
School of Cognitive and Computing Sciences

Formal Computational Skills

Course Notes

Autumn Term 2001

David Young

Contents

1. Some differential calculus . 1

2. The backpropagation algorithm . 7

3. Matrices . 13

4. Vectors as geometrical objects . 19

5. Vector applications . 25

6. Numerical integration of differential equations . 31

7. Some probability and statistics. 34

8. Statistical analysis of experiments . 42

9. Chaotic systems and fractals . 48

nal
 in
Section 1 Some differential calculus

This section provides some background information for sessions 2 and 3 of the course Formal Computatio
Skills. These deal with the application of ideas from differential calculus to the analysis of neural networks
which the signal can be represented by continuously varying quantities.
s,

-
l
s.
.
h
.
al
s

re
oo
y-
i-
in
i-
-
p.

e
”,
r
ial
at
f-

y

e
-
-

Contents

1. Introduction .1
2. Functions of a single variable1
3. Differentiation .2
4. Functions of several variables3
5. Partial differentiation. .3
6. Some kinds of Ds .4
7. Summation .5

1 Introduction

This cannot replace textbooks — or it would be one.
Rather, it’s an outline intended to enable you to find
out something about a set of techniques that is useful
in analysing some kinds of neural nets (as well as
many other systems).

Some of you will find all this familiar already. You
can skim it in a few minutes and move on to some-
thing else.

Some of you will remember doing this once, but it’s
now rusty. You should look through this file and see
whether you can still understand what is going on,
especially in the examples. You might have to check
the odd thing out in a textbook. You should ask about
anything that isn’t clear. You might have to spend an
hour or two brushing the dust off the material.

Some of you will find this either new, or thoroughly
lost in the mists of time. You may well need to go
over old notes, or look up textbooks, and you should
work through a few examples to make sure you do
have the ideas straight. You should ask for help if you
can’t fathom something.

You are not expected to become fast and expert in all
this material — that takes more time than we have.
What you should aim for is to understand these tech-
niques, so that you can follow an argument that
involves them in a paper or a book.

Textbooks

Schaum’s outline series is good on specific topic
but beware information overload.

If parts 2, 3 and 4 of this file are difficult, then you
need to refer to an introductory textbook of about A
level standard, though books explicitly for A-leve
are often too closely tied to the examination syllabu
“Foundation Mathematics” 2nd edition, by D.J
Booth (Addison Wesley, 1994) looks useful, thoug
at present is not available in the University Library
The best book for you is largely a matter of person
taste — you should try to find something that suit
you.

For parts 5 onwards, you need to look at a mo
advanced book. Books for mathematicians spend t
much time establishing a rigorous basis for ever
thing — you need a book of mathematics for eng
neers or physicists. I use “Mathematical Methods
the Physical Sciences” by M. L. Boas (Wiley, 1st ed
tion 1966, 2nd edition 1983) — the library has multi
ple copies (at QE 7000 Boa), as has the booksho
“Mathematical Techniques: an Introduction for th
Engineering, Physical and Mathematical Sciences
by D.W. Jordan & P. Smith, covers some simila
ground but seems to have more introductory mater
than Boas. The library at present has a single copy
QE 7000 Jor. You may already have a personal pre
erence — if so, stick with it.

A dictionary of mathematics can be surprisingl
handy. It won’t explain things in the way a textbook
will, but it is often very useful to remind oneself of
some particular bit of usage. They usually have som
useful tables (e.g. of derivatives). The Penguin Dic
tionary of Mathematics is good, as is the Oxford Dic
tionary.

2 Functions of a single variable

You should be familiar with the idea of afunctionof
1

by

ne

s

n

s
ite

are
-

u

or
d-
e.

a
a

le

,
s

he

at
-
e

he

o a

a
o

e
ut
at
nt
a variable. Roughly speaking, a function (sometimes
called a mapping) can be thought of as taking as
“input” one value and producing as “output” another
value. The general notation isy = f(x), wherex is the
name of the “input” variable, orargument, f is the
name of the function, andy is the name of the “out-
put” variable. Oftenx is called theindependentvaria-
ble and y is called thedependent variable.

Many of the functions we will need take areal
number as an argument. (A real number is one that
can be written as a decimal value, like 3.2712 – but
possibly with an unlimited number of digits.) Exam-
ples include:

Note that the last three do not use thef(x) notation,
but still represent functions. (You should be familiar
with the convention that multiplication and division
are done before addition and subtraction, and expo-
nentiation is done first of all, by the way. Also,
can be written and is more often writ-
ten simply .)

It’s also possible to have functions like

if x is greater then 13 theny = 1, otherwise y = 0

Mathematicians use many tools to understand the
properties of functions, for example the series expan-
sion. We will not generally need this level of analy-
sis.

The first thing we usually need to know is how to
evaluatea function — that is, how to find a value of
f(x) for some specificx. You will nearly always do
this with the aid of a computer program in some form
— so knowing what functions you can evaluate
depends on knowing something about the libraries
available with your current programming language.
It is possible to evaluate the functions listed above in
almost every language. In fact, almost all computed
evaluations of functions areapproximate, and some-
times it is important to know how this affects the
result of a program.

It is also often important to be able tovisualisethe
function, by drawing its graph. Again, it is now nor-
mal to use a computer-based method for this —
check out packages like Matlab. When you draw a
graph, think of each point on the paper (or screen) as

representing a pair of values,x andy. The curve that
is plotted represents the subset of values defined
the function. The notation (x, y) can be used to repre-
sent a pair of values, as well as the point in the pla
that represents that pair.

Finally, you may need to use somepropertiesof the
function. For example, the trigonometric function
mentioned above areperiodic — adding
(about 6.283) to the value ofx, for any x, produces
the same resulty (check what this means visually by
drawing the graph). This property would be writte
down as for sin, say, as .
Another example is that the log function alway
increases if its argument increases — you could wr
this as if . Properties like
this are sometimes apparent from the graph, and
worth picking up as you go along when you encoun
ter a particular function.

These ideas should be familiar to most people. If yo
are rusty, a good way to become familiar with them
again is to plot some graphs using a package,
indeed by hand if you prefer. You should have a no
ding acquaintance with all the functions listed abov

3 Differentiation

The basic idea of the differential calculus is that of
rate of change. Consider a function whose graph is
straight line, such as . Any change inx
produces a change 3 times as big iny. (On the graph,
this can be seen by drawing a right-angled triang
below the line, with two of its sides parallel to the
axes.) Theslopeof the line is said to be 3 in this case
for everyx (because it’s a straight line, the slope i
the same everywhere).

When we have a curve instead of a straight line, t
amount of change iny produced by a change inx
may depend both on how big the change is, and wh
value ofx we started from. However, for many func
tions (and for most that are practically useful), th
idea of the change iny produced by asmallchange in
x turns out to be a consistent and valuable one. T
change iny divided by the change inx, as we con-
sider smaller and smaller changes, settles down t
steady value called thederivativeof y with respect to
x. This is usually written dy/dx. It can still be visual-
ised as the slope of the curve; now though, it’s
property of a small section of the curve, and s
depends on the value ofx.

It is often important to know how a change in on
quantity affects another, and so to be able to work o
derivatives. To do this, there are various rules th
you should be aware of. Some of the more importa
ones are:

y x()sin=

y x()cos=

y x()tan=

y x()log=

y e
x

=

y 3 x 2+×=

y 3 x
2× 2 x 333–×+=

ex

x()exp 3 x×
3x

2 π×

x()sin 2 π× x+()sin=

u()log v()log> u v>

y 3 x× 2+=
2

i-
-
n

ds
s
ng
ve
c-
e

d
re

s

-
o

e

e
w
ry

o
-
at

e
ee

g

w
d
ed

n
e,
Rules for specific functions:

For example,

if , then

It is possible to work these out from first principles,
but usually one would look them up in a table in a
textbook, or use a symbolic computing package, to
remind oneself of them. You should know where to
find the rules for the functions mentioned above.

Rules for classes of functions:

Sometimes a rule is more general. One of the most
useful is:

if , then

This applies to aclassof functions; theparameter n
says which member of the class is being used; you
substitute the value for your application. For exam-
ple, if , then dy/dx = .

A simple rule of this type is:

if , then

which should be obvious by thinking about the graph
of the function. Heren is to be thought of as standing
for a constant, rather than as being itself a variable.

The rule for products:

If a function can be written down as two functions
multiplied together, and you can differentiate each of
the two functions separately, then you can differenti-
ate the function itself using the rule

if ,

then

(Note that df(x)/dx means dy/dx for y = f(x).)

For example, if , then dy/dx =
.

The chain rule:

If a function can be written as one function applied to
the result of another function, then the derivative of
the whole thing can be got using

if ,

then

evaluated for .

For example, if , then dy/dx =
. You get to this result by writing

.

Applying these last two rules, though harder, bas
cally involves substituting one thing for another con
sistently. If you can’t make sense of the rules, the
the problem might well lie in the notation for func-
tions, and in remembering what each symbol stan
for. Although there is no need to be very fluent in thi
area, you should be able to understand what is goi
on (you should be able to see why the examples ha
the answers they do) and to differentiate most fun
tions that you meet, even if you have to look up th
rules.

4 Functions of several variables

For many applications, the idea of a function outline
above needs to be generalised to functions of mo
than one real variable. A function of two variable
might be written . You can think ofx
and y as inputs andz as the output. A very simple
example is z = x + y.

Usually, such functions are built out of the 1-dimen
sional functions described above. When there are tw
inputs and one output, if is often useful to visualis
the function as asurfaceor landscape: the arguments
x and y represent position on a 2-D plane, and th
valuez represents height above that plane (or belo
it if negative). Packages such as Matlab are ve
good at displaying these surfaces.

For functions of more than two variables, there is n
simple way to visualise the whole function. Nonethe
less, such functions are often discussed in a way th
is analogous with the two-variable case.

If a function has many arguments, it may not mak
sense to give them all separate names. You might s
something like

meaning that f is a function ofN variables, which are
distinguished by subscripts rather than by havin
completely different names. This kind of thing is
very common in neural network analysis.

5 Partial differentiation

It is often necessary to know something about ho
the value of a function with several inputs is change
by small changes to its arguments — that is, we ne
to differentiate it. How can this be done?

The basic idea is quite simple. Consider the functio
. Suppose that instead of being a variabl

y x()sin=
xd

dy
x()cos=

y xn=
xd

dy
n xn 1–×=

y x
4

= 4 x3×

y n x×=
xd

dy
n=

y f x() g x()×=

xd
dy

f x() dg x()
dx

--------------× g x() df x()
dx

-------------×+=

y 3 x x()cos××=
3 x x()sin××– 3 x()cos×+

y f g x()()=

xd
dy df z()

dz
------------- dg x()

dx
--------------×=

z g x()=

y x2()sin=
2 x x2()cos××
z x2=

z f x y,()=

y f x1 x2 … xN, , ,()=

z x y×=
3

e

d

ing
t

g

-
he

e

l.

.
ll
n-
o
st
s

y simply stood for a fixed value — let’s say 5. Then
the function would be , and so it would
follow that in this particular case dz/dx = 5 (it’s the
straight line equation again). If we didn’t know the
particular value ofy, but we did know that it was
fixed, we could still write dz/dx = y, with the under-
standing thaty was being treated as a fixed quantity
rather than a variable. This derivative, found by pre-
tending thaty is a fixed quantity, is called thepartial
derivative of the function with respect tox.

In order to distinguish this from an ordinary deriva-
tive, some special notation is used: a curly d instead
of a normal d, looking like this:∂. Thus the expres-
sion

means “the partial derivative ofz with respect tox”
— that is, the change inz when x is varied andall
other arguments are kept constant.

It is generally quite easy to find partial derivatives,
once you have understood the principle of pretending
that everything except the variable in question
behaves just like a numerical constant. For example:

if

then

If you can’t verify the results in this example, it’s
probably because you need to check the rules for
basic differentiation, rather than because partial dif-
ferentiation is itself a problem.

Note that the partial derivative may be a function of
all or some of the arguments to the original function.

The partial derivative tells us how a function is
affected by a perturbation to one of its arguments.
This in itself can be very useful. Sometimes it is nec-
essary, though, to know how a function changes
when a change is made to many or all of its argu-
ments. This will only make sense if the changes to
the arguments are coordinated in some way; that is,
the arguments themselves are functions of some
other variable that is changing. (This is often the case
in neural networks.)

To be definite, supposez depends on (is a function
of) u andv, so , andu andv both depend

on some other variablex, so and
. (Here,g andh are names of functions.)

The question is, how doesz vary if x changes?

The answer is given by thechain rule for partial dif-
ferentiation, which is the most advanced idea to b
mentioned in this file. It says that

Note that all the quantities on the right can be worke
out from the expressions forf, h andg. Putting them
together gives the result that is needed. Since noth
is kept constant whenx changes, the result on the lef
of the equation is an ordinary derivative.

This should make some kind of intuitive sense, alon
these lines:x controls each ofu andv, andu andv
together controlz. So a change inx produces a
change inz by two different routes. The effect along
theu route is the effect ofx onu times the effect onu
on z. Similarly for thev route. The two effects get
added together.

Sometimes, there are other variables which affectu
andv, in addition tox. In this case these other varia
bles have to be held constant while we investigate t
effect of x on z. Then the ordinary derivatives in the
formula become partial derivatives too, to indicat
that these other things are staying constant.

Textbooks will give a proof of this formula, and
sometimes a graphical way to think about it as wel

6 Some kinds of Ds

As light relief, it may be worth mentioning that dif-
ferential calculus abounds in variants of the letter D
So far, we have only used 2 kinds, but you wi
encounter others in the literature. To try to avoid co
fusing them, here is a little table — although you d
not need to be familiar with the use any but the fir
two at this stage, it is worth knowing that the other
exist.

z x 5×=

x∂
∂z

y=

z 3 y2× y x 10 v×+()sin×+=

x∂
∂z

y x 10 v×+()cos×=

y∂
∂z 6 y× x 10 v×+()sin+=

v∂
∂z 10 y x 10 v×+()cos××=

z f u v,()=

Name Symbol Used for

small d d Derivative1

curly d ∂ Partial derivative

small delta δ A small change in a

variable2

capital delta ∆ An arbitrary change in
a variable

del or nabla3 ∇ A kind of vector deriv-
ative

capital D D Differential operator4

u g x()=
v h x()=

xd
dz

u∂
∂z

xd
du×

v∂
∂z

xd
dv×+=
4

-
d
o
,

-
-
s

o

er

ng
e
nd

h
d
e

n
it
ed
e-
e
x

-
l

s

Notes:
1. Small d is almost always used in the form dx/dy.

The quantity dx is called aninfinitesimal, and
means a change inx which is smaller than any
finite change. Debate has raged about whether it
is proper to manipulate infinitesimals in their own
right rather than as top or bottom of a derivative.
There are hints that they are currently becoming
more respectable, but they won’t be used here.

2. Though small,δx is finite — i.e. not an infinitesi-
mal.

3. I’m not sure whether this is kind of “D”, but it’s
easily confused with∆ so I’ve put it in.

4. D f(x) is used to mean dy/dx wheny = f(x). It is
too concise for elementary use but comes into its
own in the study of differential equations.

7 Summation

Finally, you should be able to read the notation for
forming sums — that is, adding a set of things
together. This uses the capital Greek letter sigma,
which looks like this:Σ.

Here is a simple example of how it is used:

and this expands into (is equal to)

In general, there is some variable (in this casek)
which takes a set of values (in this case 1,2,3,4 and
5). For each of these values, an expression involving
the variable (in this case) is evaluated, and the
results added together. In the form in which it is
being used here, the variable takes integer values,
starting from the one specified below theΣ, and
going up to the value specified above. (There are a
few alternative forms of the notation, but this is the
most common.) In this case, there is another variable,
x, in the expression, but there might be several other
variables, or none.

It is extremely common for the summation variable
to form a subscript in the expression, rather than
being an arithmetic element as above. For example

The name given to the summation variable (herej)
can be chosen arbitrarily but must then be used con-
sistently, as for all variable names.

There is a nice concrete way to think about the sum-

mation notation, if you are a programmer. A summa
tion sign acts like a loop in a program, and indee
programs that implement theories involving sums d
have corresponding loops. If you happen to know C
for example, then it may help to know that the fol
lowing line of code implements (with suitable decla
rations of course) the first example above. It leave
the variablesum set to the value of the wholeΣ
expression, assuming thatx has been given a value
beforehand:

for (sum = 0.0, k = 1; k <= 5; k++)
sum += k * x;

whilst the second example would translate int
something like

for (sum = 0.0, j = 3; j <= 6; j++)
sum += x[j] * x[j];

Summation gets complicated when you encount
nested summation signs — oneΣ being applied to an
expression containing anotherΣ. There is a fairly
safe way to make sure you understand what is goi
on in cases like this: write out a few terms of th
whole expression. You should be able to understa
the following:

For those who feel this holds no mysteries, it is wort
mentioning that there is a convenient shorthan
which is sometimes used for sums, called th
repeated suffix convention, or tensor notation. In this
convention, any suffix which appears twice in a
expression is taken to be summed over — an implic
Σ appears before the expression with the repeat
variable as the summation variable. This is only us
ful when the range of summation is obvious. Th
convention is often a very useful alternative to matri
notation.

Finally, something fairly hard. Let’s use the summa
tion notation to generalise the chain rule for partia
differentiation. Suppose our output variablez is
affected by a load of different intermediate variable
— sayN of them, which we will call .
Suppose thatx affects eachu (possibly in a different
way for each). Now if we want to know the effect of
x onz, it’s going to look like

(with partial instead of ordinary derivatives if there
are some other variables being held constant).

If this looks daunting the first thing to do is to write it

k x×()
k 1=

5

∑

x 2 x× 3 x× 4 x× 5 x×+ + + +

k x×

xj
2

j 3=

6

∑ x3
2 x4

2 x5
2 x6

2+ + +=

xij
j 1=

2

∑
i 1=

2

∑ xi1 xi2+()
i 1=

2

∑=

x11 x12 x21 x22+ + +()=

u1 u2 … uN, , ,

xd
dz

ui∂
∂z

xd

dui×
i 1=

N

∑=
5

out in full with N equal to 2. Then the relationship to
the earlier formula for the chain rule should become
clear.
6

pplica-
Section 2 The backpropagation algorithm

This section complements Section 1 by relating the mathematical ideas described there to an important a
tion: the analysis of a learning algorithm for feedforward neural networks.
.7

 .7
.7
.8
.9
9
0
1

1
2
12
13

s
g
k
).

r
u-
e
s

re-

is
ee
i-
s-
to
is
ly

p-

-

e
,
or
s,
m-
a

n
i-
r

it

e

d
y
is

ly
ts
.)
Contents

1. Introduction .
2. The response function for a simple model

neuron .
2.1 Linear units .
2.2 Nonlinear units .

3. Training a single unit.
3.1 The error function for a single unit
3.2 The learning rule for a single unit1

4. From a unit to a network1
4.1 A single layer of units1
4.2 Adding another layer.1

5. Backpropagation .
6. Conclusion. .

1 Introduction

This section is a complement to Section 1. It applie
the mathematics in it to a single problem: the trainin
of a multilayer feedforward nonlinear neural networ
(sometimes called a multilayer perceptron
Although this application is important in its own
right, the purpose here is to give you some feeling fo
how ideas from calculus get applied to a real comp
tational problem. In addition, you should get som
idea of how the formal mathematical notation relate
to the more concrete computational structures rep
sented by neural networks.

You should not expect to be able to reproduce th
whole argument. You should, however, be able to s
in general terms what is going on. The idea of grad
ent descent is central to many computational sy
tems, and the use of subscripts and summation
manipulate arrays of quantities in a concise way
well worth getting used to, since it translates readi
into practical computer programs.

Two relevant books are:

Rumlhard, D.E. & McClelland, J.L. “Parallel
Distribution Processing: Explorations in the
Microstructure of Cognition”, Vol. 1, MIT Press,
7

1986.

Hertz, J.A., Krogh, A. & Palmer, R.G. “Introduc-
tion to the Theory of Neural Computation”, Add-
ison Wesley, 1991.

Both of these carry out essentially the same develo
ment as this file, though more concisely.

2 The response function for a sim-
ple model neuron

Artificial neural networks (NNs) are formed by con
necting individual units which very approximately
correspond to neurons. Each unit receives som
inputs from other units, or from outside the network
and produces an output which goes to other units
to outside the network. In an important class of NN
the inputs and outputs are represented by real nu
bers, and each unit computes an output which is
function of its inputs. A common form for the func-
tion is described here; for justification see books o
NNs, and remember that all sorts of other possibil
ties (such as networks with binary values only, o
units with memory) exist.

In this section a single unit is considered. Suppose
hasN inputs, which will be called etc. up to

; the output of the unit will be calledy, so we can
write to express the fact that
the output is a function of the inputs. The form of th
response functionf determines the behaviour of the
network.

2.1 Linear units

A very simple response function would be to just ad
up all the inputs. However, the unit may need to pa
more attention to some inputs than to others, and th
is achieved by first multiplying each input by a
weight, which is a number expressing how strong
the input affects the unit. (I am regarding the weigh
as being associated with the unit they directly affect

x1 x2,
xN

y f x1 x2 … xN, , ,()=

s
to
al
en

r

a
ly

s

re

e
l

s
of
n

e

out
t-
For each inputxi there is a corresponding weightwi.
The unit therefore combines its inputs by computing
aweighted sum according to the formula

where a is sometimes called the activation of the
unit. The idea of a weighted sum is extremely com-
mon in many branches of science.

The unit could simply pass this activation to its out-
put (i.e. it could set). Such a unit is called a
linear unit because if you ploty against any particu-
lar inputxi, keeping all the other inputs constant, you
get a straight line.

If the weights are fixed, it is convenient to regard
them as built-in to the response functionf. However,
the way that neural networks are trained is to adjust
the weights to improve their performance. If we
regard the weights as things that can be varied, it
makes sense to regard the output as a function of the
inputs and of the weights, or in symbols

.

We will need to know later how a change in an input
affects the output. For a linear unit (i.e. output = acti-
vation, or), the relation is very simple:

That is, the change in the output is just the change in
the input multiplied by the corresponding weight. If
the mathematics is not obvious, try writing out the
formula fory explicitly for the case of two inputs (i.e.

). Then treating everying
excepty andx1 as constants, use the ordinary rules
for differentiation to find the derivative ofy with
respect tox1. Generalise the result to any input.

For working out learning algorithms, it is also useful
to know how a change in a weight affects the output
if the inputs are fixed. The mathematics is identical,
and produces the result

i.e. for a particular input, the effect of changing a
weight depends on how strong the corresponding
input was.

2.2 Nonlinear units

It is the case that neural networks built from linear
units have a very limited range of responses (e.g.
they cannot produce an output that simply says

whether two inputs are different from or the same a
one another). However, one modification turns out
give the networks enormously greater computation
power, and that is to make the relationship betwe
the activationa and the outputy nonlinear. Typically,
instead ofy = a, interesting neural networks use a
relationship such as

This is sometimes called thelogistic function. Note
that a is just the weighted sum of the inputs, as fo
the linear unit.

It is not appropriate here to investigate why this is
useful choice, and anyway it is by no means the on
possibility. We will take it as given, but we will have
a quick look at its properties. The first thing to do i
to look at its graph.

If you look at the graph, you will see that it is
vaguely S-shaped. Functions with this shape a
called sigmoidal functions (nothing to do with the
sigma used to indicate summation). Note that th
logistic function is merely an example of a sigmoida
function.

You can see thaty is 1 if a is large and positive, andy
is 0 if a is very negative. Thus if you ignore the bit in
the middle this is a little like a binary function. How-
ever,y’s changeover from 0 to 1 occurs gradually a
a crosses 0 — one could describe this as a kind
softened or smoothed step function. (A step functio
would causey to jump from 0 to 1 as a crossed som
value called the threshold.)

Now we need to answer the same questions ab
how changing the inputs and weights affects the ou

a xi wi×
i 1=

N

∑=

y a=

y f x1 x2 … xN w1 w2 … wN, , , , , , ,()=

y a=

xi∂
∂y

wi=

y x1 w1× x2 w2×+=

wi∂
∂y

xi=

y
1

1 e a–+
-----------------=
8

,
l

to

ts
r

-

he
-
it
y
1,
in
e

-
ut
f

er
ch
m

put of such a unit. This is done in two steps: first we
ask how a change in anx or aw affectsa, then we ask
how a change ina affectsy.

The first step has already been done. From the analy-
sis for a linear unit, wherea = y, we know that

and

The second step is to find dy/da. This requires the
application of the rules of ordinary differentiation to
the logistic function. I will not do this in detail here;
if you want to see the steps involved, please ask. You
have to know the rules for differentiatingex and 1/x
(x is just a general purpose variable here), and you
have to apply the chain rule. The answer comes out
as

(It is an ordinary derivative becausea is the only
thing that directly affectsy — there’s nothing that
has to be held constant to do this calculation.)

You ought to be able to guess what the graph of this
function looks like without using the formula, simply
by looking at the graph of the logistic function and
seeing what its slope does. In fact, it’s like this:

There is a computationally useful simplification of
the derivative formula. It is possible to use the origi-

nal formula for the logistic function to show that

If in some program,y has already been calculated
this gives a much faster way of finding the numerica
value of the derivative than the formula that usesa.

Finally, the two steps are put together. You need
apply the chain rule, which says that

which gives

Similarly, one gets

This all looks fairly complex, but the final formulae
are not too bad. They say how changes to the inpu
or weights affect the output for this kind of nonlinea
unit. They are in a form which allows them to be
used in a program; such a program would havex, w
andy available to it, so computing the partial deriva
tives would now be no problem.

These formulae imply that the unit’s sensitivity to a
change in a weight or an an input depends on all t
other weights and inputs as well. If the unit’s activa
tion is close to zero (so its output is close to 0.5),
has its highest sensitivity. If the activation is strongl
positive or negative, then the output is close to 0 or

becomes very small, and so changes
inputs and weights have relatively little effect on th
output. The unit is then said to besaturated. The pos-
sibility that some inputs can put a unit into satura
tion, and so prevent other inputs affecting the outp
of that unit, is an important aspect of the operation o
neural networks with nonlinear units.

3 Training a single unit

3.1 The error function for a single unit

Neural networks are often trained usingsupervised
learning. In this kind of learning, the network’s out-
put for a given input is compared with atarget, which
is somehow known to be the “right answer”. The
weights are then adjusted to make the output clos
to the target. If the weights are adjusted after ea
new example of an input/target pair, the mechanis

xi∂
∂a

wi=

wi∂
∂a

xi=

ad
dy e a–

1 e a–+()2
------------------------=

ad
dy

y 1 y–()×=

xi∂
∂y

ad
dy

xi∂
∂a×=

xi∂
∂y

y 1 y–() wi××=

wi∂
∂y

y 1 y–() xi××=

y 1 y–()×
9

n

e
ily
l-

d
et,
th
to
ed
ch

er
v-
ls
he

nt
as
is

ht

be
a

a
n
ns
e

t-
e

e
all
e
a
n
e

ht
c-
is called online learning; if the weights are only
adjusted after a set of input/target pairs thenbatch
learning is taking place. Here, online learning will be
considered, as it is slightly simpler to understand.

To decide how close the network’s output is to the
target, on any particular presentation, anerror func-
tion is used. For our single unit, the target will be
called t, and the error is given by

This function is chosen partly becauseE is always
positive, and the bigger the difference betweeny and
t, the biggerE is. It is clear thatE is a function ofy
andt, and you will sometimes see this expressed asE
= E(y, t). This is slightly loose usage, in that the same
symbol,E, is being used for the name of the variable
and the name of the function that computes it, but it
is quite common and in practice does not cause con-
fusion. You can readE = E(y, t) as “E depends ony
andt”.

SinceE depends ony andt, andy depends in turn on
the inputs and the weights, it is also true to say that

.

It is sometimes convenient to think of this error as an
energy associated with the network. If this was a
mechanical system in whichy represented the posi-
tion of a robot arm, say, andt represented a target to
which it was supposed to move, thenE would be a
measure of the energy of a spring connecting the arm
to the target. The spring would pull the arm to the tar-
get, reducing its energy in the process. This kind of
physical analogy can be useful in analysing various
kinds of computational system.

If we single two weights or inputs for special consid-
eration, and keep all the rest at some fixed values,
then it is possible to draw a picture showingE as a
surface above a plane. Positions on the plane corre-
spond to values of the two variables under considera-
tion, and the height of the surface above the plane
corresponds to the value ofE. This is a useful con-
ceptual tool, and it is often helpful to think of the
error surfaceor energy landscapeeven when more
than two things can vary; it is no longer possible to
picture the surface then, as it exists in many dimen-
sions, but the ideas from the 2-variable picture are
still useful.

Now the standard question: how do changes in inputs
and weights affect the error? What we need are∂E /
∂xi and∂E / ∂wi, with the partial derivatives indicat-
ing that t is kept constant. Since we know howy
depends on the inputs and weights, all that is needed
in addition is to know howE depends ony. This is
got by differentiating the expression above, which
gives

(using the chain rule for simple differentiation). The
we can use (for inputs)

Both of the things multiplied together on the right ar
already known, so the whole expression is eas
found. The effect of weight adjustments can be ca
culated the same way to get

3.2 The learning rule for a single unit

How can the single unit be trained? A standard an
simple procedure is to select an input and a targ
present the input to the unit, compare its output wi
the target, and then change the weights slightly
make the output closer to the target. This is repeat
for a large number of input/target pairs. Because ea
individual change made is small, the total effect ov
a large number of trials is to make the unit’s beha
iour closer to the overall optimum (though the detai
are beyond the present scope). At the very start, t
weights are given some random values.

One way of looking at this is to say that at some poi
in the training, we want to change the weights so
to take a step downhill on the error surface. Th
method is calledgradient descent. Basically, each
particular weight needs to be changed in the rig
direction to reduceE; the bigger the effect of that
weight, the more it should be changed.

It might be helpful to think of this geometrically.
Consider the error surface for a unit with only two
weights, and some fixed inputs; this surface can
pictured as some kind of smooth canopy above
plane. The current weight values fix the position of
point on the plane and the point vertically above it o
the error surface. Changing one of the weights mea
moving in one direction on the plane; changing th
other weight means moving in a direction at righ
angles to this. Such moves will take the point on th
surface uphill or downhill, depending on how th
surface slopes. The change in height for a sm
change in a weight is given mathematically by th
partial derivative, and geometrically by the slope of
line on the surface vertically above the line of motio
in the weight plane. It should be possible to convinc
yourself that if you make a change in each weig
proportional to the slope in the corresponding dire

E y t–()2=

E E x1 x2 … xN w1 w2 … wN t, , , , , , , ,()=

y∂
∂E 2 y t–()×=

xi∂
∂E

y∂
∂E

xi∂
∂y×=

2 y t–()× y 1 y–() wi×××=

wi∂
∂E 2 y t–() y 1 y–() xi××××=
10

n
s
ch

n
g

of
f

le

in
e
is
e

-
se
nd

,

an

ts
re
,

for

rs
ut

,
k

n
-
to
.
e
e
of
e

e:
t
d

tion, the total movement is directly uphill or down-
hill.

For a definite example, consider the case where the
error does not depend at all on one of the weights
(the corresponding input is 0). Then the error surface
only slopes in the direction of the other weight, and it
is clearly only appropriate to change the latter.

This can be summed up in thegradient descent
learning rule, which is a core rule in neural net-
works, and the starting point for many other more
sophisticated rules. It says (for online learning) that
on each presentation, the adjustment to each weight
should be proportional to minus the partial derivative
of the error with respect to that weight. In symbols:

This is just saying that we take a small step downhill
in the error surface.

∆wi stands for the change in (adjustment to)wi that
we are going to make. The minus sign means that we
go downhill, not uphill, when we make the adjust-
ment. The constantα is used to keep the step small
(in some sense) — in fact it used to be typically set to
a value between 0.00001 and 0.2 by the experimenter
and adjusted by trial and error, though there are now
more principled and adaptive ways to determine a
good value. The significance of the final part, the par-
tial derivative or slope of the error surface, should be
clear from the discussion above.

Now you are in a position to train a single unit.
Putting everything together gives the adjustment to a
weight after the presentation of an input as

The outputy would be calculated once using the
basic formula for operation of the unit, then the
adjustment for each weight would be calculated and
applied in turn using the formula above.

4 From a unit to a network

4.1 A single layer of units

One unit can only do so much. For really interesting
behaviour, it’s necessary to go to a network of inter-
connected units. Again there are many possibilities,
and questions surrounding network topology are the
subject of active research, but since the present pur-
pose is to look at techniques for analysing networks,
we will stick to one of the more amenable cases: the
layeredfeedforward network.

In such a network, information flows from inputs to

outputs, without any loops. The output of unit ca
never affect its inputs, which simplifies matter
greatly. The units are arranged in layers, and ea
unit in any given layer gets its inputs from all the
units in the previous layer (though of course it ca
ignore some of them by setting the correspondin
weights to 0). (Sometimes the data from the rest
the world is thought of as coming through a layer o
“input units”, which simply pass their inputs on with-
out changing them.)

First, take the case of a network that has a sing
layer (apart from any input layer). This will have one
output for each unit in the layer. To analyse and tra
this network, the modifications to what we have don
for a single unit are quite small, since essentially th
is just like having a lot of units, all seeing the sam
inputs, but each doing its own thing.

The first change is in notation. We need to distin
guish between the units, and to do this we have to u
an extra subscript in some places. The output a
activation of unit j will be called yj and aj respec-
tively. There will have to be targets for all the units
so the target for unitj will be calledtj. The weight for
input i going to unitj will be calledwji . The inputs
are the same for all the units so they do not need
extra subscript.

The convention for the order of the weight subscrip
might seem perverse (the destination comes befo
the source). However, it is convenient in the end
because it corresponds to the convention used
matrix notation. You will find this ordering used in
the textbooks mentioned above, but other autho
sometimes use the opposite convention — look o
for which one is in operation.

You should draw yourself a diagram with the inputs
outputs and weights for a single-layer networ
marked.

It might seem that we need to have an error functio
for each output unit. However, it is much more ele
gant (and in the long run more general and useful)
have a single error function for the whole network
The nice thing about the error function for a singl
unit defined above is that the error function for th
whole network can usefully be defined as the sum
the errors for the separate output units. That is, w
write

There is a slight shorthand for the summation her
when the range ofj is not specified, it is assumed tha
j runs over all the appropriate units. This shorthan
will be used quite often.

∆wi α–
wi∂

∂E×=

∆wi α– 2 y t–() y 1 y–() xi×××××=

E yj t j–()2

j
∑=
11

nt
ut,

t
o

’s

to

ts.

e

t

—

n
,
r
n

th

e

is

e
er
This is called thesum of squareserror function.
Sometimes a factor of 0.5 is put in front; this makes
no real difference to anything, but reduces the
number of factors of 2 that occur later.

Having definedE, everything now proceeds as for the
single unit, except we have to keep track of which
unit we are talking about. First we work out how a
change in unitj’s output affectsE, by taking every-
thing else as constant. By writing out the sum for the
case of just 2 or three units, you should be able to
persuade yourself that the result is just

That is, it is the same as for a single unit, except with
a j subscript added as appropriate to indicate the unit.
This is an extremely handy result — it simplifies the
next stage, which is to find the derivative ofE with
respect towji . But the analysis is nowexactly the
same as for a single unit, except for the extra sub-
scripts. Thus a single layer is not really any more
complex than a single unit, even though we have
used a global error function which sums up (literally)
the performance of the network as a whole.

4.2 Adding another layer

Adding a further layer makes, as it happens, a big
difference to the generality and power of this kind of
neural network. It also makes it harder to work out
how to adjust the weights; working out an algorithm
for doing so was one of the major breakthroughs of
neural network research.

The notation adopted here for the extra layer is non-
standard, but makes it easier to follow what is going
on. The new layer of units will go on the input side of
the layer we have already considered. (I will refer to
the original layer as the output layer.) Nowxi will
stand for theoutputof the i’th unit in the new layer
and wji is the weight from thei’ th unit in the new
layer to thej’th unit in the output layer (so these sym-
bols mean the same as before in connection with the
output layer). The new inputs to the network as a
whole will be calleduh and the weights from the
inputs to the first layer will bevih. Thus we have:

This network is to be trained by gradient desce
using the same rule as before. For a particular inp
you can think of an error surface forE over a plane
representing any of the weights in the system, thevs
as well as thews. We need to adjust all of them to go
downhill on this error surface. The question is, wha
additional calculation do we need to do in order t
carry this out?

Adjusting the weightsw is exactly the same as
before. The output layer doesn’t care whether it
getting its inputs from the outside world or from a
previous layer, so nothing changes for adjustments
wji . To adjust the weightsv, however, we will need to
know the slope of the error surface for these weigh
This is the partial derivative written as∂E / ∂vih.
Finding an expression for this is the heart of th
backpropagation algorithm.

5 Backpropagation

A change in one of the weightsv will affect the out-
put of the first layer of units,x, which will in turn
affect the ouput of the second layer,y which will in
turn affectE. We therefore look at this causal chain
to see if it helps us work out the influence ofv onE.

First, we calculate how a change in one of thexs
affectsE. A change inxi will spread out to affect all
the units in the output layer, which in turn all affec
E. In terms of partial derivatives, this appears as

◊

This is probably the most difficult equation in this
file, and involves the most advanced mathematics
the chain rule for partial differentiation. Its value is
that if you can see how the structure of this equatio
relates to the information flow in the neural network
then you are in a good position to analyse simila
systems. The explanation of the chain rule in Sectio
1 might help here, as might textbooks that deal wi
partial differentiation. Writing out the expression in
full (i.e. making the summation explicit) for a net-
work with only 2 or 3 output units might be helpful.

Note the different roles of thei andj subscripts:j is a
variable which is summed over, like a loop variabl
in a program, whilsti says which particular first-
layer neuron’s output we are talking about, and
more like an argument to a procedure.

Having written this down, we can evaluate it if we
want to, since we already know the formulae for th
bits of the right hand side — they both appear high
up this file. The first part is

yj∂
∂E 2 yj t j–()×=

Inputsu

First layer outputsx

Output layer outputsy

ErrorE
Targets

weightsv

weightsw

xi∂
∂E

yj∂
∂E

xi∂
∂yj×

j
∑=
12

s
on
g

n
-
s
t

e
r
n

s
h
e
ld
g
-

(in section 4.1) and the second is

which is modified from the equation in section 2.2 by
putting in thej subscript to specify which output unit
we are talking about. But in fact these details are not
very important right now.

BecauseE depends onxi andxi depends onvih, we
have

There’s no summation becausevih directly affects the
unit whose output isxi — no other variables get in
the way.

We have just worked out how to get the first part of
the right hand side. The second part is easy since it’s
just the same as working out∂yj/∂wji for an output
unit, which we have already done. That is,

So we have everything we need to evaluate the partial
derivative of the error with respect to one of thevs,
and hence to decide how to adjust thatv.

That completes the mathematics for the backpropa-
gation algorithm — we can now train a 2-layer neu-
ral net, by calculating the error gradients with respect
to all the weights, thevs and thews, and then apply-
ing the gradient descent rule to adjust every weight.

Why is this computation called backpropagation?
The reason is the recursive nature of the central equa-
tion just above, marked◊. The derivative of the error
with respect to thex outputs is found by using the
derivative of the error with respect to they outputs,
together with a derivative which only depends on the
y units. It is the quantity∂E / ∂o, whereo means the
output of any unit (anx or ay), which is backpropa-
gated across the layers. At each stage, the computa-
tion only involves one layer of units.

Suppose we put yet another layer of units into our
network, again on the input side. Then we’d need the
partial derivatives with respect to yet another layer of
weights. To get these, we’d need∂E / ∂uh. And to get
that, we’d use

This is just the equation marked◊, written for the
next layer down. We’d have got∂E / ∂xi when doing
the previous layer, and∂xi / ∂uh presents no problem
now (we’ve done the same thing twice before). It’
just the same computation again, and we could go
repeating it for as many layers as we like, workin
from the output to the input.

It was the realisation that this tractable computatio
was possible that allowed training of multilayer non
linear networks to be carried out, and this in turn wa
one of the most important stimuli of their significan
renaissance in the 1980’s.

6 Conclusion

This rather long section has given an account of th
mathematics behind training a multilayer nonlinea
neural network. The essence of it is the equatio
marked◊ — most of the rest is context for that: why
it is needed and how it is used.

What this kind of mathematics is really about i
keeping track of which variables depend on whic
others. If that is done, the partial derivative formula
should make some kind of sense, even if you cou
not carry out a detailed derivation of them. Relatin
the partial derivative formulae to the flow of informa
tion through the network is largely the point of the
exercise.

yj∂
∂E 2 yj t j–()×=

xi∂
∂yj yj 1 yj–() wji××=

vih∂
∂E

xi∂
∂E

vih∂
∂xi×=

vih∂
∂xi xi 1 xi–() uh××=

uh∂
∂E

xi∂
∂E

uh∂
∂xi×

i
∑=
13

Section 3 Matrices

This section extends Sections 1 and 2 by giving a basic introduction to the use of matrices.
s
be

y
s
ns
-
p-

e
ce

l-

as
,

t-

-

f
-

us,
n

Contents

1. Introduction . 14
2. Matrix-vector multiplication as a neural network

operation . 14
3. Writing out matrices as tables 15
4. Matrix-matrix multiplication 16
5. Some simple matrix operations 16
6. Matrix inverses . 16
7. Matrix analysis . 17
8. Conclusion . 17

1 Introduction

In the first two teach files, every variable that was
used stood for a single real number. This included
subscripted variables: something likexi meant the
i’th value in a collection, not the whole collection.
This made it possible to interpret every equation
according to the normal rules of arithmetic; addition,
multiplication, differentiation and so on all had their
ordinary elementary meanings, even if the context in
which they were used involved, in principle, large
numbers of variables.

Sometimes it is useful to be able to manipulate sym-
bols that stand for structured collections of numbers.
Matrices are a case of this, and their use is common
in a wide variety of fields. Here, it will be illustrated
by referring back to the work on neural networks in
Section 2.

Discussion of this topic in textbooks crosses the A-
level/degree level boundary. Books such as that by
Boas (see Section 1) give a discussion, and also con-
tain much background and related material — not all
necessarily relevant at present. An outstanding refer-
ence book is “Matrix Analysis”, by R.A. Horn and
C.R. Johnson (Cambridge University Press 1985,
later reprints), but this gives an advanced treatment
that will only be useful if you already have a fairly
mathematical background.

Matrix manipulation is,par excellence, an area in
which high-quality software libraries and package
have liberated ordinary users from the need to
very familiar with a lot of algorithmic detail. Thus
you will find books such as “Numerical Recipes in
C”, by W.H. Press, B.P. Flannery, S.A. Teukolsk
and W.T. Vetterling (Cambridge University Pres
1988, later reprints) contain summary discussio
and much practical information. The Matlab pack
age, although wider in scope now than matrix mani
ulation, has particular strength in this area.

The remainder of this file summarises some of th
central ideas. As usual, it does not purport to repla
the examples and discussion offered by textbooks.

A point about notation

The multiplication symbol is generally omitted in
textbooks — two symbols next to each other are mu
tiplied together, soxy meansx × y.. In Sections 1 and
2 I put in all the multiplication symbols for clarity
and for consistency with the online teach files, but
the “×” symbol is almost never used with matrices
from now on I will omit it everywhere.

2 Matrix-vector multiplication as a
neural network operation

Part 2.1 of Section 2 introduced a linear neural ne
work unit with outputy, inputsx1…xN and weights
w1…wN. Since its output was simply equal to its acti
vation, it computed the function

Section 4 part 1 introduced the idea of a layer o
units, in which the units were distinguished by add
ing an extra subscript to eachy andw (but not tox
because the inputs are the same for each unit). Th
if the units in the layer are linear, this equatio

y wi xi
i 1=

N

∑=
14

t

c-
e
e
-

a
he

a
n
re

r

-

becomes

where j just specifies which unit we are talking
about.

This can be rewritten as amatrix-vector multiplica-
tion. What is done is to represent each set of quanti-
ties by a single symbol; each such collection is called
a matrix or a vector. If the individual quantities have
two subscripts, then their collection is a matrix; if the
individual quantities have one subscript, then they
form a vector. For example, the bold charactery
stands fory1, y2 up toyN, all put together into a single
vector. Likewisew stands for all the weights put
together into a matrix andx for all the inputs put
together into a vector.

It is important to realise thatw, which stands for a
matrix, is a completely different kind of object towji ,
which stands for a number. The number is said to be
anelement of the matrix.

A vector, in this sense, is really just a particular kind
of matrix — it’s a matrix for which the second sub-
script is always 1, and so there’s no point in writing
it.

There is a rule for multiplying matrices and vectors.
Conveniently, it is just the rule used by a single layer
linear network to compute its outputs. That is, we can
write

to meanexactlythe same as the last equation above.
TheΣ formuladefinesthe operation of multiplying a
matrix and a vector; and the single layer linear net-
work provides a paradigm of the operation.

Part of the convention is that it is the second sub-
script of thewji variables that becomes the summa-
tion variable when a matrix multiplication is written
as a computation of individual values. That is the rea-
son for makingi the second subscript tow in the text-
books and in the earlier teach files: it fits in with the
standard convention for matrices.

In summary, the computation performed by a single
layer linear network is to multiply the weight matrix
by the input vector. This is probably one of the easi-
est ways to give meaning to the idea of matrix multi-
plication.

3 Writing out matrices as tables

It is sometimes useful to have a convention for writ-
ing out the elements of a matrix. In the case of a net-

work with 3 output units and 4 inputs, one migh
draw up a table of weights like this:

Here, for example, -0.4 is the weight on the conne
tion from input 1 to unit 2. (I have just made up som
arbitrary numbers.) Therefore for this network, w
would havew21 = -0.4, using our standard conven
tion for ordering subscripts.

The convention for writing down the elements of
matrix in a table is the one adopted here. That is, t
first subscript says whichrow of the table an element
is in, and the second subscript says whichcolumnit
is in. That is,wji meanswrow, column, which in this
case meanswunit_number, input_number.

To display a matrix, the elements are written out in
table as above, but without the row and colum
labels, and the whole thing is enclosed in squa
brackets (or in a few books, round brackets).

We can summarise this convention by writing, fo
our 3-unit 4-input network

The vectorsx andy are written as if they were matri-
ces with a singlecolumn (and for this reason are
sometimes called column vectors). That is, for exam
ple

and likewise forx, except it has 4 elements in this
example.

If you write out the matrix multiplication

using the display notation, you get

yj wji xi
i 1=

N

∑=

y wx=

Input 1 Input 2 Input 3 Input 4

Unit 1 3.2 2.0 -0.5 2.3

Unit 2 -0.4 6.7 1.1 -4.2

Unit 3 1.2 -2.5 0.3 -0.8

w

w11 w12 w13 w14

w21 w22 w23 w24

w31 w32 w33 w34

=

y

y1

y2

y3

=

y wx=
15

,

a

r,

is
r-

x

at

to
ey

-

b-

s
d

re-
s
as

o
r-

n
t

,

If you look at the original formula for the neural net-
work, you should be able to see that the rule for
working outyi is to take the elements of thei’th row
of w and multiply each one by the corresponding ele-
ment of the onlycolumnof x, and add them up. This
“row into column” idea is one of the standard ways
of presenting matrix multiplication. You should real-
ise, though, that it is merely a result of the convention
that is usually adopted for writing down matrices as
tables — there is nothing fundamental about it.

You should be able draw a diagram of the 3-unit 4-
input network, write the weights in the table above in
the right places, invent some input values, and work
out some output values (a) by looking at the diagram,
(b) by using theΣ formula and (c) by using the
matrix display method. And you should get the same
results each time. Ideally you might also do it (d)
using Matlab and (e) using your own program writ-
ten in the language of your choice — but that’s
hardly necessary if you understand what is going on.

4 Matrix-matrix multiplication

Now suppose the single-layer network can be applied
to a lot of different input vectors, and we want to
specify which one we are dealing with. The obvious
thing to do is to add yet another subscript to the orig-
inal equation to specify a particular input.

The subscriptk is used to specify which of the set of
inputs we are referring to. Here thews don’t get
another subscript because they’re going to stay the
same all the time (we’re ignoring learning now), but
they does get another subscript because it will be dif-
ferent for each different input vector.

Matrix notation handles this extension very easily.
The objectsx and y must now be proper matrices
rather than vectors, because their individual elements
have two subscripts. Given that, the equation above
defines matrix-matrix multiplication just as the ear-
lier equation defined matrix-vector multiplication;
we can still write

In terms of the display convention, eachcolumnof

the x matrix refers to a different input example
whilst eachrow of x refers to a different input line
into the network. Eachcolumnof y refers to the out-
put from a particular input example, whilst eachrow
refers to a different output line from the network.

It should be reasonably obvious from this that
matrix-matrix multiplication is just like treating each
column of the rightmost matrix as a separate vecto
doing a matrix-vector multiplication on it, and
assembling the results into the output matrix. This
like saying that our neural network treats each diffe
ent input vector separately from all the others.

Matrix multiplication does not get any more comple
than this.

5 Some simple matrix operations

There are some simple operations on matrices th
you should know the conventions for.Matrix addi-
tion just means adding each element in one matrix
the corresponding element in another; obviously th
must be the same shape. In symbols:

if z = x + y, thenzij = xij + yij

Matrix subtraction is similar.

Scalar multiplicationof a matrix just means multi-
plying each element by the same number. In sym
bols:

if z = kx, thenzij = k xij

wherek is an ordinary number (called ascalar).

Sometimes it’s useful to swap the order of the su
scripts in a matrix. This is calledtransposingit. In
terms of the display convention, one writes the row
as columns, and vice versa. A “T” superscript is use
to indicate the operation. In symbols:

if z = xT, thenzij = xji

Remember what these symbolic statements rep
sent: the bit before the “then” refers to operation
regarded as somehow happening to the matrices
entire objects, whilst the bit after the “then” refers t
what happens to individual elements when this ope
ation occurs.

6 Matrix inverses

Given that we can do matrix addition, subtractio
and multiplication, what about matrix division? Tha
is, if we can write

to find the outputs given the inputs to our network

y1

y2

y3

w11 w12 w13 w14

w21 w22 w23 w24

w31 w32 w33 w34

x1

x2

x3

x4

=

yjk wji xik
i 1=

N

∑=

y wx=
y wx=
16

n
-
,

of
t

r
k-
s
o
h
t

-
t
g
a

rk
ht

n-

it
n

m

k
to
e
.)

at

in
-

ch
er
d

d
e-
a
ol
can we write

to express a computation that finds out what inputs
caused a given output, as we could for ordinary num-
bers?

The answer is no, for two reasons. The trivial one is
that the “division” notation just isn’t used (or at least
it’s almost never used) to mean what we want it to
mean here. The more serious one is that the computa-
tion might not be possible: there might just not be
enough information iny andw to say whatx is.

First the notation bit. When this computation can be
done, what is actually written is

wherew-1 is called theinverseof w, and is itself a
matrix. It is used to findx by doing a matrix multipli-
cation ony.

Second, the problem with whether the computation is
possible. It is easy to find an example of when it is
not: if there are more inputs than outputs, then the
inverse problem (going from outputs to inputs) is
said to beunderdetermined— there’s (usually) not a
unique solution. As a very simple example, say the
net has two inputs and one output and both weights
are 2. Then inputs ofx1=2 andx2=2 will give an out-
put y1=8. But so willx1=4 andx2=0, and so will any
number of other input combinations, so there’s not a
single solution to the problem of finding the inputs.

The computation may also be impossible if there are
more outputs than inputs. Then, the inverse problem
is said to beoverconstrainedand there’s (usually) no
solution at all. Again, a trivial example will illustrate
this. Suppose there is one input feeding two output
units, and again both weights are 2. Ify1 is different
from y2, then there’s no possible value for the input
— we can only solve the problem if we assume that
the outputs are compatible with the weights, which in
this case means that they are both the same, and we
can ignore one of them.

Sometimes, however, it is possible to findx given y
and w: in other words the matrixw-1 exists. Given
what has just been said, it clearly helps if there are
the same number of inputs as outputs; that is,w is
square. In addition, w must in some sense transmit
all the information inx through toy in order for us to
be able to go backwards. For square weight matrices
the inverse exists unless one network output effec-
tively duplicates the information available in some
other outputs. Matrices where the inverse exists are
callednonsingular.

Computing the inverse of a matrix is an important

computational operation. Although we do not ofte
want to literally work out the inputs to a linear net
work layer from its outputs, there are, for example
training methods based on the inverse of a matrix
partial derivatives (which is beyond our presen
scope).

What is useful to know is that if the inverse of a
matrix exists, then it can be computed for particula
numerical values, and that almost all numerical pac
ages devote considerable effort to providing routine
for this purpose. What you probably do not need t
know are the algorithms such routines use — thoug
any textbook on numerical analysis will give a grea
deal of detail to this topic.

7 Matrix analysis

Matrices play such an important role in many sys
tems, especially simulations of various kinds, tha
there is a large literature concerned with analysin
their properties. In particular, the decomposition of
square symmetrical matrix intoeigenvaluesand
eigenvectorsis an important tool both theoretically
and computationally. This is not the place to emba
on a discussion of these ideas, though you mig
meet them in mathematics text books.

It is worth mentioning that there is one particularly
useful way of tackling underdetermined and overco
strained inverse problems. This is thesingular value
decompositionof a matrix. When applied to an
underdetermined problem (i.e. short fat matrix),
allows us to pick out one of the many solutions. (I
fact, the solution it picks out is the one with the
smallest sum of squares of the elements of thex vec-
tor.) When applied to an overconstrained proble
(i.e. tall thin matrix) it finds an approximate result, in
that it finds an input that when fed into the networ
will produce an output that is as close as possible
the y that we started with. (As close as possibl
means that the sum of squares error is the minimum
The SVD is useful in other ways also; it is worth
being aware of the existence of this technique so th
you can look it up if you want it.

In general, the analysis of matrices is closely tied
to a geometrical view of mathematics, and in particu
lar the idea of transformations in a vector space. Su
increasingly abstract ideas lead to increasing pow
and generality, but require considerable time an
study.

8 Conclusion

This file has introduced the idea of the matrix (an
vector) as an object that can be manipulated math
matically in various ways. The central idea is that
collection of quantities can be given a single symb

x y w⁄=

x w 1– y=
17

and manipulated as a single entity, but that what is
“really” going on is a set of more elementary opera-
tions on the individual elements. It is essential to see
the relation between these levels of description.

Matrices are useful both as a notational shorthand,
and also in a more fundamental way when properties
such as the inverse are exploited. The shorthand
aspect has a programming metaphor: writing down a
matrix equation is like calling a procedure that takes
an array as an argument and carries out an operation
on it. If the operation is well defined, the procedure
can be treated as a black box, and we do not need to
know what happens in detail to the individual ele-
ments.

In practice, too much use of matrix shorthand can get
in the way. It is often clearer to write down what hap-
pens to individual elements, as was done throughout
Section 2, and it is easier to keep track of what is
meant, especially when calculus is involved. How-
ever, as soon as you want to do something equivalent
to propagating information backwards through a sin-
gle-layer network, then matrix analysis is the area
you need to look at.
18

Section 4 Vectors as geometrical objects

This section provides an introduction to vectors as geometrical objects.
t
e
e
t

f
al

en
e-

-
g
f

-

.
-

ng
Contents

1. Introduction .19
2. Position vectors .19
3. The geometry of simple vector operations20

3.1 Adding and subtracting vectors.20
3.2 Multiplying a vector by a scalar 21
3.3 The length of a vector21
3.4 The distance between two points 21

4. Multiplying a vector by a matrix.21
4.1 Diagonal matrices22
4.2 Rotation matrices.22
4.3 Linear transformations 23
4.4 Coordinate transformations23

5. The dot product and basis vectors23
5.1 The dot product .23
5.2 Basis vectors .24

1 Introduction

In Section 3, the termvector was used to mean, in
effect, a matrix with a single column. In other words,
a vector was a collection of numbers in a definite
order. A vectorx was said to have elementsx1, x2,
etc., up toxN, and the general element was denoted
by xi. That teach file set out the conventions for add-
ing vectors together, multiplying a vector by a scalar,
and multiplying a vector by a matrix. One significant
application of the last of these operations was given:
matrix-vector multiplication is another way of writ-
ing down what a single-layer linear neural network
does. Vectors were used to represent the inputs and
outputs of the network by single symbols.

Vectors have, however, many other uses. One partic-
ularly important class of uses is ingeometry, when
vectors are used to represent spatial relationships and
operations. Applications of this can be found in many
areas, but analysis of the perceptual and motor sys-
tems of autonomous agents benefits particularly
strongly from vector geometry.

Here, we look at the idea of vectors as geometrical

objects in general, before outlining two significan
applications in perception and motor control in th
next teach file. As with Sections 1 and 2, thos
already familiar with the main ideas of vectors migh
skip straight away to Section 5.

2 Position vectors

The idea of representing a point in space usingcoor-
dinatesis probably a familiar one. The coordinates o
a point can be assembled into a single computation
structure, which is then avector. Using the matrix
notation of Section 3, the correspondence betwe
some points in the 2-D plane and their vector repr
sentation works like this:

The points themselves are marked with the “+” sym
bol, with the corresponding vectors written usin
matrix notation beside them. I have also given two o
them names,a andb.

It is straightforward to extend this idea to 3 dimen
sions.

I have not given names to the axes in the diagram
The convention generally used is that the first com
ponent of the vector represents the coordinate alo

2

1

-2

-3

-1

-4

-4 -3 -2 -1 21 3 4

+

+

+

+

+

1

2
a=

2

4–
b=

3

1–3–

2–

4–

1

19

e
s

ts
s
o

er-
e

n
rs

-

.
d
e
y,
is
the horizontal axis, which in turn is often called the
x-axis. The second component represents the coordi-
nate along the vertical ory-axis. With these names
for axes, the components of the vectora might be
calledax anday instead ofa1 anda2 as we have been
doing so far. If we wish to retain numerical sub-
scripts, it might be more sensible to refer to the axes
as the 1-axis and the 2-axis.

In fact, both conventions are in use. For geometrical
work in 2 and 3 dimensions,x, y andz subscripts are
common, and the axes are labelled with these letters.
However, for more abstract uses of vectors (such as
to represent quantities in a neural network), numeri-
cal subscripts tend to be used, and if pictures are
needed the axes might be designated by numbers too.
Here, I am going to stick to numerical subscripts
because it makes generalisation to abstract uses eas-
ier, fits in with the notation of the earlier teach file,
and corresponds to what happens in practice when
you represent vectors by data structures in a compu-
ter program.

Sometimes a vector is drawn using an arrow. For
position vectors likea andb above, the arrow would
be drawn starting from the origin (the intersection of
the axes), with its tip at the point in question. This is
simply an alternative convention for indicating a
position. A vector does not intrinsically have a
“start” and a “finish”.

This use of vectors to represent positions in space is a
paradigm for all their other applications. However,
vectors are used to represent many other kinds of
things — both physical quantities such as velocities,
which are measured in ordinary space-time, and
more abstract things such as the state of a network,
which are measured in a higher dimensional space.

The fundamental mathematical concept of a vector is
actually more general and abstract than this. In prac-
tice, however, the crucial ideas are that position in
space is exactly the kind of thing that vectors can
represent, and that a vector can in turn be represented
by a column of numbers.

3 The geometry of simple vector
operations

3.1 Adding and subtracting vectors

From Section 3, part 5, you should be able to see that
for the two named vectors in the diagram,

because adding the vectors means, by definition, add-

ing their components individually.

There is a simple geometrical interpretation of th
operation. First draw the diagram above with arrow
or lines from the origin to each of the points:

Then move a copy of one of the lines so that it star
from the end of the other line, without changing it
length or orientation. Here we move a copy of b s
that it starts from the end of a:

The new position, markedc, obtained by this graphi-
cal operation, is represented by the arithmetical op
ation of adding the vectors by components. The sam
result would have been obtained if a copy ofa’s
arrow had been tacked onto the end ofb’s. This result
is general: the formal operation of vector additio
corresponds to composing the 2-D position vecto
together.

A classical application of this is in navigation. Add
ing a plane’s velocity through the air to the wind
velocity gives the plane’s velocity over the ground
Velocities are not position vectors; but they do ad
like position vectors and so the calculation, don
either numerically on the components or graphicall
gives the right answer. A more esoteric application
in the superposition of wave functions in quantum

a b+ 1

2

2

4–
+ 3

2–
= =

2

1

-2

-3

-1

-4

21 3 4

+

+

a

b

5
0

2

1

-2

-3

-1

-4

21 3 4

+

+

a

b

5
0

+ c

c a b+=

shifted copy of line from
origin tob
20

d
e,

en

o
la

e

ng
-
l

ut
mechanics; later we will see an application to robot
navigation.

Subtracting one vector from another is done by com-
ponents, like addition. You should be able to figure
out its geometrical meaning; bear in mind that in the
diagram abovea = c - b.

3.2 Multiplying a vector by a scalar

In Section 3 I said that multiplying a vector by a sca-
lar (an ordinary number) meant multiplying each ele-
ment by that number. Multiplying a vector by a
positive scalark corresponds in geometrical terms to
making the arrowk times as long but giving it the
same direction. If you think about 2a = a + a, and
draw a diagram like that above, this should become
reasonably obvious.

Multiplying a vector by -1 makes the arrow point in
the opposite direction (or puts the point it represents
on the opposite side of the origin).

3.3 The length of a vector

How far is the point indicated by the vectora from
the origin? This is easy to answer from the diagram
in whicha was first defined:

which contains a triangle with this shape and dimen-
sions:

Applying Pythagoras’ theorem to the triangle gives
the length of the hypoteneuse (the sloping side) the
value of √(12+22) or √5 (where√ means taking the
square root). This is the distance required. In terms of
the components ofa, the formula for the distance is

If a is thought of as representing the line from the
origin to the point, then this formula gives the length
of that line, and so it is called the length of vector.
The formula generalises to many dimensions. Ify is
anN-dimensional vector, then its length is given by

This is more precisely called theEuclidean normof
the vector. It is sometimes written as |y| or ||y||; occa-
sionally alsoy (in light type) is used to stand for the
norm of the vectory (in bold type).

3.4 The distance between two points

How far apart are the points markeda andb in the
diagram above? Again, one can draw a right-angle
triangle and apply Pythagoras’ theorem. In this cas
the picture is:

where I have drawn on two sides of the triangle —
the hypoteneuse is the line from pointa to point b.
The distance between them is thus√(12 + 62) = √37.
The general formula for 2-D vectors is

Note that the components are subtracted first, th
the differences are squared.

This is a particular case for the distance between tw
points represented by vectors. The general formu
for the distance betweenx and y is just ||x - y||.
Putting the definition of the norm together with the
procedure for subtraction should allow this to mak
sense. Now,x and y can be in a space with any
number of dimensions.

The Euclidean norm has a nice geometrical meani
in 2-D and 3-D, but you have already met it in a dif
ferent context. Look at the error function for a neura
network in part 4.1 of Section 2. The errorE is the
square of the Euclidean distance between the outp
vectory and the target vectort.

2

1

21

+ a

0

2

1

a1
2 a2

2+

yi
2

i 1=

N

∑

2

1

-2

-3

-1

-4

21 3 4

+

+

a

b

5
0

b1 a1–()2 b2 a2–()2+
21

d,

e
ll
xt
n-
ed

o

l-

n

-
y
e-

t
he
n

uld
4 Multiplying a vector by a matrix

In Section 3 we looked at what matrix-vector multi-
plication meant in terms of computations on the com-
ponents, and we noted the relationship of this to the
operation of a linear neural network. There is also a
geometrical way to look at this, though it does not
yield a single simple picture. The general idea is that
the multiplication leads to a geometrical transforma-
tion of one vector into another, and the nature of the
transformation can be related to properties of the
matrix.

I will not give a comprehensive treatment of this, but
will give examples of two important special cases
that illustrate the idea.

4.1 Diagonal matrices

First, consider multiplyinga by a matrix that only
has non-zero elements on its top-left to bottom-right
diagonal (called adiagonal matrix). Sincea has only
two components, and we want the result to be
another vector likea, the matrix has to have 2 rows
and 2 columns. It looks like this:

(You should be able to verify this equation by apply-
ing the matrix-vector multiplication rule from Sec-
tion 3.) Herep andq are ordinary numbers.

What does this do toa? For a start, puttingp = q is
the same as multiplyinga by a scalar, so this just
stretchesa out by a factorp. If p andq are different,
then, roughly speaking,a is stretched out along the 1-
axis by a factorp and along the 2-axis by a factorq.
If it is not clear what this means, try plotting the
result for the vectora (with components (1, 2)) and
various different values forp andq. The numbersp
andq are sometimes called expansion factors, though
if they are less than 1 they cause contraction rather
than expansion.

Suppose a shape is represented by a number of points
on its periphery, and each of these is represented by a
vector. Multiplying each vector by the same matrix
will produce a new shape. For a diagonal matrix, the
shape may be expanded or contracted, and it might
be squeezed up or stretched out more along one axis
or another. Thus diagonal matrices can make trans-
formations with effects like this:

If p = q the shape is simply expanded or contracte
but otherwise itsaspect ratio(the ratio of its width to
its height) changes.

Above, I wrote the components ofa as (1,2). Strictly,
I should have written them in a column with squar
brackets, but it gets tedious laying those out. I wi
sometimes therefore write the components in the te
line in round brackets; this should not cause any co
fusion, and in any case the convention is often us
in books.

4.2 Rotation matrices

Now consider multiplying the vector a by the follow-
ing specific matrix:

For a with components (1, 2), you should be able t
verify that the multiplication gives a vector with
components (-0.7, 2.1). Multiplying this matrix with
the other vectors in the initial diagram gives the fo
lowing transformations when the multiplication is
done (remember, these ought to be written as colum
vectors, but I’m being lazy):

Plotting these transformations on the original dia
gram has this effect, marking the original points b
lower case letters and the new points by the corr
sponding upper case letters:

If you join the corresponding points, you will see tha
they have all been approximately rotated about t
origin by about 45˚. This suggests that a matrix ca
effectively act torotate vectors. If the set of vectors
defined a shape amongst them, then this shape wo

p 0

0 q

a1

a2

pa1

qa2

=

0.7 0.7–

0.7 0.7

4– 1,() 3.5– 2.1–,()→
3– 2–,() 0.7– 3.5–,()→
3 1–,() 2.8 1.4,()→
2 4–,() 4.2 1.4–,()→

2

1

-2

-3

-1

-4

-4 -3 -2 -1 21 3 4

a

d

e

c

b

A

D

E

C

B

22

s-
d
a
t
ry
e
h

he
on
ks

-

n

s-
ns
n

s

t
s
t

s,
t-
o

e

r

get rotated by the matrix multiplication.

In fact the matrix I have used to demonstrate this is
only approximately a pure rotation matrix; if you
plotted out the results really accurately you’d detect a
little contraction as well. To construct a pure rotation
matrix for 2 dimensions, you choose an angle you
want to rotate through, (call itθ), then get the matrix
element values using

This produces an anticlockwise rotation of the vec-
tors if θ is positive. If θ = 45˚, then cosθ = sinθ =
approximately 0.7, which is why the example above
gave the results that it did. A matrix like this pro-
duces no expansion or contraction or change in
aspect ratio. Such matrices are useful in many areas;
one currently very important use is in computer
graphics, where objects represented by sets of posi-
tion vectors must often be rotated for display from
different viewpoints.

Rotation matrices generalise to 3-D and higher
dimensions.

In general, a transformation produced by a matrix
multiplication can be broken down into a rotation
through some angle, followed by multiplication by a
diagonal matrix, followed by another rotation. This
turns out to be the geometrical interpretation of the
singular value decomposition mentioned at the end
of Section 3. And if a matrix cannot be inverted, it
means that it transforms more than one input vector
into the same output vector, so that there is no way of
going backwards unambiguously.

4.3 Linear transformations

The multiplication of a vector by a matrix is alinear
transformation. What this means is that if you trans-
form two vectors separately, and add the results
together, you get the same answer as if you add the
two vectors together first, and then transform the
sum. In symbols:

The mathematics of transformations that have this
property is fundamentally far simpler than that of
transformations that do not. Conversely, using non-
linear transformations can yield richer behaviour
(e.g. in the context of neural networks) than linear
transforms can.

4.4 Coordinate transformations

There is another way of looking at the effect of a
matrix multiplication. Instead of thinking of it as

moving a position vector around in a coordinate sy
tem, you can think of the vector as being fixed an
the axes as changing. The matrix multiplication is
way of expressing what the vector is in a differen
coordinate system. This interpretation can be ve
useful; whether it is appropriate depends on th
application, but you need to be clear about whic
interpretation you are using at any time.

The effects of the matrices described above on t
coordinate system are the opposite of their effects
the vectors. For instance, the diagonal matrix shrin
the 1-axis by a factor ofp and the 2-axis by a factor
of q, whilst the rotation matrix turns the axes clock
wise through an angleθ. The numerical calculations
are of course identical whichever interpretation is i
use.

5 The dot product and basis vectors

5.1 The dot product

Suppose we take two vectors and multiply the tran
pose of one by the other. Taking the transpose mea
swapping rows and columns, so an ordinary colum
vector becomes a row vector. It looks like this:

which, if you apply the normal multiplication rule
and write out what you get, comes to

The generalisation of this toN-dimensional vectorsx
andy is

This is called thedot productof the vectors. It is an
example of a kind of relationship between vector
called aninner product.

You have met the dot product already in a differen
guise. A single linear unit in a neural network form
the dot product of its weights vector and its inpu
vector (part 2.1 of Section 2).

Does this have a geometrical significance? It doe
but first we need to explain what is meant by projec
ing one vector onto another. Suppose we have tw
position vectors, saya andb, and we draw the arrows
from the origin to the points they represent. Then w
draw a line from the tip of thea arrow, at right angles
to the b arrow, and mark where this perpendicula
meets theb arrow. This point is theprojectionof a

θcos θsin–

θsin θcos

M x y+() Mx My+=

a1 a2

b1

b2

a1b1 a2b2+

xi yi
i 1=

N

∑

23

ec-
of
f

ro-
ro-

f
e-
at
lly
rd
of

-
To
e

ontob. In a picture:

The dot product ofa andb is the length ofb times the
length of the projection ofa ontob. If the intersection
occurs on the opposite side of the origin to the point
b (i.e. a is moved to the left in the diagram above so
that you have to projectb’s arrow backwards to get
an intersection), then the dot product is negative. The
relationship is symmetrical — you can swap thea
andb and get the same result.

If a andb point in the same direction, then their dot
product is just the product of their lengths. If they
point in exactly opposite directions, the dot product
is minus the product of their lengths. If they are at
right angles, the dot product is zero.

Another formula you might see for the dot product is

Textbooks give the proof that this is the same as the
definition above in terms of the components. For
high-dimensional vectors, this formula is used to
definewhat is meant by the angle between two vec-
tors.

The dot product is biggest for two vectors of fixed
length if the angle between the two vectors is zero —
that is, one of the vectors is just a scalar constant
times the other. For example, if a linear unit in a neu-
ral network has only a fixed amount of weight to dis-
tribute (in the sense that the sum of the squares of its
weights is fixed), it can optimise its response to a
given input by making the weights match the inputs
— if the weights are proportional to the given inputs,
then the unit will be giving as big an output as possi-
ble.

5.2 Basis vectors

The dot product gives another way of thinking about
linear transformations. Each row of a matrix can the
treated as the transpose of a column vector. Then
when we multiply that matrix by a vector, what we
do is to form a set of dot products. The first compo-
nent of the output vector is the dot product of the

input vector with the first row of the matrix, and so
on.

The rows of the matrix are sometimes calledbasis
vectors(though the matrix must be invertible for this
to make proper sense). The elements of the new v
tor are the projections of the old vector onto each
the basis vectors in turn, multiplied by the lengths o
the basis vectors. The coordinate transformation p
duced by the matrix can thus be seen as a set of p
jection operations onto a set of basis vectors.

In fact, this allows us to give abstract definitions o
vectors that do not depend on how they are repr
sented. The ordinary components of the vectors, th
we have used so far to represent them, are actua
just the dot products of the vectors with the standa
basis vectors, which have components (in 3-D)
(1,0,0), (0,1,0) and (0,0,1).

This idea will not be pursued further here, but it pro
vides important tools for analysing some systems.
go on in this direction requires an analysis of th
abstract ideas ofvector spaces— Horn & Johnson
(see Section 3) gives information.

b

a

Origin

Projection ofa ontob is
at this intersection

a b⋅ a b angle betweena andb()cos=
24

is.
Section 5 Vector applications

This section complements Section 4. It provides two examples of the application of ideas in vector analys
”)
d-
,
rs
as

,

t
by
.
-

s a

-
d
ly
e
e

ci-
al
all

-
en

t
d.
a

n
ty

e

Contents

1. Introduction .25
2. A vector velocity field .25

2.1 The idea of a velocity field 25
2.2 An optical velocity field 26
2.3 Matrix multiplication as a field

operation .26
2.4 Flow patterns illustrated 27

3. Coordinate transformations for control27
3.1 Simple robot arm kinematics.28
3.2 Alternative coordinate systems, especially

polar coordinates .29

1 Introduction

The most immediate and obvious application of vec-
tors is the representation of geometrical relationships
in ordinary 3-dimensional space. This is not surpris-
ing, since the prototype vector is a position vector.
This file concentrates on this kind of use for vectors,
but it is worth bearing in mind that much more
abstract entities also lend themselves to vector repre-
sentation, as we have already seen in the case of
input and weight vectors for neural networks.

The need to represent geometrical relationships
arises particularly often in those parts of robotic or a-
life systems which have to interact with the physical
world (or a simulation of it). Perceptual and motor
control systems frequently use vector representations
of space (and sometimes of space-time).

Here, I focus on matrix-vector multiplication, since
this linear operation is one of the most important in
applied mathematics.

2 A vector velocity field

2.1 The idea of a velocity field

The common functions, such as sin and log, take a

number as argument and produce (or “map onto
another number. There is nothing to stop us exten
ing the idea of a function to include vector functions
which take one or more vectors (and maybe numbe
as well) as arguments and which produce vectors
their result.

If the input to such a function is a position vector
and the result is another vector, then we have avector
field. For example, if the wind speed and direction a
each point at ground level in Sussex is represented
a vector, the set of vectors forms a 2-D vector field
Graphically, the wind over Sussex might be dis
played as arrows drawn on a map, and this provide
way to visualise the vector field idea.

The wind velocity vector at a point has two compo
nents (one might represent it using northerly an
easterly components for example). It’s not absolute
obvious that velocities should be manipulated in th
same sort of way as positions, but in fact it’s the cas
that the same vector rules are appropriate for velo
ties, and the rules have straightforward physic
meanings (at least as long as the speeds are sm
compared to that of light). In other words, if posi
tions are appropriately represented by vectors, th
so are velocities.

If the wind velocity was represented by a vectorv,
and position on the ground by a vectorr, then we
could write

where f is the name of the vector function tha
assigns a wind velocity to each point on the groun
Of course in this example the function would not be
simple thing to write down — the best you could
probably do would be to tabulate an approximatio
to it — but the idea that you can associate a veloci
vector with each position vector in thedomainof the
function (here Sussex) is what matters. Often th
shorthand notationv(r) is used to indicate thatv
depends onr, without giving the function a separate

v f r()=
25

he
-
-

at
-

y

p-

-
.

r
uld

e
x

name.

If the vertical component of the wind velocity was
represented as well, and the position included height
above the ground, then we would have a function
from 3-D position vectors to 3-D velocity vectors.
(The manipulation of large arrays representing
approximations to such functions is one of the main
tasks of the Meteorological Office’s supercomput-
ers.)

2.2 An optical velocity field

Now I give a specific example of a velocity field that
is useful for studies of perception in the control of
robot and animal locomotion.

Suppose a camera attached to a robot is moving
through the world. The image formed by the camera
will be changing. If all the visible objects in the envi-
ronment had closely textured high-contrast pattern
on them, we could track the images of features of the
pattern across the image plane of the camera. We can
imagine drawing arrows on the image representing
the speed and direction of motion of features at a
given moment. If this set of arrows could be made
very dense, so that an arrow could be associated with
any point on the image plane, then we would have a
2-D vector field.

This field is closely related to what is known as the
optic flow field for the moving camera.

In practice, an approximation to the image velocity
field is easy to obtain by hand. You simply get two
images from different positions of a camera (not too
far apart), superimpose them, and join corresponding
features with arrows. Each arrow effectively repre-
sents an image velocity vector.

In general, this velocity field will be a complex func-
tion like the wind field over Sussex — there is not a
simple formula for it. However, under certain cir-
cumstances there is a good approximation which
does obey a simple rule. If the following apply:

(a) the camera is viewing a smooth surface;

(b) the field of view is reasonably small;

(c) the camera is panned and tilted so that it
tracks a feature at the centre of the image, which
is taken as the origin for position;

then the image velocity field is approximately a lin-
ear function of image position. What this means is
that if position in the image is represented byr and
image velocity byv, the relationship is just a matrix
multiplication:

whereM is a 2x2 matrix. The 4 components ofM
depend on the direction the camera is moving and t
slant and tilt of the surface. To write down this rela
tionship is not trivial and will not be done here (refer
ences are available on request).

2.3 Matrix multiplication as a field operation

This example gives us another opportunity to look
the geometrical use of matrix multiplication. Particu
lar combinations of components of theM matrix pro-
duce very different and distinctive image velocit
fields.

Suppose, for example, thatM is

Then it is easy to work out some examples of ma
pings fromr to v:

Given such a table, it is easy to plot out some sam
ples of the image velocity field as an arrow diagram
One naturally draws the arrow representingv at the
position given byr, just as one would for the wind
arrows on a meteorological map. If you do this fo
the table above and some more examples, you sho
get a picture looking roughly like

where the arrows get longer the further out from th
origin you go. In other words, the diagonal matri
produces adilating flow pattern.

This kind of flow pattern is generated by motion
v Mr=

0.5 0

0 0.5

r v

1 0,() 0.5 0,()→
1 2,() 0.5 1,()→

0 1–,() 0 0.5–,()→
etc.
26

ly

w
he
m

:

but

-

.

towards a surface.

Note the difference between this and matrix multipli-
cation viewed as a transformation, as in Section 4
part 4. There, the idea was that a shape was mapped
into another shape, or that a different coordinates
system was used to represent the same shape. Here, a
function from the position vectors maps onto a differ-
ent kind of thing: a velocity. The actual matrix
manipulations are, of course, the same, but their
interpretation is different.

The effects of other forms ofM are easy to calculate.
You should be able to check, by calculating one or
two vectors in each case, that

 produces something like

This rotational flow field can be produced by spin-
ning the camera about its axis. Note that the matrix is
just 0.5 times the matrix for a rotation of 90˚ (see
Section 4, part 4.2), so it is not surprising that it has
this effect.

The matrix

 produces something like

which is one component of ashear field, and

 produces something like

which is the other component of shear. Shear flow
fields are produced when a camera moves sideways
in front of a slanted surface. For instance, the image
of the ground in front of a mobile robot has the first
component of shear combined with dilational flow,
whilst the image of the ground to the side has the sec-
ond component combined with rotational flow.

The details are not important; the point here is to
illustrate the idea that a vector field, in this case gen-
erated by one of the simplest vector functions (multi-
plication by a matrix), can represent a rich variety of
patterns — in this case patterns related to an impor-
tant part of the perceptual process of a mobile agent.

In practice, the elements of the matrix have to be esti-
mated from an image sequence. This can be done in a
variety of ways, but typically a model, represented by
the linear equation above, is fitted to the partial deriv-
atives of image intensity with respect to space and
time coordinates. The matrix elements can then be

used in a variety of ways, either to help build a 3-D
representation of the environment, or more direct
in a motor program.

2.4 Flow patterns illustrated

You may be able to generate representations of flo
patterns using a package such as Matlab, or t
Poplog system. For example, using such a progra
the matrix

generates the flow field representation shown here

The program used does not draw the arrow heads,
puts a dot at thebaseof each arrow. The dots mark
the positions corresponding to ther vectors.

A more complex example generated by the matrix

which produces a mixture of shear, dilation and rota
tion, appears as

3 Coordinate transformations for
control

A second application is to the control of robot arms

0 0.5–

0.5 0

0.5 0

0 0.5–

0 0.5

0.5 0

0 0.1

0.1 0

0.1 0.1–

0.05 0.05
27

e

t
ld
ry
-
a-
the

at
is

ry

r

t

ly

t:
e
se
k-

to
to
t

on

e
t
get

e

e

This will merely be outlined here to give the general
idea; robot control textbooks give details and exam-
ples. I will also mention the use of alternatives to the
Euclidean coordinate system.

3.1 Simple robot arm kinematics

Suppose a robot’s gripper is operated from some
base, and designed so that it can be moved on com-
mand to a given position above a plane, expressed in
(x, y) coordinates, relative to that base. (Some piece
of electronics on the base converts these coordinates
to the signals which are actually sent to some motors
to move the arm.)

Provided there is a program that can work out the
positions to send the arm to, there’s no problem with
this. However, the arm might not be able to reach
everything that is needed, so it is mounted on a
mobile base. The controller for this can turn it to face
in any direction and can move it around the lab. Its
position in the lab is also expressed in Euclidean
coordinates, relative to some axes fixed to the floor,
which will be denoted by (X, Y). The orientation of
the base is indicated by an angleθ, which is the angle
anticlockwise from the X-axis on the floor to thex-
axis on the base. Thus we have something like

Hereθ is about 30˚. Note that it is independent of the
base’s position in the room.

The question is: if the position of an object in the
room is specified in terms of its (X, Y) coordinates

(i.e. its position on the floor), how do we move th
gripper to it? Since the gripper control works in
terms of (x, y), we need to work out where the targe
is relative to these coordinates. Although you cou
probably work out the answer using elementa
geometry and trigonometry, the formula is very sim
ple when expressed in terms of vector transform
tions. Suppose the robot’s base (to be precise,
origin of its (x,y) coordinates) is at positionB relative
to the floor coordinate system, and the target is
positionT in this coordinate system. What we need
the target’s position in thebase’scoordinates, which
we will denote byt. Then we can move the gripper
directly to it, provided it is in range.

The formula to get fromT andB to t is much simpler
than the one you might work out using elementa
mathematics. It is

HereR(-θ) means the 2x2 matrix that rotates a vecto
anticlockwise through an angle -θ, or equivalently
clockwise through an angleθ. The multiplication is a
matrix-vector multiplication. From Section 4, par
4.2, we know that

(changing the signs, and remembering that cos(θ) =
cos(-θ) and sin(θ) = -sin(-θ)). The formula is easy
enough to evaluate in a computer program, possib
using library routines for the matrix operations.

You should be able to see why the formula is correc
T-B is the vector from the base to the target in th
floor coordinate frame, and to express it in the ba
coordinate frame, which has been rotated anticloc
wise byθ, the vector is in effect rotated clockwise by
θ.

Why is this more useful than elementary geometry
do the same task? First, it is quicker and easier
write down and implement; provided you know wha
a rotation matrix looks like, or you know where to
find out, you can have a procedure for the conversi
set up in a few minutes.

Second, it is easier to manipulate. For example, w
might want to go in the other direction. The robo
might have a sensor on its base that detects the tar
and produces the components oft. We might then
want to knowT in order to plot the position of the
object in a map that is being built of the lab. Th
equation can easily be reversed to yield

(by default, multiplications are always done befor

x

y

Base

Gripper

x

y

Mobile base

Gripper

Y

X

Target

t R θ–() T B–()=

R θ–() θcos θsin

θsin– θcos
=

T R θ()t R+=
28

re-
or
re
ar

r-

a

-
d

g

r
i-
or
-

n

ll
s

es.
if
e

additions). This equation could be got either by rea-
soning about the situation, or simply by solving the
first equation forT. SinceR(θ) clearly reverses the
effect of R(-θ), we can note in passing thatR(-θ) is
both the inverse and the transpose ofR(θ).

Third, the method generalises better, in a variety of
ways. The most obvious is to 3-D: the equations stay
the same, though the rotation matrix becomes 3×3. It
is also easy to incorporate additional links into the
chain. For simplicity, we assumed that the gripper
controller could simply move the gripper to given
coordinates; in practice, this would be achieved by
having several separate links in the arm. For each of
these there is a coordinate transformation so that the
target positition could be expressed in terms of that
particular link’s controller. For a chain of links, the
equation for the target position can be applied recur-
sively as information is passed along the chain —
each link knows its own orientation relative to the
previous one, and so can work out the target position
in its coordinate system. And indeed, the coordinate
systems that are used do not even have to have the
same units, or have right-angles between their axes:
these differences can be taken into account by using
transformation matrices that are not pure rotation
matrices. Then, the matrix inverse really comes into
its own if the equations have to be solved to find the
reverse transformations.

There are some tricks that are commonly used in this
kind of computation. One important one is the use of
homogeneous coordinates, which allow the opera-
tions in the equations above (a vector addition and
matrix multiplication) to be carried out in a single
multiplication step. This is done at the expense of
including an extra element in the representation of
each vector, and an extra row and column in each
matrix. The extra vector elements are in fact redun-
dant, but allow the vector to be added to be specified
in the additional matrix elements. The technique will
not be elaborated here, though it is not particularly
difficult; it can speed up the algebraic manipulations
needed for complex systems.

The central idea in this section is that of aframe of
reference. Any physical vector must be expressed rel-
ative to such a frame but a given frame may not be
suitable for all the operations that need to be carried
out. Transformations between frames are therefore
an essential operation.

3.2 Alternative coordinate systems, especially
polar coordinates

So far, vectors have been represented using Eucli-
dean (x,y) coordinates. It is often useful to represent
them in other ways; one of the most common ispolar
coordinates. In 2-D polar coordinates, a position is
represented by its distance from the origin (often

denoted byr) and the angle a line joining it to the ori-
gin makes with thex-axis (often calledθ). Such a
coordinate system might be used because it cor
sponded better to the physical setup of a sensory
motor system; wherever there is a natural cent
(such as the eye position in a visual system), pol
coordinates merit consideration.

The relationships between polar and Euclidean coo
dinates are:

assuming that atan (also called arctan) returns
result in the range -90˚ to +90˚ (or -π to +π radians).
In the maths libraries provided with almost all com
puter languages there is a function, often calle
atan2 , which does theθ calculation giveny andx.
This should always be used in preference to doin
the division and callingatan or arctan explicitly.

To go in the opposite direction, use

Note that if a vector is expressed in terms ofr andθ,
the rules for addition and multiplication no longe
apply. Essentially, you have to translate it to Eucl
dean coordinates before adding it to another vect
by components or transforming it using matrix multi
plication.

The transformation between polar and Euclidea
coordinates isnonlinearbecause, for example, multi-
plying bothx andy components by a constant multi-
pliesr by that constant but does not changeθ.

Often, however, it is necessary to transform sma
changesin a vector, represented in polar coordinate
(or some other system), between coordinate fram
This might arise in the robot arm control system
we wanted to know what direction and speed th
gripper will have relative to the floor if a motor

x

y

r

angleθ

r x2 y2+=

θ y x⁄() if x is positiveatan=

θ y x⁄–() if x is negativeatan–=

x r θcos=

y r θsin=
29

somewhere in the middle of the arm is actuated at a
given rate. A transformation of changes or velocities,
can be carried out by a matrix multiplication without
calculating the Euclidean coordinates. The elements
of the matrix are derived from the coordinate rela-
tionships (they are actually partial derivatives), and
such a matrix is known as aJacobianmatrix. Books
such as that by Boas (reference in Section 1) go into
considerable detail about this. Note that the inverse
of the Jacobian (if it has one) may indicate how to
activate the motors to produce a desired motion.

You may encounter the idea oflinearisinga problem
by considering small changes in a quantity rather
than the quantity itself. The use of the Jacobian
matrix to calculate gripper velocities is a good exam-
ple of this.

Polar coordinates can be extended to 3-D. Other
forms of non-linear coordinate transformations can
be found — for example log-polar coordinates are
useful in some areas of vision.
30

al
Section 6 Numerical integration of differential
equations

This section provides an elementary introduction to the ideas behind the numerical integration of differenti
equations.
A
in
-

e
to
e

),
We
y
s-
it

m.

to

is
ct,

n.

t
e
d

Contents

1. Introduction .31
2. Euler’s method for initial value problems31
3. More complex one-step methods 32
4. Multistep methods. .33
5. A generalisation .33

1 Introduction

Often, the physics of a situation — or of a simulation
— tells us how variablesvary with one another, but
does not directly tell us what values the variables
have. The rule for how the variables co-vary might be
expressed as adifferential equation(that is, an equa-
tion involving derivatives), or it might be that we are
simply have some method of obtaining values of
derivatives. In either case, what we often want to do
is to work out the values of the variables themselves.

For example, a mobile robot might be able to meas-
ure its velocity — it knows how position varies with
time — but it might need to know its actual position
in order to determine when it has reached its target,
or which way to turn towards it. To estimate its posi-
tion, it could use a kind of dead reckoning: it could
add up the distance covered in successive steps,
assuming each step is made at a constant velocity.
Adding up small steps is known asintegration; in
mathematics it is carried out on infinitesimal steps,
and is formally the inverse process to differentiation.

Sometimes, differential equations can be integrated
symbolically, so that we obtain a straightforward for-
mula for the variables in question. Here, though, we
look at the case where this is not possible, either
because the equation is too difficult to integrate sym-
bolically, or because the derivatives are not given by
a formula at all, but are tabulated or measured.

Textbooks on numerical analysis deal with the tech-
niques needed in detail. A good example is “Numeri-
cal Analysis”, by R.L. Burden & J.D. Faires (3rd

Edition, PWS Publishers, 1985) — see chapter 5.
summary and practical advice can be found
“Numerical Recipes in C”, by W.H. Press, B.P. Flan
nery, S.A. Teukolsky and W.T. Vetterling (Cam-
bridge University Press 1988, later reprints). Anyon
needing to seriously use these techniques will need
spend time with at least one such book; in this file th
aim is only to illustrate the underlying principle —
which is in fact very simple.

2 Euler’s method for initial value
problems

A mobile robot moves down a corridor (a 1-D space
measuring its speed at successive time steps.
need to know how far down the corridor it is at an
given time, perhaps so that its position can be di
played on a monitor, or so that we can stop it when
has gone far enough.

If the robot’s position isx(t) at timet, then its speed
v(t) is given by the simple differential equation

We assume that we know where the robot starts fro
This is called aninitial value problembecause the
differential information is used to work out how the
state evolves from a specified initial state.

There is an obvious way to integrate the equation
get values ofx given values ofv. Supposev is sam-
pled regularly att = 0, t = 1, t = 2, etc., and thatv
changes slowly enough that we can assume that it
constant during the time between samples. In fa
we will just assume thatv keeps the value it has when
one sample is taken until the next sample is take
Then the distance travelled between timet = 0 and
time t = 1 is justv(0), and so on. If the robot starts a
x = 0 at timet = 0, we can just compute the distanc
travelled in the first time step, then in the second, an

v
td

dx=
31

s
.

o
-

m
e

ff,
e
n-
e
it
al
by
s

ry

s
e
ive
ter

he
g,
th
ed
ed
,
, so
-
ay
n

e
m
he

d
nd
to
s
lly
ill

e
e
-
ll
st
so on, and add them up to get the current position.
Negative speeds mean going backwards.

For example, if the speed is given by the middle col-
umn below, then this method gives the positions in
the right hand column

and so on. The calculation is trivial and generalises to

If the interval between samples is not 1 unit of time,
then the velocity must be multiplied by the interval to
get the distance covered. We would write

whereT means the interval between samples.

This is Euler’s method for integrating the differential
equation. It is evident that the shorter the time step
that is used, the more accurate the results will be.
Also, errors will accumulate, so the overall error will
increase as time goes on. It shares these characteris-
tics with all other numerical integration methods, but
is extremely easy to implement. In a sense, it is the
model for all the more sophisticated algorithms that
you will encounter. Although numerical analysis
books describe many more complex methods for
integrating differential equations, Euler’s method and
simple variations on it are the workhorse of many
physical simulations.

Euler’s method extends to higher-order differential
equations (those with multiple derivatives). For
example, we might know the acceleration of the
robot, not its speed (though we would need to know
the initial speed). Euler’s method can be applied
twice, first to integrate the acceleration to get the
speed, and then to integrate the speed to get the posi-
tion.

Euler’s method also applies to vector equations. If
vectors are represented using rectangular coordi-
nates, then each component can be integrated inde-
pendently of the others. Thus a robot that measures
its speed and direction can integrate them to find its
position in 2-D or 3-D space.

A second example of the application of Euler’
method occurs in recent work in computer vision
One of the major difficulties of image analysis is t
find meaningful structures in an image. A very prom
ising technique is to simulate a physical syste
which responds to “forces” generated by the imag
data. For instance, a string which is elastic and sti
and which is attracted to local changes in imag
intensity, can be used to find connected smooth co
tours. Such a simulated string is let loose in th
image, and allowed to attach itself to any structure
can find. The behaviour of these computation
objects, known as active contours, is described
differential equations, and their evolution in time i
simulated out using Euler’s method.

3 More complex one-step methods

One-step methods are those which, like Euler’s, t
to make a prediction for timet+T using information
only from time t or later, whereT is the interval
between times for which the function is estimated.

The limitation of Euler’s method is that it assume
that the value of the derivative (the speed in th
example above) is constant over each success
interval. More sophisticated methods attempt grea
accuracy by weakening this assumption.

For example, in themidpoint method, the derivative
(the speed in the robot example) is estimated at t
centre of the interval rather than at its beginnin
which clearly makes more sense. The problem wi
this that the speed might depend not only on elaps
time, but also on the position the robot has reach
by the middle of the time interval. In a simulation
we do not have a direct measurement of the speed
we need to know the robot’s position to find the mid
point speed estimate. This seems circular. The w
out is to use Euler’s method to estimate the positio
the robot will have reached half-way into the tim
interval, then get a midpoint estimate of speed fro
that, and use that to get the position at the end of t
interval.

This kind of thing can be elaborated further: a secon
mid-point estimate of the speed might be made, a
combined with start-point and end-point estimates
get an overall speed for the final prediction. A clas
of methods based on this general idea, but carefu
designed using an analysis of the errors that w
occur, is theRunge-Kuttamethods, one particular
case of which forms a kind of standard in the area.

A different kind of refinement is to vary the step siz
T according to how rapidly the function seems to b
fluctuating. The result obtained by taking two half
size steps can be compared with that from one fu
step to see whether significant accuracy is being lo

t v x

0 2 0

1 4 2

2 3 6

3 2 9

4 0 11

5 -1 11

6 -2 10

7 -3 8

x t() x t 1–() v t 1–()+=

x t() x t T–() Tv t T–()+=
32

ith
er
on the full step, and the step size adjusted accord-
ingly.

The main point to realise is that all these methods
involve trade-offs amongst accuracy, computation
time, and ease of implementation. There is no simple
rule for choosing an algorithm, since this depends on
the details of the problem — every methods exploits
assumptions about the smoothness of the functions
concerned in some way. The books mentioned above
give considerable guidance, and give formal analyses
of the errors: but the error expressions are in terms of
higher-order derivatives, so the assumption of
smoothness is still present. In the end the consistency
of the results when parameters are varied across trials
is probably the best check on whether a simulation is
using sensible methods.

4 Multistep methods

The one-step methods discard information from
before time t when they are calculating the prediction
for time t+T. It seems reasonable to suppose that for
smooth functions, this information should be
retained and used. In general, some weighted sum of
the previous estimates of the function and previous
values of its derivative is going to be a good start.
Methods which use this information are called multi-
step methods; a common example is thepredictor-
correctormethod, which involves a weighted sum of
the previous values and their derivatives to make a
prediction, and then uses the derivative at this pre-
dicted point to improve the prediction further.

5 A generalisation

The weights for the weighted sums are calculated by
considering the theoretical errors, and assuming that
higher order derivatives of the functions are rela-
tively small. However, the use of a weighted sum
inevitably suggests that there might be something to
be gained by making the weights adaptive, if it is the
case that we find out what the true value of the func-
tion is at some point. For example, in financial fore-
casting, one might supply a set of recent values of a
share price as inputs to a neural network, together
with the values of other variables which might be
expected to affect the price (and so might be related
to its derivative with respect to time). The network’s
output could be taken as a prediction of the next
day’s price, and then when the true value came along,
the network could be trained using any supervised
learning technique. Such a network could learn to
simulate at least the predictor step of the predictor-
corrector method; since the network would be data
adaptive, it should be capable of outperforming other
methods for at least some classes of input. For a rela-
tively simple signal, such as the level of the tide

measured each hour, a simple weighted sum w
adaptive weights can produce good predictions ov
surprisingly long periods.
33

 in
Section 7 Some probability and statistics

The area of probability and statistics is an enormous one with vast applicability. This section summarises,
sketchy outline, a few of the more basic and useful topics in this field.
n
-

f a
a-

s
et

ive
-
e

air,

s
,

for

al

re
o

er
Contents

1. Introduction . 34
2. Probability fundamentals 34

2.1 Basics . 34
2.2 Estimating probabilities 35
2.3 Conditional probability and

independence . 35
2.4 Bayes’ theorem. 36
2.5 Summing conditional probabilities. 37
2.6 Random variables and probability distribu-

tions . 37
3. Statistics of distributions 38

3.1 Averages . 38
3.2 Variances and standard deviations 39
3.3 Entropy . 39

4. “Random” numbers . 40
5. Conclusion . 41

1 Introduction

Mathematically, a probability is a number between 0
and 1, which is manipulated according to certain
rules, and these are well established and well under-
stood. The interpretation of probabilities remains,
however, a matter for debate. Very roughly, there are
two schools of thought. For the frequentist school,
the probability of an event is the fraction of times
that the event will occur if the situation leading up to
the event is replicated as exactly as possible. For the
subjectivist school, the probability of an event is a
measure of the strength of belief of a rational being
that the event will occur. Whilst these differences are
important both at a philosophical and practical level,
they will be left to one side here.

In classical physics, probabilities reflect ignorance on
the part of an observer (we express the fall of a coin
in terms of a probability because we do not know
enough about the exact spin, lift etc. imparted when
it is tossed), whilst in quantum physics the uncer-
tainty entailed in the use of probabilities is a funda-

mental property of nature (the future state of a
atomic particle cannot, even in principle, be pre
dicted exactly). In Artificial Intelligence, probabili-
ties are generally used to deal with the ignorance o
reasoning system about the exact details of a situ
tion. In simulation studies, probabilistic reason i
used both to set up initial conditions and to interpr
the outcomes of repeated trials.

Textbooks such as that by Boas (see Section 1) g
an introduction to probability. The use of probabili
ties will be encountered in almost every branch of th
study of evolutionary and adaptive systems.

2 Probability fundamentals

2.1 Basics

The probability of an eventE is written P(E), or
sometimes as Pr(E). For example, ifH is the event
that a tossed coin turns up heads, and the coin is f
then we might write P(H) = 0.5.

A fundamental property of probabilities is that if two
eventsA andB aremutually exclusive(i.e. they can-
not both occur), then

P(A or B) = P(A) + P(B)

(Notation: where I have used the word “or”, book
often use the symbol∪, which also means set union
or the symbol∨ as in predicate calculus.)

For example, if P(H) = 0.5 and P(T) = 0.5, andH and
T cannot both occur (perhaps because they stand
heads or tails in a single coin toss), then P(H or T) =
1.

This last example illustrates another fundament
property: if a set of events iscomplete(i.e. one of the
events in the set must occur) and all the events a
mutually exclusive, then their probabilities add up t
1. It is occasionally helpful to think of probability as
a limited resource which has to be distributed ov
34

g

e
e

a
i-
-

n

te
m
l
s
t
g
le
d.
st

e
it
is

is
re

s

n

e

n

a

e.
the possible events in a way which reflects how likely
each one is.

More formally, if eventsX1 ... XN are complete and
mutually exclusive (i.e. exactly one of them must
occur), then

In fact, what I have said so far is sufficient to estab-
lish the formal basis of probability theory. One con-
sequence of these properties is that ifA andB are two
events that are not necessarily mutually exclusive,
then

P(A or B) = P(A) + P(B) - P(A andB)

where “A and B” means that both events happen.
(This is often writtenA & B, or using the symbol∩
(set intersection) or∧. You may also see P(AB) and
P(A,B), meaning the same thing.) The formula makes
sense, in that if the two events are mutually exclu-
sive, then P(A andB) = 0, giving the previous for-
mula.

2.2 Estimating probabilities

Textbooks (e.g. Boas — see Section 1) devote a large
amount of space to the matter of estimating the prob-
abilities of different kinds of event. Such questions as
“What is the probability that you and a friend have
different birthdays?” are the grist to this mill, which
also involves a lot of throwing of dice and drawing of
cards.

Questions like this generally involve summing prob-
abilities for mutually exclusive events. Asample
spaceof all possible mutually exclusive primitive
events is set up; usually there is some symmetry
argument that makes the probabilities for all these
events equal. Then primitive events have to be com-
bined to create the set of circumstances that allows
the question to be answered; the probabilities for the
primitive events are summed. Although this sounds
simple, subtle and complex arguments are often
needed to get it right.

As this is standard textbook material, I will not dwell
on it. Here is a simple example, just to give the gen-
eral idea. Suppose that in some genetic code strings
of length 5 are generated by randomly selecting from
the characters A, B, C and D with equal probability.
What is the probability of finding the combination
AAAA somewhere in a given string? First, the sam-
ple space is the space of all possible strings
(AAAAA, AAAAB, AAAAC etc., to BDDDD,
CDDDD, DDDDD). Each of these has the same
probability, and there are 45 of them. The probability
of each one is 1/45, or approximately 0.001. 4 of the
strings have AAAA at the left end, and 4 have

AAAA at the right end, but AAAAA is common to
both these groups, so the total number containin
AAAA is 7. Thus the probability required is 7/45 or
about 0.007. This process of effectively counting th
number of ways to get a given observation is th
basis of combinatorial probability computations.

(The general case of finding the probability of
given pattern in a random string is covered by a var
ety of formulae depending on the exact circum
stances — textbooks will give great detail whe
needed.)

Another way to do the example is simply to genera
all the possible strings and count the number of the
containing the sequence AAAA, dividing by the tota
number to get the exact probability. Another way i
to use aMonte Carlomethod, generating strings a
random and estimating the probability by countin
those that have AAAA. Such techniques are valuab
fallbacks when textbook methods cannot be applie
Many simulation experiments are, in a sense, ju
Monte Carlo probability estimations.

2.3 Conditional probability and independence

It is often useful to talk about the probability of one
event, given that another event is known to hav
occurred. For example, for an autonomous robot,
may be useful to consider the probability that there
a particular object — say an apple — in front of its
camera, given that the robot’s perceptual system
reporting the presence of a particular image featu
— say a circular shape. Such a probability is acondi-
tional probability. If A is the event that an apple is
present, andC is the event that a circular shape ha
been detected, we write

P(A | C)

to mean the probability of there being an apple whe
a circular shape has been seen.

One way of thinking about this is to use apossible
worldsmodel for probabilities. P(A) means the frac-
tion of all possible worlds in which there is an appl
in front of the camera. P(C) means the fraction of all
possible worlds in which a circle is detected. P(A | C)
means the fraction of worlds in which there is a
apple, but consideringonly those possible worlds in
which a circle has been detected. Whether you like
“possible worlds” way of thinking about probabili-
ties is partly a question of your philosophical stanc

Some books use the notation

PC(A)

to mean the same as P(A | C).

It seems reasonable that eventC does tell the robot

P Xi()
i

∑ 1=
35

-
ld
r
in

,
an

a

re

ir-
nth

e

r-
a
ls

of

n
or

cal

s

f
e

as

ck
are

e
la
something about eventA. Consider eventB, which is
the presence of an apple on a tree in the garden.
KnowingC does not tell the robot anything about the
likelihood of B. It seems reasonable to express this
by writing

P(B | C) = P(B)

This formula is actually one definition of statistical
independence. If the probabilities forB andC obey
this rule, thenB andC are statistically independent. It
is often useful to assume statistical independence
between variables even when this is not strictly justi-
fied.

One warning — unnecessary I hope. If two events
really are physically independent, then they will be
statistically independent and observing one of them
will not affect the probability of the other. Failing to
realise this is the classical gambler’s error. Observing
six heads in six tosses of a coin does not mean that
the probability of a head on the next toss is anything
other than a half, provided the coin is fair. It is easy
for subtle versions of this error to crop up, and it is
advisable to watch out for them. (The chairman of
the National Lottery was quoted in a newspaper as
saying that high numbers had a good chance in a par-
ticular week because there had been a preponderance
of low numbers before that — one might have hoped
that someone in his position would have known bet-
ter.)

There is a second way to express statistical independ-
ence numerically. IfB and C are independent, then
the probability of both events occurring is given by

P(B andC) = P(B) P(C)

This can be shown to be equivalent to the definition
above in terms of conditional probability. It is an
important relationship, in that it is often useful to
assume that different events are independent, because
we know of no causal link between them, and to
work out probabilities of combinations of events
using this product rule.

2.4 Bayes’ theorem

There is a very important relationship concerning
conditional probabilities. We will approach this by
putting some numbers into the perception example
above.

Suppose that the robot “knows” that apples happen to
be in front of its camera on one-tenth of the occa-
sions that it looks, so

P(A) = 0.1

and that it detects a circular shape in the image on
one-fifth of the occasions that it looks, so

P(C) = 0.2

In addition, the robot knows from previous experi
ence (when it has been shown something and to
that it definitely is an apple), that it detects a circula
shape three-quarters of the time when an apple is
front of it. That is,

P(C | A) = 0.75

Now the robot, roaming its world in search of food
detects a circular shape. What is the chance that
apple is in front of it? In other words, given the dat
above, what is P(A | C)?

This can be answered by considering how often the
is an apple in front of the camera,and the robot sees
a circular shape; that is P(A andC). It is easy to work
this out: an apple is in front of it one tenth of the
time, and on three-quarters of those occasions a c
cle is seen, so the answer is three-quarters of a te
or 0.075. In symbols

P(A andC) = P(A) P(C|A) = 0.1× 0.75 = 0.075

Now we know that the robot has seen a circle. Th
probability that there isalso an apple present, given
the circle, is the fraction of times an apple and a ci
cle occur together, divided by the fraction of times
circle occurs without regard to the apple. In symbo

P(A|C) = P(A andC) / P(C) = 0.075 / 0.2 = 0.375

So the answer is 0.375 or three-eighths. One way
saying this is that theevidenceof the visible circle
has increased the probability of thehypothesisthat an
apple is in front of the camera from 0.1 to 0.375.

If this is unfamiliar, work through the argument agai
using different numbers and a different example. F
instance, imagine a patient going to a doctor.M
might be the event that a patient has meningococ
meningitis (with say P(M) = 0.00002, or one in
50,000),S might be the event that the patient ha
headache with fever (with say P(S) = 0.004, or one in
250), and it is known that patients with this kind o
meningitis display headache with fever half the tim
(so P(S | M) = 0.5). If a patient turns up with this pair
of symptoms, what is the chance that he or she h
meningococcal meningitis — what is P(M | S)? (On
these data, it is 0.00025 or one in 400 — but che
that you get the same answer. These numbers
made up and may not correspond to reality.)

Given the numerical examples, it is possible to se
how they generalise and so to write down the formu
for the general case. This isBayes’ Theorem:

Terminology: P(A) is known as theprior probability

P A B()
P B A()P A()

P B()
-------------------------------=
36

ting

-
e

s
re

e
he
ve
ch

h

s,
y

-
n-
e

-

s

s

u-
the

e

l

of eventA — prior, that is, to knowing thatB has
occurred. P(A | B) is theposterior probability of A.

The theorem itself is uncontentious: it follows
directly from the fundamental properties of probabil-
ities. Extremely contentious, though, are its interpre-
tation and its application in practice. Very often, the
use of the theorem is associated with the philosophi-
cal stance which interprets probabilities as measures
of strength of belief; hence “Bayesian inference” is a
phrase with connotations well beyond the mere use
of the formula.

The greatest practical problem with Bayesian infer-
ence is the estimation of the prior probability P(A).
Usually, the conditional probability P(B | A) is esti-
mated from some kind of experiment (or, equiva-
lently, as part of a learning process in an a-life
system), and P(B) is just a normalising factor to make
all the probabilities for the alternatives outcomes toA
add up to 1. The prior is much harder to estimate —
if there is nothing else to go on, all the possibilities
are given equal prior probalities, but this can be hard
to justify, and causes technical problems when the
outcomeA, rather than being a definite event, is one
of a continuum of possibilities, as when an estimate
is being made of a real-valued number.

Nonetheless, Bayes’ Theorem is well worth remem-
bering, partly for the insight it gives into the meaning
of conditional probabilities. It is of increasing impor-
tance in AI — for example, expert systems that used
ad hoc measures such as confidence factors are giv-
ing way to those based on Bayesian methods. The
approach has received impetus from the work of
Judea Pearl, who has described algorithms for effi-
ciently propagating probabilities through a “belief
network” using Bayesian rules.

2.5 Summing conditional probabilities

There is a second formula that is useful involving
conditional probabilities. It is an extension of the
basic summation relationship for probabilities of
mutually exclusive events. IfX1 ... XN is a complete
set of mutually exclusive events, andA is some event
that depends on them, then

This follows because the expression being summed is
equal to P(A andXi). This is one of a set of mutually
exclusive events, and if any one of them occurs, then
A occurs, so the probability of all of them added
together is the probability ofA.

This is yet another weighted sum, and so gives
another interpretation to the action of a linear neural
network unit (Section 2). The weights on such a unit

can sometimes be sensibly regarded as represen
the conditional probabilities of eventA given differ-
ent input eventsXi. The input data represent the prob
abilities of the different events, and the output is th
probability of A. Such an interpretation can only be
applied straightforwardly, of course, if all the signal
are in the range 0-1 and both weights and inputs a
normalised to sum to 1.

2.6 Random variables and probability distribu-
tions

Like an ordinary variable, a random variable can tak
any one of a set of values. For a random variable, t
values represent a complete set of mutually exclusi
events, and there is a probability associated with ea
event. Theprobability distributionfor a random vari-
able is just the association of a probability with eac
of its possible values.

For a finite set of values, this is straightforward. IfX
is a random variable whose values are h (for head
perhaps) and t (for tails), then a typical probabilit
distribution might be P(X = h) = 0.5 and P(X = t) =
0.5. This is an example of a discrete distribution.

If the random variableX can take on any of a contin-
uous set of values — for example, ifX represents any
real number in the range 0 to 1 — then we have a
continuousdistribution and the assignment of proba
bilities needs some extra formalism. One way to ha
dle this is to describe the distribution by using th
probability thatX is less than some particular value:

P(X < x)

whereX is the random variable andx is some specific
value that it might or might not exceed. This proba
bility is a function ofx — we might write it asF(x)
whereF is the name of the function — and is called
the cumulative probability distribution.

For example, ifX is equally likely to have any value
between 0 and 1, then its cumulative probability i
given byF(x) = x. This distribution is called auni-
form distribution.

The cumulative probability does not seem to tell u
the probability ofX having any particular value. In
fact, there is no answer to that question for a contin
ous variable; the nearest approach is to consider
probability thatX lies within a range of values, from
sayx to x + δx, or

We then consider what happens whenδx is made
smaller and smaller. Assuming that the cumulativ
probability varies sufficiently smoothly withx, we
would expect that whenδx is sufficiently small, the
probability for a range of values will be proportiona

P A() P A Xi()P Xi()
i

∑=

P X x≥ andX x xδ+<()
37

an
an

of
ht
ot

el-
a

r
t
it
at

al-
of

t
a
to

ry-

-

s

by
id-
so
he
od

,
er.
to the size of the range, and we expect that, approxi-
mately,

wheref(x) is some function ofx. We expect that the
approximation will be exact whenδx is reduced to be
infinitesimally close to zero. The functionf(x) is
called aprobability density function, and bears the
same relation to probability that the density of a sub-
stance does to mass. You need to multiply a density
by a volume to get a mass, and you need to multiply
a probability density by the size of part of sample
space to get a probability.

There is a relationship between the cumulative distri-
bution and the probability density; it is

(and the cumulative distribution is the integral of the
density).

Sometimes the notation p(X) is used to indicate the
probability density function of a random variableX.

There is, again, a large literature on specific distribu-
tion functions. By far the most common (apart possi-
bly from the uniform distribution) is theGaussianor
normaldistribution, for which the probability density
function is

where µ and σ are called themeanand standard
deviation respectively of the distribution.

The graph of this function is sometimes called the
bell shaped curve. It is particularly beloved by psy-
chologists and social scientists; so much so that a
recent highly controversial book on IQ took “The
Bell-Shaped Curve” as its title.

There are two reasons why this distribution is so
common: one is a theoretical result which says that if
a random variable is the sum of a large number of
other random variables with their own arbitrary dis-
tributions, then it will tend to have an approximately
Gaussian distribution; the other is that Gaussian-dis-
tributed random variables have some properties that
make them easy to manipulate.

Any standard textbook will discuss this distribution,
along with various other important distributions. Sta-
tistics books nearly always have a table of its values,
and also a table of the corresponding cumulative dis-
tribution F(x). This is is called theerror function
(abbreviation erf) and is important for some statisti-
cal tests. Some mathematical software packages

include a procedure for computing erf.

The bell shaped curve for the particular case of me
= 3 and standard deviation = 2 appears below as
example.

3 Statistics of distributions

It is often necessary to summarise the distribution
a random variable using a few numbers. This mig
be because the exact details of a distribution are n
known, or because only some of its properties are r
evant to a situation. The quantities that summarise
random distribution are called itsparameters, partic-
ularly when they appear explicitly in the formula fo
the distribution. Often, however, a distribution is no
fully specified theoretically, but some aspects of
must be estimated from some data. Quantities th
help describe a distribution and which have been c
culated from data are called statistics. The process
estimating parameters from statistics is calledstatis-
tical inference.

Here we look briefly at a few of the more importan
statistics. Statistical inference in general is too large
topic to embark on here, but the use of averages
describe properties of data is something that eve
one should be familiar with.

3.1 Averages

One of the most important descriptors of a distribu
tion is itsmean. This term is used in two ways. In the
formula for the Gaussian distribution, the mean wa
one of the parameters (and was denoted byµ). On the
other hand, the mean is also a statistic, obtained
adding together a set of observed numbers and div
ing by the number of observations. The mean is al
called the arithmetic average, or just average. In t
case of a Gaussian distribution, this statistic is a go
estimator of the parameterµ.

It is useful to define the mean for any distribution
whether or not it appears as an explicit paramet

P X x≥ andX x xδ+<() f x() xδ=

f x()
xd

d
F x()=

f x() 1

σ 2π
-------------- x µ–()– 2

2σ2

 exp=
38

es
ed

e

an
is
e

s
a

.
d
of

e
se
e

)

t-
n
of
y

d
s

it
h
al
For a discrete distribution with a finite number of val-
ues of the variable, the mean is

whereX is the variable, and its possible values arex1,
x2 etc. This is often abbreviated to

wherexi is a shorthand for the eventX = xi.

This makes sense in terms of the mean as a statistic.
If we make a large number of observations, sayN, we
expect eachxi to occur aboutN P(xi) times (from the
meaning of probability). Thus if we average the
observation values, adding them and dividing byN,
we expect to get approximately the result

which is just the distribution mean. For this reason,
the mean of a distribution is sometimes called its
expectation (especially in quantum mechanics).

The mean of the distribution of a variableX is often
written

<X> or X

Angle brackets will be used here.

The idea of an average can be extended to any
numerical function of a random variable. For a func-
tion f, the general formula is

In a cellular automaton, for example, the different
states might be labelled with a set of symbols. An
energy might be defined for each state; the average
energy (which is important in some analyses) would
then be obtained using a formula such as that above,
if the probability of each state was known or could be
estimated.

For continuous variables, the sums in the formulae
above become integrals.

3.2 Variances and standard deviations

The mean of a distribution says, loosely, something
about where its centre is. The next most useful thing
to know is how spread out the distribution is. One
way to measure this is to work out the average dis-
tance of the values from their mean. In practice,
squaring the differences between the values and the

mean not only avoids negative numbers, but mak
various calculations simpler. The average squar
distance from the mean is called thevariance, and its
formula is given by

It is not difficult to show that this is equivalent to

which gives a quick way to estimate the varianc
from data.

The square root of the variance is called thestandard
deviation. It turns out that if the sum above is
replaced by an integral and applied to the Gaussi
distribution, the standard deviation as defined here
just the parameter sigma, justifying the use of th
term in the description above.

3.3 Entropy

A final average that is often of great interest is minu
the average of the logarithm of the probabilities of
distribution. This is at first sight a strange thing to
calculate; the formula is

This does not depend on the values ofX at all — only
on how the probability is spread out across them
This quantity has a variety of interpretations an
uses, but essentially it measures the smoothness
the distribution.

For example, suppose there areN different values for
X with equal probability 1/N. Then the entropy is just
-log(1/N) which is equal to log(N). For a flat distribu-
tion like this, the entropy thus increases with th
number of possibilities. On the other hand, suppo
the probabilities are all zero, except for a single valu
of X which always occurs — a maximally peaked
distribution. For this, the entropy is zero (since log(1
= 0).

Entropy has a central role ininformation theory. If
information about a variable’s value is to be transmi
ted, then on average the amount of informatio
needed to specify the value is given by the entropy
the distribution. If the logarithm is to base 2, entrop
is measured inbits. If there are two equally likely
possibilities for a variable, then both the formula an
common sense indicate that 1 bit of information i
needed to specify the variable’s value.

Consider, for example, a linear neural network un
whose two inputs are random binary variables, whic
each independently take values -1 or +1 with equ

xiP X xi=()
i

∑

xiP xi()
i

∑

xiNP xi()
i

∑
N

f x()〈 〉 f xi()P xi()
i

∑=

Var x() xi X〈 〉–()2P xi()
i

∑=

X2〈 〉 X〈 〉2–

Entropy x() P xi()log()P xi()∑–=
39

-
s.
-

ry

o-
an-
er

to
ics
an-
nd
er
en
e
-

g
ell

la-
in

or
m”
is

it
a

a
es
ld

or
o-
tor
.

-
e.

f
e

me
.
is-

to
ely
rs
probability. The variableX stands for the input vec-
tor, so its values are (-1,-1), (-1,+1), (+1,-1), (+1,+1),
each with probability 1/4. The entropy of this distri-
bution, using the formula above, is

because log(1/4) = -2 if we use logarithms to base 2.
That is,X requires, not surprisingly, 2 bits of infor-
mation to specify it.

Now suppose this unit simply sums its inputs. The
output,Y, is a number whose values are -2, 0, 0, +2
respectively for the 4 possible inputs. There are only
3 values ofY, with probabilities P(-2) = 1/4, P(0) =
1/2, P(+2) = 1/4 (using the rule for combining proba-
bilities for mutually exclusive events). Thus the
entropy ofY is

That is the outputY has a lower entropy — it trans-
mits less information — than the inputX. The reason
is, of course, that information has been lost in the
addition, as the two cases when the inputs are differ-
ent cannot be distinguished in the output.

The idea of 1.5 bits might seem strange. Remember,
though, that this is a measure of the amount of data
needed to specifyY on average, if the process is done
a lot of times. The entropy measures how well a per-
fectly efficient coding scheme could do in compress-
ing the information carried by the output of the
network when it is used repeatedly.

Entropy can also be viewed as a measure ofdisorder.
The more disordered a system is, the more informa-
tion is needed to specify it exactly. If the cells of a
cellular automaton are all likely to be in any state
with equal probability, then to transmit the state of
the whole system we will need to transmit the state of
each cell. The disorder is high, and calculating the
entropy will give a large number. If, however, one
state is much more likely than the others, then we
need only transmit the state of the cells that are in
one of the lower-probability states. The order is
higher, and the entropy will work out as a lower
number. Minus the entropy is sometimes called the
negentropyand used as a measure of order in a sys-
tem.

4 “Random” numbers

It seems worthwhile to include a brief note about ran
dom numbers in the context of computer simulation
Such simulations rely very heavily on so-called ran
dom numbers, usually generated by calls to libra
procedures such as C’srand routine. In fact, such
numbers are actuallypseudo-random, since they are
generated using a deterministic algorithm that pr
duces a completely predictable sequence. True r
dom numbers which are independent of one anoth
form a completely unpredictable sequence.

Pseudo-random number algorithms are designed
be (a) fast and (b) produce numbers whose statist
are the same as far as possible as those of true r
dom numbers. Thus the mean, standard deviation a
so on of the numbers themselves, and higher-ord
statistics such as the mean of differences betwe
successive pairs of numbers, will be within th
expected ranges for uniformly distributed true ran
dom numbers.

Usually, there is no need to worry unduly about usin
these generators: their properties have been w
worked out and they are adequate for most simu
tions. However, there have been one or two cases
which standard libraries have contained very po
generators, in that, for example, successive “rando
values have been correlated with one another. It
worth bearing in mind this possibility: if a simulation
is not behaving as expected, and all else fails,
might be worth trying using random numbers from
different routine.

In addition, for large, delicate simulations, there is
rule of thumb that suggests that the number of valu
extracted from a pseudo-random generator shou
not exceed the square root of the cycle length (
period) of the generator (the number of values it pr
duces before repeating itself). A reputable genera
will state its cycle length in its documentation — e.g
the implementation ofrand on my machine has a
period of 232, so should ideally not be used for more
than 216 = 65,536 values in any one simulation. For
tunately much better generators are easily availabl

Do not be tempted to try to improve the properties o
a pseudo-random generator by resetting it from tim
using, say the system clock, memory usage or so
other “random” value from outside the program
Such strategies will almost always degrade the stat
tical properties of the generator.

One question that often arises in practice is how
get pseudo-random numbers that have approximat
a given distribution. Most pseudo-random generato
provide numbers drawn from a uniform distribution
with cumulative probabilityF(x) = x, with 0 ≤ x < 1.
Suppose we need to simulate a random variableY

1
4
--- 1

4
---log

1
4
--- 1

4
---log

1
4
--- 1

4
---log

1
4
--- 1

4
---log+ + +

 –

4
1
4
--- 1

4
---log××–=

2=

1
4
--- 1

4
---log

1
2
--- 1

2
---log

1
4
--- 1

4
---log+ +

 –

1.5=
40

with cumulative probability distributionG(y). If X
andY are related byX = G(Y), then it is possible to
show thatY has the required distribution. Thus to
convert directly from values produced by the genera-
tor to the required values, it is necessary to compute
the inverse of the required cumulative distribution
function for each value generated. This can be diffi-
cult and computationally costly in some cases.

There is a very rough-and-ready short cut forapprox-
imate Gaussian distributions: adding 12 uniformly
distributed random numbers in the range 0-1 together
gives a value which is roughly from a Gaussian dis-
tribution with µ = 6 andσ = 1. You can scale and
shift this to approximate any Gaussian distribution,
provided an accurate distribution is not needed.
Using more than 12 inputs gives a better approxima-
tion; the mean will be half the number of values
added and the standard deviation the square root of
the number of values divided by the square root of
12.

5 Conclusion

Dealing with uncertainty is the central problem in
prediction and control. Probability is the calculus of
uncertainty, and statistics are the tools used to draw
inferences from data within a probabilistic frame-
work. The topics mentioned above — probability
distributions and simple statistics — are the starting
point for a great deal of sophisticated analysis. In
particular, the theory of statistical inference is a large
and complex one.

However, for many practical problems, a clear idea
of what is meant by a probability distribution and by
the mean and standard deviation (and possibly the
entropy) can be put to good effect in straightforward
ways.
41

on non-
Section 8 Statistical analysis of experiments

This section gives an introduction to some techniques relevant to the analysis of the results of experiments
deterministic systems.
n
to
r-

e

s-
cal

st
l,

in
n
-
”,
n

st
ch
f
ge
s 2-
il-
c-
t
-

y.
o
h

ve
tis-
Contents

1. Introduction . 42
2. Descriptive statistics . 42

2.1 Graphs. 42
2.2 Simple numerical statistics and

correlation. 42
2.3 The histogram. 43

3. Hypothesis testing . 43
3.1 Basic framework. 43
3.2 A simple example 44
3.3 General methodology 44
3.4 Another example. 45
3.5 Combining significance levels 46
3.6 Problems with hypothesis testing 47

1 Introduction

In traditional AI, it has been common for researchers
to make their points by building systems that illus-
trate particular techniques or demonstrate particular
competences. In some ways, this is rather like the
approach of an engineer, in that the production of an
object that performs a given task within given
resources is sufficient to show an advance in the state
of his or her art.

Increasingly, though, there is a kind of investigation
that demands a different approach, more like that of a
behavioural scientist. This occurs particularly when
systems cease to be transparent; it is not enough to
build such a system: its properties must also be
explored. In addition, in artificial life and evolution-
ary systems simulations, such systems involve the
use of random numbers to mimic environmental vari-
ability, whilst robotic systems that interact with the
real world are subject to the genuine thing. Charac-
terising systems which involve variability involves
the use of statistical methods.

The use of statistics applies the theory of probability
(see Section 7) to the description of processes which
are subject to random variation. Various kinds of

descriptive statistics are useful in general exploratio
of a system, and are the main method of trying
obtain some degree of understanding of it. More fo
mal methods ofstatistical inferenceare used to draw
quantitative conclusions or to attempt to determin
specific properties of a model of the process.

Here I mention a few techniques of descriptive stati
tics, and discuss one particular approach to statisti
inference, known as hypothesis testing.

Books aimed at psychologists are probably the mo
useful for an initial understanding of this materia
and for practical help in applying it. Two that are
widely used are “Learning to use statistical tests
psychology”, bu J. Greene and M. D’Oliveira (Ope
U.P., 1982, in the library at QZ 210 Gre), and “Non
parametric statistics for the behavioural sciences
2nd edition, by S. Siegel and N.J. Castella
(McGraw Hill, 1988, in the library at QD 8320 Sie).

2 Descriptive statistics

2.1 Graphs

When looking at results from an experiment, the fir
set of tools to turn to are graphical ones. Tools su
as Matlab, Maple and AVS provide a wide variety o
ways to display data graphically. The area is too lar
and complex to discuss here, and methods such a
D and 3-D graphs and bar charts are probably fam
iar already. The main point is that time spent produ
ing graphical output is usually well spent, but tha
when data have multiple dimensions, it can be diffi
cult to find the appropriate combinations to displa
It is essential to spend time finding the right way t
display data in order to reveal relationships whic
may be present.

2.2 Simple numerical statistics and correlation

The mean and standard deviation of a set of data ha
been discussed in Section 7. Calculating these sta
42

is-
g
g
ll
e-

s,
d-
e-

ut-
a-
e

its
by
e
f

a-
y
u
t

t
d
w
s-

le
c-
n
r)
e
ce

o
s-

.

o

is

in
tics for results obtained when an experiment is
repeated is often the first step in gaining a clear view
of what is going on. The mean gives a measure of the
location of the centre of some numerical data; the
standard deviation gives a meaures of its spread.

An additional descriptive statistic, not introduced in
Section 7, is thecorrelation coefficientbetween two
sets of data, which can be used when the individual
data values can be paired off between the two sets.
This gives a measure of whether the two random var-
iables being sampled vary together or are independ-
ent. For instance, in an experiment involving a
simulated visual system, it may be interesting to look
at whether the time to pick out some target varies
with the number of distracting objects in the field of
view.

If two random variablesX andY are being sampled,
the correlation coefficient is defined as

That is, it is the average of the products of the devia-
tions of the variables from their means, normalised
using the variances. It lies between -1 and +1, and
either -1 or +1 means that there is a perfect linear
relationship between the two variables, whilst 0 cor-
responds to nolinear relationship betwen the two.

2.3 The histogram

The mean, standard deviation and other similar
measures provide some indication of thedistribution
of a variable (such as the fitness of a population)
which is being measured. A graphical way of looking
at the distribution generally is to use thehistogramof
the values found.

The simplest way to produce a histogram is to create,
in effect, a set of bins covering the range of values of
the variable. Each bin initially contains the value
zero. After each trial, the value of the variable being
measured is used to pick out a bin, and the value held
in the bin is incremented. For instance, in a simple
case, a measure might range from 0 to 99. We create
10 bins, covering the ranges 0-9, 10-19, 20-29 and so
on. If a trial yields the value 63, we increment the 60-
69 bin, and so on. After a large enough number of tri-
als, the values in the bins will be an approximation to
the underlying probability distribution of the varia-
ble.

There is a trade-off between the number of bins and
the accuracy of the probability estimate each one
holds. A lot of bins gives a narrow range of values for
each, giving a higher accuracy on the position of any
feature of the distribution, but lower accuracy on the
probability estimates because fewer votes will be cast

for each bin.

There are more sophisticated ways of generating h
tograms which do not involve discrete bins. (Treatin
the data as a set of delta functions and convolvin
this with a smoothing kernel is one such method.) A
of them, however, involve essentially the same trad
off.

Looking at graphs, descriptive numerical statistic
and histograms are all important ways of understan
ing a system. More formal methods are also som
times called for, particularly in the context of
statistical variability.

3 Hypothesis testing

3.1 Basic framework

Suppose you run a simulation and measure some o
come — say the average level of fitness in a popul
tion after a certain number of generations, or th
number of times a robot succeeds in reaching
goal. You then make some adjustment, perhaps
varying a parameter of the simulation such as th
mutation rate of a genetic algorithm or the rate o
learning of a neural network, and repeat the simul
tion. If the outcome changes, how can you sa
whether this was a result of the adjustment yo
made, or simply a random fluctuation which migh
have been expected to occur regardless?

This kind of question is at the heart of the dominan
statistical methodology of the behavioural, social an
medical sciences. The question of whether a ne
drug has an effect on the outcome of a particular di
ease is, for example, a crucial one in medicine.

The method generally used is calledhypothesis test-
ing. The approach is to ask whether it is reasonab
to attribute any differences observed to random flu
tuations, assuming that the manipulation (applicatio
of the drug, change of the mutation rate, or whateve
has no effect. If the changes are too big for this to b
reasonable, then the experiment is taken as eviden
for a real effect. The reason for doing it this way
round is that if there is no effect, then it is possible t
calculate the probabilities associated with the mea
urements, and see how unlikely they are.

Some terminology is needed to set this up formally

Thenull hypothesis, denoted byH0 is the hypothesis
that the differences in conditions between the tw
runs of an experiment have no effect. Thealternative
hypothesis, H1, is that H0 is false, i.e. there is an
effect of the manipulation. If we decide that the
experiment shows an effect when in fact there
none, we have made aType I error. Conversely, if we
decide that there is no evidence for an effect, when

r
X X〈 〉–() Y Y〈 〉–()〈 〉

Var X()Var Y()
--=
43

e
e”,

an

s
ore

ter
n

rs

e
ry
e
is,
-

o
ts
ns

ter

l-
a

e,

e

ll
20

ate

e

is
fact one exists, we have made aType II error.

Usually, the differences between the experimental
results are summarised in a single statistic. This
might be something like the change in the success
rate of the robot. We then calculate the probability,
assuming the null hypothesis, of getting either the
observed value of the statistic, ora more extreme
value. This probability is always given the symbolP,
and is known as asignificance level. If P is low, then
the result we have is unlikely under the null hypothe-
sis.

3.2 A simple example

Suppose you conduct an experiment in which you
run a simulation of a system, setting your pseudo-
random number generator to a particular seed before
you start, and using valuea for some parameter you
are interested in. You then change the parameter tob,
reset the random number generator to the same seed
as before, and rerun the experiment. You then look to
see whether the performance is better or worse then it
was before. You then repeat the pair of tests some
number of times — say 10 — recording for each pair
whether performance increased or decreased when
the parameter was changed froma to b. Different
random numbers are used in each pair of tests.

Suppose the performance gets better on 8 trials out of
10, and worse on 2 trials. How likely is this under the
null hypothesis that changing the parameter froma to
b produces no improvement in the peformance? Is
the overall improvement attributable to the change in
the parameter?

The null hypothesis says that changing the parameter
has no effect, so the performance is equally likely to
get better or worse; each trial is like tossing a coin. In
this case, there are 210 = 1024 different equally likely
ways the experiment can turn out (see Section 7). In
one of these, performance will improve on all 10 tri-
als, in 10 of them performance will improve on 9 tri-
als, and in 45 performance will improve in 8 trials
(you can check this by enumerating the different
cases, or by using the binomial expression if you
happen to know it). In other words, there are 1 + 10 +
45 = 56 cases that give the observed result or a better
one in the sense of more improvements. If better is
interpreted to be “more extreme”, then it follows that
P = 56/1024 or about 0.055. That is, on about 55 in
1000 repetitions of the whole sequence, you would
expect to get 8 or more improvements, just by ran-
dom fluctuations in the total.

You may ask whether a result of 2 or fewer improve-
ments out of 10 would not be just as “extreme” as a
result of 8 improvements. This depends on whether
you simply want to test that the change had an effect
of some sort, or whether you want to test that it pro-

duced an improvement. If the former, then thes
other cases would also have to count as “extrem
and theP value would double to 0.11. This is called a
two-tailed test. If however, the alternative hypothesis
is that the change does produces specifically
improvement, then exceptionally poor results are
lumped in with the run-of-the-mill ones, only succes
rates greater than that observed are counted as m
extreme, and the test is calledone-tailed.

This kind of experimental design, incidentally, is
called arelated samplesdesign. Within each pair of
tests, everything is the same except for the parame
of interest. Thus every single run of the simulatio
with parametera has its owncontrol with parameter
b. The tests come inmatched pairs. An alternative
way to do it would be to use new random numbe
for every single trial. This is called anindependent
samplesdesign; there is no natural pairing. On
could still apply the test described above to arbitra
pairs, but an effect would be much more likely to b
masked by random fluctuations in the results (that
the test would not be very powerful). In an independ
ent samples design, you would be more likely t
adopt a statistical test in which you put the resul
into different classes before doing any compariso
between the two conditions.

3.3 General methodology

Does the resultP = 0.055, obtained in the imaginary
experiment above, mean that changing the parame
produces an improvement, or not?

The received version of how to answer this is as fo
lows. Before doing the experiment, you decide on
critical value ofP. This is calledα (alpha). IfP turns
out to be less thanα, you reject the null hypothesis
(you accept the existence of an effect). Otherwis
you accept the null hypothesis.

How do you chooseα? Theα value is in fact the
probability that you will make a Type I error — that
you will think you have seen an effect when ther
isn’t one. That is, if you decide to useα = 0.05, and
you do lots of independent experiments, then if a
the null hypotheses are true, on one experiment in
you will getP < α and you will decide that there is an
effect that is not there. This follows directly from the
definition of P. So if you do not mind making this
kind of error one time in 20, you chooseα = 0.05; if
you want a stricter criterion, you might chooseα =
0.01.

This approach means that one never has to calcul
the exact value ofP for a given experiment. What
you do is to look up the value of the statistic you ar
using that would giveP = α. Then if, when you do
the experiment, the statistic is more extreme than th
critical value, you rejectH0; otherwise you accept
44

.

ry
is

of

ta

ed
ed
i-
e

e
f
up-
s

t
-

is

in
r

e
h a
-

of
t

o
t,
r
s
g

e

H0. More extreme values are said to lie in thecritical
regionor rejection regionfor the null hypothesis; the
rest lie in the acceptance region. For the experiment
described above the statistic is the number of times
an improvement occurred. In the one-tailed test, val-
ues of 9 and 10 lie in the rejection region forα =
0.05, but 8 does not quite make it. Eight out of 10
improvements would not allow us to reject the null
hypothesis at the 0.05 significance level.

You can picture these regions by drawing a graph of
the distribution of a statistic. Suppose for this pur-
pose that the statistic has continuous values. For
commonly used statistics, the distribution will have a
hump in the middle for the likely values and tail off
for extreme values. For a one-tailed test, split the area
under the curve into two parts: a part under one tail
occupying 5% of the area and a part under the rest
occupying 95% of the area. The 5% region represents
the rejection region forα = 0.05. For a two-tailed
test, the 5% has to be split across the two tails of the
distribution.

Knowing the probability of a Type I error is useful,
but of course the probability of a Type II error (not
seeing an effect that is really there) is useful too.
However, estimating this probability is generally
quite messy and difficult. Intuitively, the more data
you have, the lower the chance of a Type II error
ought to be (for a givenα), and indeed this is the case
for any reasonable test. Different tests are compared
on their power, which is 1 - P(Type II error), but
working this out often involves making more detailed
assumptions about the distribution of the data than
does the null hypothesis. The reason for this is that to
say something about Type II errors means that you
have to say something about the distribution of the
data when the null hypothesis is false — and that
might be much harder to specify precisely.

Essentially, a significance test gives a good measure
of the probability that an observed effect has
occurred by chance. A low value forP can thus be a
reliable indicator that something real is going on. On
the other hand, if the null hypothesis is accepted
becauseP is large, there is nothing simple to say
about what the chance of a Type II error is. There
might be a real effect which is not shown up, either
because there is not enough data, or because the sta-
tistic used is not a good one for detecting the particu-
lar kind of difference that has occurred.

3.4 Another example

There are significance tests to cover many different
situations. The books mentioned at the head of this
file describe many different tests and give guidance
on making an appropriate choice. In the event of your
needing a test for an experiment, you will need to
spend time analysing the nature of the measurements

and the experimental design to find the correct one

The test used above on the experiment with bina
outcomes (improvement or non-improvement)
called thesign test. Here, I give one further example
of a test to illustrate the general idea. This test is
quite wide applicability; it is used when you want to
know if two independent (not matched) sets of da
obtained under different conditions differ signifi-
cantly. For each condition some outcome is observ
in a number of trials; the outcome must be measur
with a number (strictly speaking, it must be an ord
nal measure). We want to know whether the outcom
is significantly different in the two conditions. Since
we have a number of trials in each condition, we hav
an indication of what the spread of likely values o
the outcome measure is, so it seem reasonable to s
pose that information about whether the condition
differ significantly is available without making fur-
ther assumptions.

One test that will handle this situation is theKol-
mogorov-Smirnovtwo sample test. The statistic tha
this uses is the maximum difference in the cumula
tive distributions of the two outcome measures. Th
is easiest to explain with an example.

Suppose we conduct a series of trials — say 10 —
one condition — say using one kind of crossove
operator in a genetic algorithm. In each trial w
measure, say, the number of generations to reac
particular state of the population, and get the follow
ing results:

630 890 700 270 500 480 320 950 836 585

We then do the same thing in an independent set
trials (no pairing with the first set) using a differen
operator. Suppose this gives

784 456 893 555 678 699 350 821 921 772

Is there a significant difference between these tw
sets of numbers? To find the statistic for the K-S tes
imagine making a cumulative frequency graph fo
the first data set by counting the number of value
that are less than any given value. It looks somethin
like this:

What this graph means is that, for example, 0.2 of th
45

s
t

n-
e
-
5

f
f
is
e
ta
y

ns

at
o

t-
e
ti-
al,
-
n

e

an
st,
ed

nts

e
is-
n

o
si-

t

he

is

5
e
ar-
values are less than 400 (in fact the values 270 and
320), 0.4 of the values are less than 550, 0.7 of the
values are less than 750, and so on. Now we superim-
pose the graph for the other dataset. That gives some-
thing like:

The statistic needed for the K-S test is the largest ver-
tical difference between the two graphs, which we
will call K. You can see by inspecting them that the
largest such difference isK = 0.3, near the asterisk,
between values of the outcome from 630 to 678. In
practice, one would calculate this statistic by order-
ing the two data sets independently, then comparing
the ordering between them thus:

and finding the point in the sequence with the biggest
difference in contributions from the two datasets
above it. It is straightforward to write a program to
do this, but many packages will do it for you. If there
are different numbers of trials in the two conditions,
division by the number of trials has to be carried out
in counting the fraction of trials to the left of any
point in the sequence.

The statisticK = 0.3 can then be looked up in table
for the test. Not surprisingly, this turns out to be no
significant for 10 trials in each dataset even atα =
0.05 — these data do not seem to show any non-ra
dom differences using this test. In fact, a differenc
of K = 0.6 would be needed (for 10 trials in each con
dition) before the results were significant at the 0.0
level.

The clever thing about this is that the distribution o
the statisticK under the null hypothesis (both sets o
data come from the same underlying distribution)
known independently of what the distribution of th
data actually is. There is no assumption that the da
come from a Gaussian distribution, or indeed an
other distribution. A test with this property is known
as anon-parametric test.

Tests that make assumptions about the distributio
are known asparametrictests; typically they assume
the distribution is Gaussian. A parametric test th
could be applied to these data, if you were willing t
make the necessary assumption, is the unrelated
test, which uses as its statistic the difference in th
means of the two data sets, normalised by an es
mate of the standard deviation of the data. In gener
parametric tests are more powerful and involve sim
pler calculations; but if the assumption of a Gaussia
distribution of the data is incorrect, they can giv
misleading results.

There are numerous other significance tests that c
be useful. One important one is the chi-square te
which is useful when some data need to be compar
with expected frequencies.

3.5 Combining significance levels

Sometimes a hypothesis is tested in two experime
which yield independentP values. The best way to
combine the results is to find a way of treating th
two experiments as one, and finding an overall stat
tic that can be used in a test of significance. Whe
this is not possible, it can be useful to know how t
combine more than one significance level in a sen
ble way.

In particular, the correct way to combine them is no
to take their product, or their maximum or minimum
(though all of these are sometimes suggested). If t
two significance levels areP1 and P2, the signifi-
cance level of the two experiments taken together
in fact

where the logarithm is to basee (a natural loga-
rithm). Thus two experiments each significant at 0.0
yield a combined significance level of 0.017. Th
argument to reach this conclusion depends on a p

270

320

350

456

480

500

555

585

630

678

699

700

772

784

821

836

890

893

921

950

P P1P2 1 P1P2()log–()=
46

on
ch

by

ns

s

n
e

ticular definition of “more extreme”, to mean combi-
nations of results that would have lower probability
under the null hypothesis than the results actually
obtained.

The generalisation of this formula toN experiments
is

whereg is the the product of theN separate signifi-
cance levels, andr! is the factorial function ofr.

3.6 Problems with hypothesis testing

Hypothesis testing is a respectable and sometimes
valuable way to assess the results of experiments.
However, it has difficulties.

An important one of these is that if the methodology
were taken literally, hypotheses about, say, the effec-
tiveness of a new drug would be accepted or rejected
when it was known that there was a definite probabil-
ity that an error was being made. This problem is
exacerbated by the asymmetry in the treatment of the
null and alternative hypotheses, which means that
probabilities of Type I errors are accurately control-
led but probabilities of Type II errors have to be
largely guessed.

In practice, the approach is not followed literally:
common sense prevails. Rather than setting anα in
advance and then acting accordingly, most research-
ers tend to treat theP value obtained for their data as
a kind of standardised descriptive statistic. They
report theseP values, then let others draw their own
conclusions; such conclusions will often be that fur-
ther experiments are needed. The problem then is
that there is no standard approach to arriving at a
final conclusion: everything remains tentative. Per-
haps this is how it should be; but it means that statis-
tical tests are used as a component in a slightly ill-
defined mechanism for accumulating evidence,
rather than in the tidy cut-and-dried way that their
inventors were trying to establish.

The rejection/acceptance paradigm also leads to the
problem of biassed reporting. Usually, positive
results are much more exciting than negative ones,
and so it is tempting to use lowP values as a criterion
for publications of results. By definition, though, aP
value below 0.05 will be found in roughly 1 experi-
ment in 20 even when no real effects are present. If
this experiment is reported and the others are not, it
is clear that the publication will be misleading. This
is a serious worry in the medical and psychological
literature.

There are alternatives to significance tests. Bayesian

techniques can be used to place confidence limits
the values of particular parameters, and an approa
using likelihood reasoning has been proposed
A.W.F. Edwards, whose book “Likelihood” (Cam-
bridge U.P., 1972, expanded edition Johns Hopki
U.P. 1992, in library at QD 8000 Edw) contains a
trenchant attack on significance testing.

Despite these difficulties, those who seek rigorou
analysis of experimental results will often want to
seeP values, and provided its limitations are borne i
mind, the hypothesis testing methodology can b
applied in useful and effective ways.

P g
glog–()r

r!

r 0=

N 1–

∑=
47

e that
Section 9 Chaotic systems and fractals

This section introduces some ideas related to the development of dynamical systems, and especially thos
show chaotic behaviour. The associated idea of a fractal dimensions is introduced.
n

ms
ve
ms
le

n
’s

n-
e-
l
up-
re
of

y
s

to
y
a
e
er
e

to
wo
to
ts

or

ly

r-
y
n

ut
-
f

Contents

1. Introduction . 48
2. System description using phase space 49

2.1 Basic idea . 49
2.2 Example: the undriven small-angle pendu-

lum . 49
2.3 Some properties of state trajectories. 50

3. The phase space of a chaotic system 51
3.1 The driven nonlinear pendulum 51
3.2 The Poincare section. 51
3.3 A demonstration . 51
3.4 Properties of chaotic systems 52
3.5 Other chaotic systems. 53

4. Fractals . 53
4.1 Basic idea . 53
4.2 Fractal dimension 53
4.3 Iterated function systems — fractal dynam-

ics . 54
4.4 Other fractal generators 55

5. Conclusion . 55

1 Introduction

Classical mechanics deals with how deterministic
systems, such as swinging pendulums and orbiting
planets, change with time. The dynamics of such a
system are described by itsstate, which captures the
values of all the variables that are needed to predict
the future of the system, and a set of rules, often in
the form ofdifferential equations, which say how the
state changes with time. For example, the state of a
simple (undriven) pendulum is given by its angle to
the vertical and the speed with which it is swinging.
The rules that govern the pendulum are a pair of dif-
ferential equations that involve only these two varia-
bles. (Parameters such as the length of the pendulum
are not part of the state, because they are constant;
such parameters are thought of as part of the rules.)
The differential equations are solved, with the cur-
rent state as an initial condition, to predict or simu-
late the evolution of the system. This is done

analytically in very simple cases, but more ofte
numerically (see Section 6).

(Quantum mechanics, by contrast, describes syste
that are fundamentally non-deterministic, and ha
unavoidable randomness. Real physical syste
appear to have this quality, though on a large sca
they are well described by deterministic laws. I
quantum mechanics, the probabilities of the system
being in various states evolve according to determi
istic rules, but the future state itself cannot be pr
dicted exactly. A third approach, statistica
mechanics, is used to describe systems that are s
posed to be fundamentally deterministic, but whe
probabilities are used to represent our ignorance
the microscopic details of the system.)

Two things might seem to be sufficient for the stud
of a deterministic system: (1) discovering the rule
governing it; and (2) finding sufficiently accurate
analytic or numerical techniques to use these rules
predict its evolution. Indeed, this is true for man
practical purposes. However, understanding
dynamical system involves more than this, and w
often want to characterise and classify systems rath
than to treat each in isolation, in order to gain som
insight into their structure. There are many ways
approach this, but here we concentrate on one or t
of the more graphical ones, which have come
increased prominence recently, although their roo
were established many years ago.

Simple physical systems often provide analogies f
the study of living or artificially living systems. One
important class of behaviour that is increasing
identified in physical systems ischaotic behaviour,
which is of particular interest because simple dete
ministic rules produce high degrees of complexit
and unpredictability in the system itself. Chaos ca
readily be demonstrated with simple simulations, b
may play in important role in understanding the evo
lution of complex simulations with large numbers o
parameters and variables.
48

-
le-

tic

f
ol-
n
it
tri-
rt

ct

nt
ve
n-
-

ts,
.
If
t

-
in
n,
on
3

by
le
n-
ta-

s.

e
of

e

e
h

Central to the idea of chaos is that tiny fluctuations in
the current state of a system produce large changes in
its future state. To describe this property, it is neces-
sary to look at smaller and smaller variations in the
state. This idea of moving to every smaller scales and
ever greater detail leads to the use offractal descrip-
tions of the state trajectories associated with this kind
of dynamics.

A good introduction to chaotic dynamics can be
found in “Chaotic Dynamics: an introduction” by
G.L. Baker & J.P. Gollub (Cambridge U.P., 1990, in
library at QE 5360 Bak). There are many books on
fractals, which because of the application to compu-
ter graphics are often very attractively illustrated; a
good example is “The Science of Fractal Images”
edited by H.-O. Peitgen & D. Saupe (Springer-Ver-
lag, 1988, in library at QD 2500 Sci). Also possibly
of interest is “Complexity : life at the edge of chaos”,
by R. Lewin (Dent, 1993, in library at Q 1200 Lew)
— and see also the various books in the library cata-
logue with “chaos” and “fractal” in their titles.

2 System description using phase
space

2.1 Basic idea

A central concept in dynamical systems is that of
state. The idea is that the state of a system is known,
then no further information will be any help in mak-
ing predictions about the system. Specifying the state
separates the future from the past, in that everything
in the system’s history is irrelevant to predicting the
future provided the state is known.

One way of thinking of this in relation to simulations
is to imagine a procedure which is called whenever
the simulated time is to be advanced by one tick of
the clock. If the procedure has no local memory in
which it can store variable information between calls
to it, the arguments it is given and the results it
returns will necessarily represent the state of the sys-
tem.

A physical example is given by the solar system. The
laws of gravity provide the rules which govern the
motion, which together with the masses of the Sun
and planets provide the fixed information. The state
is given by the positions and velocities of the heav-
enly bodies in some suitable frame of reference. If
these are known, then there is no point in knowing
where Jupiter was last week, or what its current
acceleration is; such extra information is simply
redundant.

Similarly, in a genetic program, the state at a point
between generations might be fully represented by
the genomes of all the current individuals. Extra

information, such as their previous levels of perform
ance on some task, or their ancestry, could be irre
vant to what will follow, in that the algorithm
progresses with no information other than the gene
sequences.

The state will usually be a collection of the values o
some variables. It seems reasonable to put this c
lection into a single structure, and this is then know
as astate vector(see Sections 4 and 5). Given that,
is a small step to decide to see whether the geome
cal interpretation of the vector is any use, and to sta
thinking of it as representing position in an abstra
state space or phase space.

Note, however, that these vectors do not represe
simple physical entities, and their components ha
varying interpretations. For example, if a system co
sisting of a single object moving in 3-D is being ana
lysed, its state vector might well need 6 componen
3 for position and 3 for the components of velocity
Phase space for this object will be 6-dimensional.
the object also had a direction it was facing differen
from its direction of motion, then a further 2 compo
nents might be needed to represent its orientation
space. As with any high dimensional representatio
the value as a conceptual tool depends in part
whether there is a sensible way to look at it in 2 or
dimensions in order to produce pictures.

2.2 Example: the undriven small-angle pendulum

An example of the use of phase space is provided
a simple pendulum. The point of using such a simp
system is that its phase space is already low-dime
sional, so it is easy to produce graphical represen
tions.

The state of the pendulum is given by two variable
The first is its angle to the vertical,θ, which will be
positive when it is to the right of centre and negativ
when it is to the left, say. The second is the rate
change of this angle, or the angular speed,ω. The
state might be written as (θ, ω), and phase space is a
2-D plane withθ andω as the axes.

If the amount of swing is small, the rule governing
the state is given by a matrix relation (Section 3):

To simplify the equation, I have assumed that th
pendulum has a certain period (actually 2π or about
6.283 in whatever time units are being used). Th
parameterq is a number which describes how muc
damping (such as air resistance) there is: largeq

td
dθ

td
dω

0 1

1– 1 q⁄–

θ
ω

=

49

for

n-
he
-
-

u-
me
an

se
-
at
at
lve

his
d

as
red
er

rip-

o-
In
e
ical

al
by

t
a

in
of
’s

of
ke
t.
nt
-

means little damping. The variablet stands for time.

The vector on the left is a vector of rates of change of
the state variables. If the state vector is thought of as
the position of a point, then the vector on the left is
simply the velocity of that point. If this is not obvi-
ous, try replacingθ andω by x andy, and remember
that velocity components are just time derivatives of
position components. The vector on the left gives the
direction and speed of motion of the state vector
through phase space.

Supposeq is very large, so the bottom right-hand ele-
ment of the matrix is almost zero. Then the matrix is
just a rotation matrix through -90˚ (see Section 4,
part 4.2), since cos(-90˚) = 0 and sin(-90˚) = -1. That
means that wherever the state is in phase space, its
motion will be at right angles to the line joining it to
the origin. In other words, the state will go round in a
circle. (See also the discussion of flow fields in Sec-
tion 5.) Thetrajectoriesof the system in phase space
are circles around the origin. This set of circles char-
acterises the behaviour of the pendulum — and of
course, the cyclical nature of the circle represents the
oscillation of the undamped pendulum. The circles
are known aslimit cycles.

If q is made smaller, so that there is some damping,
then dω/dt will have an extra contribution of -ω/q.
This allways acts to pull the point inwards towards
theθ axis. (Plot a few of the vectors corresponding to
this contribution if this is not clear.) This means that
the state will spiral inwards towards the origin, wher-
ever it starts from. This corresponds to the running
down of a free pendulum which is damped by air
resistance. Since all trajectories end up at the origin
(which is the state of no motion and a vertical pendu-
lum), the origin is called anattractor of the system.

In fact, the idea of an attractor is generalised to
include limit cycles and other structures in phase
space that characterise the long term behaviour of a
system.

You may have met the elementary analysis of the
simple pendulum, in which the differential equations
are solved to get an explicit equation forθ as a func-
tion of t. The graphical way of looking at it using
phase space provides a much more powerful and gen-
eral technique for studying dynamical systems.

On a practical note: the matrix equation can be used
in writing a simulation of the pendulum. At each
time step, the derivative dθ/dt is multiplied by the
size of the time step in order to compute the amount
by which to changeθ (see Section 6). Likewise forω.
Baker & Gollub’s book (see above) uses Runge-
Kutta integration to get the numbers, but Euler inte-
gration with a small time step works well, and will
replicate the behaviour demonstrated in Baker &

Gollub’s examples. It is not difficult to write a pro-
gram which will display both the pendulum’s motion
and the phase space trajectories — see below
details of one such program to display trajectories.

2.3 Some properties of state trajectories

It is worth noting that trajectories in phase space ca
not cross one another. The reason is simple: at t
crossing point, you would need to know which tra
jectory you were on in order to know in which direc
tion to continue. But the position of the point by
itself is sufficient, by the definition of ‘state’, to know
which way to go next — knowing which of two tra-
jectories was being followed is bound to be superfl
ous. So two trajectories cannot pass through the sa
point and continue on the other side, though they c
converge on an attractor.

A second property is that for systems that do not lo
energy, such as the pendulum with very large (infi
nite really)q, area is conserved in phase space. Wh
this means is that if you take a bunch of states th
cover a region of phase space, and let them all evo
for a while, then they will be covering a new region
of phase space, but with the same total area. T
obviously happens for trajectories that move roun
concentric circles. If the system loses energy,
when the pendulum is damped, then the area cove
reduces with time — the points get squeezed togeth
as they approach the attractor.

In general, the advantage of a phase space desc
tion is that it allows aqualitativedescription of the
system, in terms of the main features of the traject
ries rather than in terms of arrays of numbers.
addition to point attractors and limit cycles, phas
spaces are characterised by features such as crit
points which areunstablepoints, where trajectories
diverge, orsaddle pointswhere trajectories converge
along one direction and diverge along an orthogon
direction. Areas round attractors are described
basins of attraction: any trajectory starting in the
basin of attraction round an attractor will finish up a
the attractor, like water in the catchment area of
reservoir.

A practical use of phase diagrams is in research
biomechanics, where they are used in the analysis
human motion. For example the angle at a person
elbow might be plotted against the rate of change
that angle during a reaching task, in order to ma
disorders of motor control graphically apparen
Phase descriptions of the cardiac cycle are importa
in trying to understand how certain failures of car
diac rhythm arise.
50

ot

to-
-

a

no
n-
lly
d.

-
in

e

f
e or

s

d
h
t
e

le,
ht

of

e

er
nd
re
s

t
’s
e

t
e
n

s

,
or
3 The phase space of a chaotic sys-
tem

3.1 The driven nonlinear pendulum

The simple pendulum served to introduce the idea of
phase space, but it did not illustrate the idea of chaos.
To do this, two modifications are needed. The first is
that the system is madenonlinear— that is, that the
velocity of the state vector is not just a matrix multi-
plication of the state vector itself. For the pendulum,
this can be achieved by using the more physically
realistic equation that is needed to describe a pendu-
lum with a larger amplitude of swing. The equation is

where the only change is the nonlinear function sin
applied toθ before the matrix multiplication is done.

The second change is that the pendulum needs to be
sustained by a periodic force which operates at a dif-
ferent frequency from the pendulum’s natural fre-
quency. Such a force must be applied by some
external mechanism, and will be taken as an angular
force on the pendulum which varies sinusoidally. The
current value of this force is another state variable,
which will be called phi, so the state vector has three
elements. The equations with the driving force are

whereg andk are two new parameters. The last equa-
tion just means thatφ increases steadily, which
means that cos(φ) oscillates. The effect of the force is
to add a termg cos(φ) to the ω component of the
state velocity, so that this vector will wobble in phase
space as time progresses.

Sinceφ changes steadily in an uninteresting way, the
usual way to view the trajectories is to plotω against
θ as before, but to bear in mind that this is only apro-
jection of the real 3-D trajectory, which winds out-
wards from theθ-ω plane along theφ axis. If the 3-D
trajectory is imagined as a wire winding across a
room, it is as if the shadow of the wire was projected
onto one wall by a distant light source. Although the
trajectory cannot intersect itself, its projection can.

The details of these particular equations are n
important. For particular values ofq, g and k, this
wobble has extreme consequences for the trajec
ries, and what is important is to see the level of com
plexity that is needed in the equations to allow
qualitative change in the behaviour.

The nature of the change is that the trajectories are
longer confined to tidy paths in phase space, but wa
der across it. The new equations produce a radica
different picture when these trajectories are plotte
This occurs, for example, forq = 2, g = 1.5 andk =
2/3. An example program that will plot these trajec
tories is described below, or they can be found
books on chaotic dynamics.

A program which carries out Euler integration of th
equation above is described in part 3.3.

3.2 The Poincare section

It is quite hard to interpret a diagram consisting o
chaotic trajectories that wander across phase spac
a projection of it. One way of simplifying the picture
is to make use of the fact that the driving force i
periodic: from any starting point, it returns exactly to
what it was after a time interval of 2π/k. If the trajec-
tories are going to have any regularity, this is boun
to show up if we look at the state of the system eac
time the driving force returns to any particular poin
in its cycle. If the system is behaving simply, then th
(θ, ω) point will occupy one of a small selection of
locations in phase space at this stage of the cyc
whereas if the system is chaotic, then the point mig
be found in a much larger number of locations.

This is the idea of the Poincare section. Instead
plotting a more or less continuous succession ofθ
and ω values, we choose an arbitrary state of th
driving force, and then plotθ and ω only at times
when this state is reached. This can give a clear
picture of what is happening in phase space, a
allows the structure of attractors to be seen mo
clearly. This is like superimposing a set of slice
through the trajectory, all perpendicular to theφ axis
and spread out along it. Another way of thinking of i
is that it is like taking snapshots of the pendulum
state using stroboscopic lighting triggered by th
driving force.

3.3 A demonstration

It is easier to understand this material by looking a
pictures than by reading words. Examples can b
found in books, but there is also a program which ca
be run if you are reading the online version of thi
file from Ved at a graphics terminal.

Although no substitute for the interactive version
two examples of the results are given here. First, f

td
dθ

td
dω

0 1

1– 1 q⁄–

θsin

ω
=

td
dθ

td
dω

0 1 0

1– 1 q⁄– g

θsin

ω
φcos

=

td
dφ

k=
51

y

ic
-

ts
ide

v-
a

e

e
-
n
s
a

o
d

.
e
-
is,

ng
r-

le
ne
e
n
s

f
t in
s
-
i-

e
,
-
n
e
to

v-

he
to
-

q = 2, k = 2/3 andg = 1, the state trajectory is dis-
played as

The Poincare section with these parameters is just a
dot, somewhere on the trajectory shown above.

If, however,g is set to 1.5, the trajectory looks like

whilst the Poincare section is diffuse:

You could set up a similar demonstration fairly easil
using a package such as Matlab.

3.4 Properties of chaotic systems

One of the most important characteristics of chaot
system is that small changes in initial conditions pro
duce, over time, rapidly diverging trajectories in
phase space. A block of neighbouring starting poin
in phase space will be smeared out across a w
region as time progresses.

A physical system which demonstrates such beha
iour more obviously than the pendulum consists of
set of static billiard balls on a table, into which on
ball is fired. If friction is somehow made very low,
there may be many collisions. Now if a small chang
is made to the initial direction of motion of the mov
ing ball, a much larger change will result its directio
of motion after the first collision. The reason for thi
is that the initial angular change gets converted into
change in the point of collision between the tw
balls, and the point of collision affects the outwar
direction strongly. After only a few collisions, a
microscopic change in the initial direction will pro-
duce a radically different configuration of the balls
In fact, a real billiard table is not chaotic becaus
there is friction but no input of energy, and the trajec
tories end up on an attractor corresponding to stas
but it could be made so by some means of addi
energy to the system to keep the balls in motion, pe
haps by vibrating the edges of the table.

Similar arguments are often applied to large-sca
physical systems, with the atmosphere providing o
of the chief examples: it seems likely that th
weather is actually chaotic, and so a tiny perturbatio
in one part of the world will produce large change
elsewhere subsequently.

This unpredictability fits in with the diffuse nature o
the Poincare section in these cases: at a fixed poin
the driving cycle, the pendulum might be at all kind
of different states, and short of running the full simu
lation, there is no way of computing the state an arb
trary time into the future.

The pendulum simulation involved 3 parameters: th
amount of damping, the strength of the driving force
and the frequency of the driving force. These param
eters have to be given numerical values for a give
simulation. Some combinations of values produc
chaotic behaviour and some do not. One way
explore this division of theparameter spaceis to fix
two of them and vary the third. Ifq and k are kept
fixed, at say 2 and 2/3 respectively, then the beha
iour shows an interesting variation withg. As g is
increased through a range from say 0.5 to 1.5, t
behaviour changes several times from non-chaotic
chaotic. The transition into chaos is not abrupt, how
52

e
t a
-
c-
e

a
ly
ce
re
c-
an
to
h
is
to

h
se
ry
t,
of
e
e

s
r

of
e
e
,
is

le

y
ar
s.
h
n a
s,
of

ys-
of
e

-
-
as
k-
ever; atg = 1.5 there is chaos, but atg = 1.49, say, the
trajectories are orderly but complex. In fact, asg is
increased through the range just below 1.5, the tra-
jectories display a phenomenon calledperiod dou-
bling, in which the trajectory of the pendulum in
phase space requires 2, then 4, then 8 (and so on)
cycles of the pendulum before it repeats itself. This
can be displayed usingbifurcation diagrams, which
will be found in textbooks, and can be observed
using the simulation mentioned above. The transition
into chaos — the“edge of chaos”— is regarded as
highly important in some theories of self-organising
systems (see the book by Lewin mentioned above).

3.5 Other chaotic systems

This introduction has been in terms of a simulation of
a simple physical system with continuous values for
its state variables. Many other kinds of system
exhibit chaos, however, and these include systems
whose state space isdiscreterather than continuous.
Cellular automata are examples of such systems. An
interesting example of a chaotic cellular automaton is
given in the paper ‘Evolutionary games and spatial
chaos’, by M. A. Nowak & R. M. May (Nature, 359,
826-829, October 1992). Here, agents on a 2-D grid
interact with each other, playing a game called ‘Pris-
oner’s Dilemma’, and adjusting their behaviour to
copy that of their most successful neighbour.
Remarkable chaotic graphic patterns ensue. If you
read the online version of this from Ved, you can run
this system from the file TEACH PD_GAME. (You
don’t need to know Pop-11 for this — just mark and
load the examples in the file.) Although this is super-
ficially a completely different system to the pendu-
lum, there is again an adjustable parameter which
causes transitions between chaotic and non-chaotic
behaviour.

4 Fractals

The Poincare section for a chaotic system looks char-
acteristically smeared out across the projection of
phase space. Is it possible to make a more quantita-
tive measurement that reveals the nature of this struc-
ture? There are various ways of doing this (including
using the entropy — see Section 7), but one particu-
larly interesting mathematical tool is the idea offrac-
tal dimension. This idea will be briefly outlined here;
there are now many textbooks dealing with the topic,
and these are often worth looking at because of their
excellent graphical presentation of the material.

4.1 Basic idea

The idea that a room has 3 dimensions, a sheet of
paper 2 dimensions, and a line on it 1 dimension may
already be familiar. Of course, the paper and the line
are idealised: we pretend they have no thickness or

width. The number of dimensions corresponds to th
numer of coordinates that are needed to represen
position within the structure. In addition to these eve
ryday examples, space-time is a 4-dimensional stru
ture, whilst a point has 0 dimensions. In all thes
cases, the dimension is a whole number.

In fact, it is possible to give a fractional dimension
well-defined meaning. Some structures can sensib
be regarded as having 1.5 dimensions, for instan
(and it turns out that the set of points in a Poinca
sections is sometimes one of this type). Such a stru
ture must be somehow more than a line, and less th
a plane. One way to generate an object like this is
draw a straight line, then replace its middle third wit
two sides of an equilateral triangle, then to repeat th
operation on each of the lines we now have, and
keep doing this indefinitely, with the lines getting
shorter and shorter. (This is called the von Koc
curve.) The structure is more than a line in the sen
that there is a 2-D region of the plane where eve
point is less than some infinitesimal distance from i
but less than a plane in that every point that is part
it has a neighbouring point that is not. The structur
is something like a sponge, occupying a part of som
space but not filling it solidly.

The most significant aspect of a fractal is that it ha
structure on all scales. That is, if you look at it unde
a magnifying glass you will observe the same sort
detail that you could see with the naked eye; if th
magnifying glass is replaced with a microscope, th
appearance will still be roughly similar; and so on
however powerful the microscope is made. Th
property is known asself similarity. The von Koch
curve was designed to have a particularly simp
form of self similarity, but fractal structures in gen-
eral exhibit it.

Apparently bizarre structures like this are not onl
relevant to describing chaotic systems. They appe
to be useful models of a variety of natural system
The classic example is the coastline of Britain, whic
on a large scale shows headlands and estuaries, o
smaller scale shows small inlets and rocky point
and so on down to the interstices between grains
sand. Recently, much has been made of fractal s
tems as representations of the structure of images
natural scenes, and the application of this to imag
encoding and compression.

4.2 Fractal dimension

A fractal is mainly characterised by its fractal dimen
sion. This is measured by exploiting the self-similar
ity, and asking how the object appears to change
the scale of observation is adjusted. We start by loo
ing at a different way of defining the dimensionality
of non-fractal objects.
53

at
D
to

-

s

to
.

g
le

as
get

s
of

ll

.
e
er
e
ller
ea
y

d

y
n
f
ys-
e
a
re

g
t
-

Take an ordinary 2-D shape and draw a grid over it.
Let the size of one side of each box beL, and count
the number of boxes lying over or partly over the
shape. Call the number of boxesN0. The ordinary
area of the shape is roughly the number of boxes
times the area of each one, or

so the initial number of boxes is given by

Now make the boxesr times smaller. That is, make
the side of each box equal toL/r, by drawing extra
lines between the original grid lines. The area of each
box is now (L/r)2, so the new value ofN, which I
write as a function ofr, is

This won’t be exact, as the curved edges of the shape
will pass through the middle of some boxes at each
scale, but as long as the original boxes are small
enough that the estimate ofA is reasonable, it will be
a good approximation. And as the original boxes are
made smaller and smaller, the approximation will be
more and more accurate.

The quantityA(1/L)2 is a constant,N0, so what we
have is that the number of boxes needed to cover the
shape is proportional tor2 in the 2-D case, wherer is
the scaling factor for the boxes.

Now consider a 1-D line. LetA stand for the length
of the line. Split the line up into segments of sizeL
and count the number needed to cover the line. The
number of segments isN0 = A/L. Then divide each
segment intor parts and count again. The number
needed is just

i.e. in 1-D the number is proportional to the scaling
factor.

Do the same thing in 3-D: split an object occupying
some 3-D volume up into cubes, withL being the
side of each cube.A is now the volume of the object.
Then you get

In each of these everyday cases, the power thatr is

raised to is the dimensionality of the object. Note th
if you have, say, a 2-D surface embedded in a 3-
space, and you look at how many boxes you need
contain it, you still get the power of 2: it’s the dimen
sionality of the object, not the dimensionality of the
space it lives in, that is measured.

Now do the same for a fractal pattern. You start off a
before with

as the number of boxes covering it. You only need
count boxes that actually have black dots in them
Now, A is a sort of “effective area” at the scale
defined by the lengthL — it’s more or less the area
that would get covered if the dots, rather than bein
infinitesimal points, were dots of a size comparab
with L. (They’d overlap of course.)

Then you makeL smaller by dividing byr, as before.
What happens then, though, is that you don’t need
many boxes as you expect, because as the boxes
smaller, more of them fit into the white space
between the dots. What happens is that instead
gettingN = N0 r2, you find that you getN = N0 rD,
whereD is a number less than 2. But however sma
you make the boxes, you never get down toD = 1 as
you would with a smooth curve —D flattens off at
some definite intermediate value.

The numberD is the fractal dimension of the object
For the von Koch curve it’s actually about 1.26. Th
curve has the fractal dimension because howev
closely you look at it, there is always more structur
to see, so the effective area gets smaller and sma
as you reduce the scale. However, the effective ar
never gets down to zero as it would for an ordinar
curve (which has a fractal dimension of 1).

4.3 Iterated function systems — fractal dynamics

One way of generating fractal structures, exploite
particularly in image processing, is theiterated func-
tion system(IFS) technique, associated particularl
with M.F. Barnsley (see the book edited by Peitge
& Saupe mentioned in the introduction). This is o
interest here as a second example of a dynamic s
tem which can generate fractals, although this tim
the process is more direct in that simulation of
physical system is not involved; phase space is mo
or less manipulated directly.

In an IFS, a vector (here 2-D) is manipulated usin
matrix multiplication and addition. Consider a poin
(x, y) subjected to a matrix multiplication and a vec
tor addition. The new point, (x’, y’) is given by

A N0L2=

N0 A
1
L

 2
=

N r() A
r
L

 2
=

A
1
L

 2
r 2=

N0r 2=

N r() N0r=

N r() N0r 3=

N0 A
1
L

 2
=

54

t
-
n

to
el-
e
ng
t
to
ll
is
f

wherea, b, c, d, e andf are 6 parameters of the trans-
formation. If this is done repeatedly, replacing (x, y)
by (x’, y’) at each stage, and the successive positions
are plotted, the dots will form a trajectory in the
plane. If the elements of the matrix satisfy a certain
condition (it defines a contractive mapping), the tra-
jectory will converge to an attractor.

In an IFS, a set of transformations like this is first
defined, each with its own set of 6 parameters. There
are typically a small handful of transformations in an
IFS. Then at each iteration of the algorithm, one of
the transformations is selected at random (using pre-
defined probabilities) and applied to the point. The
next iteration will again select a transformation at
random, either the same one or a different one. The
result is that the point defined by (x, y) follows a
complex random walk around the plane, being con-
tinuously pulled to different attractors. The result is
not, however, a superimposition of simple shapes, but
(in general) a fractal pattern, showing self similarity.

Examples abound in books: the most standard is a
fern leaf, generated by four transformations with the
parameters

(the probabilitiesP are not critical). The result is
shown below. It is straightforward to write a program
that generates the image of the pattern from these
parameters. It is not difficult to come up with sets of
parameters that generate other patterns.

Part of the interest in these systems is that an object
that looks immensely complex if taken piecemeal is
shown to be summarised by a rule that has only a
small number of numerical parameters. This has both
practical application to areas like image compres-
sion, and theoretical value in understanding complex
dynamic systems.

4.4 Other fractal generators

The IFS brings together nicely the idea of a dynamic
system described by a phase space trajectory, and the
fractal dimension. However, many other rules can be
used to produce fractal objects: two examples are the
logistic map, used in studies of population dynamics,
and theL-systemwhich operates in the domain of

formal languages and their grammars.

5 Conclusion

This teach file differs from the preceding ones in tha
no new mathematics is involved. Differential equa
tions, matrices, vectors and probability have all bee
encountered already. However, their application
chaotic dynamical systems opens up a rapidly dev
oping area, which has major applications to th
understanding of complex systems. Understandi
systems with many interactions will involve a vas
variety of techniques, from transparent simulations
extremely abstract formal mathematics. You wi
need to use imagination to find the level of analys
that is appropriate for your problem and your way o
looking at it.

a b c d e f P

0.85 0.04 -0.04 0.85 0 0.3 0.85

-0.15 0.28 0.26 0.24 0 .0825 0.07

0.2 -0.26 0.23 0.22 0 0.3 0.07

0 0 0 0.16 0 0 0.01

x'

y'

a b

c d

x

y

e

f
+=
55

56

	Section 1 Some differential calculus
	1 Introduction
	Textbooks

	2 Functions of a single variable
	3 Differentiation
	Rules for specific functions:
	Rules for classes of functions:
	The rule for products:
	The chain rule:

	4 Functions of several variables
	5 Partial differentiation
	6 Some kinds of Ds
	7 Summation

	Section 2 The backpropagation algorithm
	1 Introduction
	2 The response function for a simple model neuron
	2.1 Linear units
	2.2 Nonlinear units

	3 Training a single unit
	3.1 The error function for a single unit
	3.2 The learning rule for a single unit

	4 From a unit to a network
	4.1 A single layer of units
	4.2 Adding another layer

	5 Backpropagation
	6 Conclusion

	Section 3 Matrices
	1 Introduction
	A point about notation

	2 Matrix-vector multiplication as a neural network operation
	3 Writing out matrices as tables
	4 Matrix-matrix multiplication
	5 Some simple matrix operations
	6 Matrix inverses
	7 Matrix analysis
	8 Conclusion

	Section 4 Vectors as geometrical objects
	1 Introduction
	2 Position vectors
	3 The geometry of simple vector operations
	3.1 Adding and subtracting vectors
	3.2 Multiplying a vector by a scalar
	3.3 The length of a vector
	3.4 The distance between two points

	4 Multiplying a vector by a matrix
	4.1 Diagonal matrices
	4.2 Rotation matrices
	4.3 Linear transformations
	4.4 Coordinate transformations

	5 The dot product and basis vectors
	5.1 The dot product
	5.2 Basis vectors

	Section 5 Vector applications
	1 Introduction
	2 A vector velocity field
	2.1 The idea of a velocity field
	2.2 An optical velocity field
	2.3 Matrix multiplication as a field operation
	2.4 Flow patterns illustrated

	3 Coordinate transformations for control
	3.1 Simple robot arm kinematics
	3.2 Alternative coordinate systems, especially polar coordinates

	Section 6 Numerical integration of differential equations
	1 Introduction
	2 Euler’s method for initial value problems
	3 More complex one-step methods
	4 Multistep methods
	5 A generalisation

	Section 7 Some probability and statistics
	1 Introduction
	2 Probability fundamentals
	2.1 Basics
	2.2 Estimating probabilities
	2.3 Conditional probability and independence
	2.4 Bayes’ theorem
	2.5 Summing conditional probabilities
	2.6 Random variables and probability distributions

	3 Statistics of distributions
	3.1 Averages
	3.2 Variances and standard deviations
	3.3 Entropy

	4 “Random” numbers
	5 Conclusion

	Section 8 Statistical analysis of experiments
	1 Introduction
	2 Descriptive statistics
	2.1 Graphs
	2.2 Simple numerical statistics and correlation
	2.3 The histogram

	3 Hypothesis testing
	3.1 Basic framework
	3.2 A simple example
	3.3 General methodology
	3.4 Another example
	3.5 Combining significance levels
	3.6 Problems with hypothesis testing

	Section 9 Chaotic systems and fractals
	1 Introduction
	2 System description using phase space
	2.1 Basic idea
	2.2 Example: the undriven small-angle pendulum
	2.3 Some properties of state trajectories

	3 The phase space of a chaotic system
	3.1 The driven nonlinear pendulum
	3.2 The Poincare section
	3.3 A demonstration
	3.4 Properties of chaotic systems
	3.5 Other chaotic systems

	4 Fractals
	4.1 Basic idea
	4.2 Fractal dimension
	4.3 Iterated function systems — fractal dynamics
	4.4 Other fractal generators

	5 Conclusion

	Contents

