
Managing the Policies of Non-Technical Users in a Dynamic World

Tim Owen, Ian Wakeman, Bill Keller, Julie Weeds, David Weir
Department of Informatics, University of Sussex, Brighton, UK

{timo,ianw,billk,juliewe,davidw}@sussex.ac.uk

Abstract

In this paper, we describe the use of description logic
as the basis for a policy representation language and show
how it is used in our implementation of a policy managed
pervasive environment. We compare our approach within
this domain to conventional policy management in both im-
plementation and analysis, and highlight the difficulties pre-
sented by dynamic environments.

1. Introduction

The vision of pervasive computing promises to deploy
computing devices and services throughout the everyday
environment, offering the potential of a far greater level of
automation and assistance to the general population than the
traditional PC. This future provides an opportunity to ap-
ply policy-based management to the pervasive infrastruc-
ture, allowing users to tailor their environment by bringing
together and configuring the services around them.
However, there are characteristics of this application do-

main that introduce new challenges to policy formulation
and analysis. The target users are typically non-technical
people, which contrasts with the more technical and struc-
tured environment of systems management, where policies
are formulated and debugged by knowledgeable users us-
ing special purpose tools. Furthermore, the likely styles of
policy that users have about their environment do not nec-
essarily fit neatly into the general pattern of deontic policies
of authorisation and obligation.
In this paper we discuss the complications that arise from

this style of policy management, both in representation, im-
plementation and analysis. In particular, the dynamic nature
of the pervasive environment, where services and entities
appear and disappear, and where the attributes and descrip-
tions of the entities and services evolve over time, present
very different challenges from the comparatively static do-
mains assumed by much of the literature in policy manage-
ment.

The remainder of this paper will briefly describe the
overall structure of the system within which the policy rep-
resentation acts, and describe how the policies are repre-
sented and executed using description logic (DL) [2]. We
then show the limited extent to which we can statically anal-
yse policies, and how we can determine potential conflicts
at runtime.

2. System Overview

Heating
Service

Location
Service

Printing
Service

Calendar
Service

Formal
Policy

Representation Ontology
Of

Services

Domain
Instance

Knowledge

Users

NL TextSpeech

Policy
Manager

Requests

. . . .

Generates

Produces

Interpreted By

Checked By

Refers To

Service
Descriptions

EventsEvents

Define
Policies

Multi−modal
Interface

Policy Analysis
Engine

GUI

Lexicon
Core

Maps To

Specific
Ontology

Domain

Figure 1. Overview of Policy Management
System

Figure 1 shows the high-level architecture of the system
we are building. There are a number of software services
that provide useful functionality in the user’s environment.
These send out notifications of events, and accept requests
for action from applications and other services. The policy
manager stands as a central broker for notifications and re-
quests, and creates, modifies or cancels requests in accor-
dance with its set of active policies, before passing them on
to the relevant services.
Users can configure and compose the services to person-

alise their environment by formulating policies that spec-
ify what actions should be taken when certain events occur.
For example, a user may create a policy such as Switch the
heating down when there is nobody in the house or another
that specifies Print documents on the nearest printer, by de-
fault. The task of the policy manager is to enforce these
policies, by acting upon incoming events such as notifica-
tions about person-movements from the location service or
print requests from an application. The manager may mod-
ify a request (e.g. naming a target printer if not specified)
or initiate a new request (e.g. asking the heating service to
lower its setpoint) as required to implement the user’s poli-
cies.
Currently, we have built a prototype system of most of

the major components shown in Figure 1. The knowledge
base module is implemented using the RACER system[7]
which provides a DL reasoning engine, as well as storing
the definitions of domain concepts and roles (the TBox) and
the known individuals (the ABox).

3. Policy Representation and Implementation

We undertook a series of user studies to investigate how
users would like to configure an imagined pervasive en-
vironment. From the corpus of results we identified that
many configuration policies involve the incremental refine-
ment and rewriting of action requests such as “print colour
documents to the colour printer”, whilst the remainder were
mostly of the form of conditioned action requests, such as
“send me an email when my printer goes offline”.
We therefore designed a policy representation suited to

this style of policy. In particular, the representation should
be able to cope with the incremental modification of re-
quests for action, including:

• the ability to partially specify how requests will be sat-
isfied;

• the ability to fill in default constraints if they are not
already specified;

• the ability for new constraints to override and have
preference over previously specified constraints

The general form of a user policy is a rule with a precon-
dition and postcondition, each expressed using DL terms

that reference concepts, roles and individuals in the ontol-
ogy. For example, a user’s policy Print colour documents
on a colour printer would be expressed formally as:

x ∈ Print " patient.colourness.COLOUR⇒
x ∈ target.colourness.COLOUR

where Print is a concept name of a request to print, which
has roles called patient and target (which in turn each have
colourness roles). This policy rule can be read as: if there
is a Print request whose patient (i.e. the document to be
printed) has a COLOUR value for the colourness role, then
assert the postcondition that the target of the request must
be a printer whose colourness role has the COLOUR value.
However, certain user policies require that the postcon-

dition contradicts the preconditions of the rule. For exam-
ple in the user policy If a document is sent to printer LJA
and it is offline, send to LJX instead we expect the origi-
nal target of the print request to be overwritten by the new
assertion in the postcondition.
A variation of this style of policy is to use a more cau-

tious, default, semantics where the postcondition is only as-
serted if it doesn’t contradict existing knowledge about the
request. This captures policies such as the example in the
previous section Print documents on the nearest printer, by
default where we don’t wish to overwrite existing target in-
formation, but only add to it if not specified. Each policy
rule is tagged by the creator to indicate whether overwrite
or default semantics are required.
Action-style policies are expressed with a postcondition

that triggers a new request, rather than asserting further
changes to the original event that matched the precondi-
tion. For example, if the user’s policy is Email me when-
ever someone prints on my printer can be captured in the
following rule:

x ∈ Print " target.owner.TIM⇒
y ∈ Email " recipient.address.“alert@me.com”

where the variables x and y indicate different requests are
being referred to.
Each formulated policy rule is passed to the policy man-

ager, which is responsible for implementing the set of user
policies. The manager examines incoming notifications and
requests from services and applications, and tests the pre-
conditions of each policy in turn to see if it matches. If
the policy manager applies a policy to a request, it incor-
porates the postcondition terms into its knowledge about
the request. Once there are no further policy applications
to perform, requests are finally passed to the relevant ser-
vice for execution. By this process a request is incremen-
tally refined, by the addition of new assertions and the re-
placement of earlier knowledge by more recent information
from policy postconditions. This allows users to configure
the behaviour of their environment by filtering and modi-
fying the descriptions of requests passing through the sys-
tem.

User studies indicated that there was a wide disparity
among users as to whether or not they anticipated that poli-
cies would be chained. Some users believed that only a sin-
gle policy should ever fire, whilst other users believed that
policies would chain together raising the problem of loop-
ing. We have therefore made the engine configurable in how
policies are chained together, ranging from single policy ap-
plication through to greedy chaining, albeit still restricting
policies to single firing per request to prevent loops.
Whilst the choice of representation has been driven by

the need to represent action policies, we are still able to
represent deontic-style policies based on authorisation and
obligation e.g. Bill is not allowed to print becomes

x ∈ Print " agent.name.BILL⇒
x $∈ Print

The application of policies involves modification to the
policy manager’s knowledge about each request as it is pro-
cessed. This raises a number of complications arising from
conflicts and ordering dependencies among the set of poli-
cies. Since the system behaviour will depend on how the
multiple interacting policies are managed, this will be par-
ticularly problematic for non-technical users who, in devis-
ing their policies, may be unaware of potential interactions.

4. Policy Analysis

As described in Section 3, the preconditions of policies
are tested in order. The ordering of the policies therefore
plays a key role in determining the behaviour of the sys-
tem. We have adopted a number of heuristics to resolve the
ordering.
Following other approaches in the literature such as

Lupu and Sloman [11], policies with more specific condi-
tions are given higher precedence than more general poli-
cies. Since we can call upon a DL reasoning engine, we
use both subsumption and disjointedness tests upon the pre-
conditions of pairs of policies to determine their relation-
ship. If the preconditions of one policy subsumes another,
it is given a higher precedence than the other. If the precon-
ditions are disjoint, then policies will never interfere with
each other and so can be tested in any order.
In the situation when the preconditions of policies over-

lap, we have used the following additional tests. If the pre-
conditions of one policy are disjoint from the postconditions
of the other, then the order in which the policies apply is ob-
viously important, and in this case we query the user. Oth-
erwise, we adopt the heuristic approach of testing the size
of the realizable sets1 of the combined pre- and postcondi-
tion pairs, and giving higher precedence to the policy whose
preconditions generate smaller sets.

1 The Realizable Set of a set of conditions is calculated by using the cur-
rent ABox to calculate how many entities are covered by these condi-
tions

In the majority of policy managed systems, much atten-
tion is paid to determining a priori which policies will con-
flict with each other, e.g. through using syntactic checks as
in the modality conflicts of Lupu and Sloman [11] or by us-
ing the event calculus to check explicit conflict definitions
[4, 3]. Description logic has previously been used to check
for feature interaction in telephone services [1]. However,
because our system works within a dynamically evolving
world, it is not possible to exhaustively identify all poten-
tial conflicts. Whether a policy will fire depends upon the
particular set of entities within the ABox, and since this is
a changing set, static analysis of interactions has a limited
lifetime. It is also difficult to determine whether the possi-
ble interaction between two policies is good or bad — if
policy A will cause policy B to fire, the system cannot tell
without human intervention whether this is intended or not.
We have provided a search capability to determine which
policies can interact with each other based upon the cur-
rent state of the ABox, but both the volume of interactions
and our preliminary user studies indicate that this would not
be useful for most users.
Rather than static analysis, we rely heavily upon run-

time tests, and provide explanations to allow users to debug
and modify their policies. After the application of a pol-
icy and the refinement of constraints for an action to fire,
we test whether the current set of constraints will produce
an empty realizable set. If this is the case, we flag to the user
that there may be a potential problem with the policy defi-
nitions. The explanation as to how policies have interacted
to produce this state can be used in policy refinement.
Finally, we envisage that deployment of any real system

based on this style of policy management would come with
a number of generic policies designed to prevent bad inter-
actions. For instance, to ensure that all documents eventu-
ally went to a printer that was online, consider the policy
Do not send documents to offline printers. This can be en-
coded as

x ∈ Print " target.status.OFFLINE)⇒
x ∈ target.status.ONLINE

The use of the overwrite rule to mask and retract contradic-
tory conditions means that the conditions leading to offline
printer choices are retracted.

5. Related Work

There has been work on allowing access to the configura-
tion of pervasive environments from the HCI end of the per-
vasive computing research spectrum. For example, the work
of Truong et al [14] provides a pseudo-natural language in-
terface, using a fridge magnet metaphor. However, this has
very limited expressibility, and requires the use of a screen
for the editor, as does the jigsaw editor of Humble [8] in
which typed services can be composed in pipelines similar
to other techniques of visual programming, or the browser

approach of Speakeasy [12], where components are con-
nected using a visual editor based on file-system browsers.
From the policy management community, description

logic has been taken up and used in the Rei system [9]
and the Kaos system [15]. However, as described above, we
are geared to the policy management of actions, rather than
the deontic approach taken in these languages and systems.
Other research on pervasive systems such as Gaia [13], In-
teractive Rooms [5] and Aura [6] have said little about their
approach to user configuration, concentrating in general on
the programmatic interface and necessary middleware for
easy construction of pervasive services.

6. Conclusions and Future Work

We view policy management as an important aspect
of pervasive computing configuration. However, the nature
of the pervasive computing domain requires different ap-
proaches to modelling and analysing policies. Not all con-
figuration policies are deontic-style but involve changes and
refinements of the constraints upon requests and notifica-
tions.
Further, the need to be accessible to non-technical users

requires any policy management system to be able to ex-
plain how and why particular policies were applied, and to
be adaptable in the extent to which policies are chained to-
gether. We have found that description logic is a useful for-
malism in representing policies, since it allows policies to
incrementally accumulate knowledge about requests.
At the time of writing, we are integrating the policy en-

gine with a natural language understanding system[16] af-
ter which we will be running a number of user studies to
understand the benefits and limitations of our approach, to
enable us to improve the design and implementation. Con-
current work is investigating how to best explain and debug
the operation of the policy management system through a
multi-modal interface.
The policies with which we currently work can be char-

acterised as action and to a limited extent goal policies ac-
cording to the taxonomy of Kephart [10]. In future work we
intend to investigate how planning technologies can be in-
corporated into the policy engine to deal with policies such
as “Keep average heating costs below $200 per annum” and
eventually to deal with policies specified in terms of util-
ity functions.

References

[1] C. Areces, W. Bouma, and M. de Rijke. Description logics
and feature interaction. In DL’99, the International Work-
shop on Description Logics, Linkping, Sweden, July 1999.

[2] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and
P. Patel-Schneider, editors. The Description Logic Hand-
book. Cambridge University Press, 2003.

[3] A. Bandara, E. Lupu, J. Moffett, and A. Russo. A goal-based
approach to policy refinement. In Proc of 5th IEEE Work-
shop on Policies for Distributed Systems and Networks, IBM
Thomas J Watson Research Center, Yorktown Heights, New
York, June 2004.

[4] A. Bandara, E. Lupu, and A. Russo. Using event calculus
to formalise policy specification and analysis. In Proc of 4th
IEEE Workshop on Policies for Distributed Systems and Net-
works, Lake Como, Italy, June 2003.

[5] T. W. Brad Johanson, Armando Fox. The interactive
workspaces project: Experiences with ubiquitous computing
rooms. IEEE Pervasive Computing, 1(2), 2002.

[6] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste.
Project aura: Toward distraction-free pervasive computing.
IEEE Pervasive Computing, April 2003.

[7] V. Haarslev and R. Mller. Description of the racer system and
its applications. In Proceedings International Workshop on
Description Logics (DL-2001), Stanford Ca, August 2001.

[8] J. Humble, T. Hemmings, A. Crabtree, B. Koleva, and
T. Rodden. ”playing with your bits”: User configuration of
ubiquitous domestic environments. In UbiComp 2003, 2003.

[9] L. Kagal, T. Finin, and A. Joshi. A policy language for a per-
vasive computing environment. In Proc of 4th IEEE Work-
shop on Policies for Distributed Systems and Networks, Lake
Como, Italy, June 2003.

[10] J. O. Kephart and W. E. Walsh. An artificial intelligence per-
spective on autonomic computing policies. In Proc of 5th
IEEE Workshop on Policies for Distributed Systems and Net-
works, IBM Thomas J Watson Research Center, Yorktown
Heights, New York, June 2004.

[11] E. Lupu and M. Sloman. Conflicts in policy-based dis-
tributed systems management. IEEE Transactions on Soft-
ware Engineering, 25(6):852–869, November 1999.

[12] M. W. Newman, J. Z. Sedivy, C. M. Neuwirth, W. K. Ed-
wards, J. I. Hong, S. Izadi, K. Marcelo, T. F. Smith, J. Se-
divy, and M. Newman. Designing for serendipity: support-
ing end-user configuration of ubiquitous computing environ-
ments. In Proceedings of the conference on Designing inter-
active systems, pages 147–156. ACM Press, 2002.

[13] M. Romn, C. K. Hess, R. Cerqueira, A. Ranganathan, R. H.
Campbell, and K. Nahrstedt. Gaia: A middleware infras-
tructure to enable active spaces. IEEE Pervasive Comput-
ing, pages 74–83, October 2002.

[14] K. N. Truong, E. M. Huang, and G. D. Abowd. Camp: A
magnetic poetry interface for end-user programming of cap-
ture applications for the home. In UbiComp 2004, 2004.

[15] A. Uszok, J. M. Bradshaw, R. Jeffers, N. Suri, P. Hayes,
M. R. Breedy, L. Bunch, M. Johnson, S. Kulkarni, and
J. Lott. KAoS policy and domain services: Toward a
description-logic approach to policy representation, decon-
fliction, and enforcement. In Proceedings of Policy 2003,
Como, Italy, 2003.

[16] J. Weeds, B. Keller, D. Weir, I. Wakeman, J. Rimmer, and
T. Owen. Natural language expression of user policies in
pervasive computing environments. In Proceedings of On-
toLex 2004 (LREC Workshop on Ontologies and Lexical Re-
sources in Distributed Environments), Lisbon, Portugal, May
2004.

