10.5 Method 5

	11 Compiler generating tools
	12 Portability
	13 Reading list and references
	14 How to choose a programming language
	15 Sample questions
	15.1 Informatics -- 2008
	15.2 Informatics -- 2007
	15.3 Informatics -- 2006
	15.4 Informatics -- 2005
	15.5 Informatics -- 2004
	15.6 Others

