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Abstract

In this paper we will describe a polynomial time Earley-style predictive parser for D-Tree
Grammars (DTG). DTG were designed to share some of the advantages of TAG while overcoming
some of its limitations. In developing parsers for TAG it has turned out to be useful to make use
of a direct mapping from TAG to Linear Indexed Grammars (LIG) and to develop algorithms
that work with the resulting LIG. In the case of DTG we use a similarly direct mapping into
what we call Linear Prioritized Multiset Grammar (LPMG). This makes it possible to give a
straightforward statement of the parsing algorithm.

1. Motivation

Rambow, Vijay-Shanker and Weir (1995), we define a new grammar formalism, called D-Tree
Grammars (DTG), which arises from work on Tree-Adjoining Grammars (TAG) (Joshi et al., 1975).
A salient feature of TAG is the extended domain of locality it provides. Each elementary structure
can be associated with a lexical item (as in Lexicalized TAG (LTAG) (Joshi and Schabes, 1991)).
Properties related to the lexical item (such as subcategorization, agreement, certain types of word
order variation) can be expressed within the elementary structure (Kroch, 1987; Frank, 1992). In
addition, TAG remain tractable, yet their generative capacity is sufficient to account for certain
syntactic phenomena that, it has been argued, lie beyond Context-Free Grammars (CFG) (Shieber,
1985). TAG, however, has two limitations. The first problem is that the TAG operations of substi-
tution and adjunction do not map cleanly onto the relations of complementation and modification.
A second problem has to do with the inability of TAG to provide analyses for certain syntactic
phenomena. We will discuss the first issue in some detail here, and refer to Rambow et al. (1995)
for a broader discussion of linguistic data that motivates the definition of DTG.

In LTAG, the operations of substitution and adjunction relate two lexical items. It is therefore
natural to interpret these operations as establishing a direct linguistic relation between the two
lexical items, namely a relation of complementation (predicate-argument relation) or of modifica-
tion. In purely CFG-based approaches, these relations are only implicit. However, they represent
important linguistic intuition, they provide a uniform interface to semantics, and they are, as Sch-
abes and Shieber (1994) argue, important in order to support statistical parameters in stochastic
frameworks and appropriate adjunction constraints in TAG. In many frameworks, complementation
and modification are in fact made explicit: LFG (Bresnan and Kaplan, 1982) provides a separate
functional (f-) structure, and dependency grammars (see e.g. Mel’¢uk (1988)) use these notions
as the principal basis for syntactic representation. We will follow the dependency literature in
referring to complementation and modification as syntactic dependency. As observed by Rambow
and Joshi (1992), for TAG, the importance of the dependency structure means that not only the
derived phrase-structure tree is of interest, but also the operations by which we obtained it from
elementary structures. This information is encoded in the derivation tree (Vijay-Shanker, 1987).



However, as Vijay-Shanker (1992) observes, the TAG composition operations are not used uni-
formly: while substitution is used only to add a (nominal) complement, adjunction is used both
for modification and (clausal) complementation. Clausal complementation could not be handled
uniformly by substitution because of the existence of syntactic phenomena such as long-distance
wh-movement in English. Furthermore, there is an inconsistency in the directionality of the opera-
tions used for complementation in TAG: nominal complements are substituted into their governing
verb’s tree, while the governing verb’s tree is adjoined into its own clausal complement. The fact
that adjunction and substitution are used in a linguistically heterogeneous manner means that
(standard) TAG derivation trees do not provide a good representation of the dependencies between
the words of the sentence, i.e., of the predicate-argument and modification structure.
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Figure 1: TAG Derivation trees for (1)

For instance, English sentence (1) gets the derivation structure shown on the left in Figure 1'.
(1) Small spicy hotdogs he claims Mary seems to adore

When comparing this derivation structure to the dependency structure in Figure 2, the follow-
ing problems become apparent. First, both adjectives depend on hotdog, while in the derivation
structure small is a daughter of spicy. In addition, seem depends on claim (as does its nominal
argument, he), and adore depends on seem. In the derivation structure, seem is a daughter of
adore (the direction does not express the actual dependency), and claim is also a daughter of adore
(though neither is an argument of the other).
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Figure 2: Dependency tree for (1)

Schabes and Shieber (1994) solve the first problem by distinguishing between the adjunction of
modifiers and of clausal complements. While this might provide a satisfactory treatment of modi-
fication at the derivation level, there are now three types of operations (two adjunctions and sub-
stitution) for two types of dependencies (arguments and modifiers), and the directionality problem
for embedded clauses remains unsolved.

For clarity, we depart from standard TAG notational practice and annotate nodes with lexemes and arcs with
grammatical function.



In defining DTG we have attempted to resolve these problems with the use of a single operation
(that we call subsertion) for handling all complementation and a second operation (called sister-
adjunction) for modification. However, the definition remains faithful to what we see as the key
advantages of TAG (in particular, its enlarged domain of locality).

We mention in passing that our definition also handles certain syntactic phenomena that are be-
yond the scope of simple TAG, such as extraction from picture-NPs in English, wh-movement in
Kashmiri, and long-distance scrambling in Hindi, Japanese, Korean, Turkish, and other languages.
These syntactic phenomena have inspired several other extensions to formalisms, see Becker, Joshi
and Rambow (1991), the V-TAG formalism of Rambow (Rambow, 1994a)?, and an extension of
categorial grammars developed by Hoffman (1995).

2. Definition of DTG

We begin with the definition of the structures manipulated by a DTG. A d-tree is a tree with
two types of edges: domination edges (d-edges) and immediate domination edges (i-edges). In
defining d-trees, we specify additional constraints on the distribution of d-edges and i-edges. For
each internal node, either all of its daughters are linked by i-edges or it has a single daughter that is
linked to it by a d-edge. Each node is labelled with a terminal symbol, a nonterminal symbol or the
empty string. A d-tree containing n d-edges can be decomposed into n+1 components containing
only (0 or more) i-edges, with the root of all components other than topmost one connected to a
node in a component above by a d-edge. In the d-trees a and 5 shown in Figure 3, these components
are shown as triangles.

We introduce subsertion as an operation on d-trees. When a d-tree « is subserted into another
d-tree 3, a component of a is substituted at a frontier nonterminal node (a substitution node) of
0 and all components of a that are above the substituted component are inserted into d-edges in
[ above the substituted node or placed above the root node of 3. For example, Figure 3 illustrates
a possible subsertion of a in 5. Here we have considered the component a(5) as being substituted
at a substitution node in 3. The components, (1), a(2), and a(4) of a above a(5) drift up the
path in # which runs from the substitution node. While in the composed d-tree shown, v, all these
components have been inserted in the d-edges of 3, in general, some of these components could
have been placed above the root of . When a component a(i) of some d-tree a is inserted into
a d-edge between nodes 7n; and 7, two new d-edges are created, the first of which relates n; and
the root node of a(¢), and the second of which relates the frontier node of a(¢) that dominates
the substituted component to 7,. It is possible for components above the substituted node to drift
arbitrarily far up in any way that is compatible with the domination relationships present in the
substituted d-tree. DTG provide a mechanism called subsertion-insertion constraints to control
what can appear within d-edges (see below).

The second composition operation involving d-trees is called sister-adjunction. We insist that the
target node of sister-adjunction must be a node at the top of an i-edge. When a d-tree « is sister-
adjoined at a node 7 in a d-tree § the composed d-tree v results from the addition to g of a as
a new leftmost or rightmost sub-d-tree below 7. Note that sister-adjunction involves the addition
of exactly one new immediate domination edge and that several sister-adjunctions can occur at
the same node. Sister-adjoining constraints specify where d-trees can be sister-adjoined and
whether they will be right- or left-sister-adjoined (see below).

D-edges and i-edges are intended to express domination and immediate domination relations be-
tween nodes. Note by using these two operations, these relations are never rescinded when d-trees
are composed. Nodes separated by an i-edge will remain in a mother-daughter relationship through-

?Becker and Rambow (1994; 1995) describe a parser for V-TAG a related formal system that includes dominance
links and uses multisets in parsing. However, unlike V-TAG, DTG give rise to linguistically meaningful derivation
structures; DTG do not include the TAG tree adjunction operation, which simplifies certain aspects of the algorithm;
and the parser is defined in terms of a related string-rewriting formalism.
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Figure 3: Subsertion

out the derivation, whereas nodes separated by an d-edge can have a path of any length inserted
between them during a derivation.

A DTG is a four tuple G = (Vn, Vy, 5, D) where Vyy and Vi are the usual nonterminal and terminal
alphabets, S € Vy is a distinguished nonterminal and D is a finite set of elementary d-trees.
A DTG is said to be lexicalized if each d-tree in the grammar has at least one terminal node.
The elementary d-trees of a grammar GG have two additional annotations: subsertion-insertion
constraints and sister-adjoining constraints. These will be described below, but first we define si-
multaneously DTG derivations and subsertion-adjoining trees (SA-trees), which are partial deriva-
tion structures that can be interpreted as representing dependency information, the importance of
which was stressed in the introduction®. SA-trees contain information regarding the substitutions
and sister-adjunctions that take place in a derivation, capturing the linguistic dependency rela-
tions of complementation and modification. Thus the SA-trees are exactly the dependency trees
discussed earlier as motivations for DTG.

Consider a DTG G = (Vy,Vy, 5, D). In defining SA-trees, we assume some naming convention
for the elementary d-trees in D and some consistent ordering on the components and nodes of
elementary d-trees in D. Similar to the derivation trees in TAG, the nodes in SA-trees are labeled
by the names of the elementary d-trees. An SA-tree consisting of a single node labelled by an
elementary d-tree a will correspond to the derived d-tree that is just this elementary d-tree. We

?Due to space limitations, in the following definitions we are forced to be somewhat imprecise when we identify a
node in a derived d-tree with the node in the elementary d-trees (elementary nodes) from which it was derived. This
is often done in TAG literature, and hopefully it will be clear what is intended.



say that @ € T(a). The components of the elementary d-tree are considered the substitutable*
components of this tree considered as a derived d-tree.

Let a be an elementary d-tree with & substitution nodes. Subsertion (substitution) must take place
at each of these nodes. Further, when we consider sister-adjunction into a, these substitution nodes
cannot be the target of sister-adjunction, and vice-versa. The combination by (k) subsertions and
(j > 0) sister-adjunctions into an instance of a is represented by an SA-tree, say 7, with root labelled
a which has (k + j) children. k of these children represent the k d-trees being subserted and the
remaining 7, the d-trees being used in the sister-adjunction. As more than one d-tree can be sister-
adjoined at the same node in «a, and as different sequences of sister-adjunctions at a node could
lead to different d-trees being derived, the children of nodes in an SA-tree corresponding to those
used in sister-adjunction at the same node have to be ordered with respect to each other. Without
loss of generality, we assume the children of a node in an SA-tree are ordered, and in particular, we
assume that initial sequences of children of a node in an SA-tree correspond to subsertion®. Let the
children of root of 7 be labelled ay,...a;4; respectively, with 74,...,7;4; being the sub-SA-trees
rooted at these nodes. Inductively, we assume 7; correspond to the derivation of d-trees v, € T'(«a;)
for i < (k+ 7). As a has k substitution nodes k of these derived d-trees are subserted at the k
substitution nodes and the rest are sister-adjoined. Thus, v; € T(a),..., 7, € T(oy) are assumed
to be subserted. The k-subsertions are indicated in 7 by labelling the corresponding edges by pairs
(liyn;) for 1 <4 < k. This label indicates the substitution of the It* substitutable component of v;
at the substitution node in a with address n;. Y441, ...754; are sister-adjoined. The corresponding
edges in 7 are labelled by pairs (d;, m;), for k < ¢ < k + j, with m; giving the address of the target
of sister-adjunction and d; € {left, right} used to indicate whether left- or right-sister-adjunction
took place. 7 is the SA-tree for the d-tree, v € T(a), obtained by this sequence of substitutions and
sister-adjunctions into a. The new components of v that came from « are now the substitutable
components of 7 and are ordered (or numbered) in the same manner as in a. Note that 7 may
be the SA-tree for several d-trees that can be obtained by this sequence of operations that differ
because of differing insertions of components above the substituted components in vy,..., ;.

The tree set T'((G) generated by G is defined as the set of trees v such that there is a 7' € T'(a)
for some elementary d-tree a of GG; 7' is rooted with the nonterminal S; the frontier of 7' is a string
in VJ; and v results from the removal of all d-edges from 74’. A d-edge is removed by merging
the nodes at either end of the edge as long as they are labelled by the same symbol. The string
language L(G) associated with G is the set of terminal strings appearing on the frontier of trees

in T(G).

As indicated earlier, an SA-tree only partially captures the derivation of a d-tree, and does not
specify the placement of the inserted components during subsertions. We now describe informally
a structure that can be used to encode a DTG derivation. A derivation graph for v € T(G) results
from the addition of insertion edges to a SA-tree 7 for 4. The location in 7 of an inserted elementary
component a(z) can be unambiguously determined by identifying the source of the node (say the
node with address n in the elementary d-tree a’) with which the root of this occurrence of a(7)
is merged with when d-edges are removed. The insertion edge will relate the two (not necessarily
distinct) nodes corresponding to appropriate occurrences of a and o’ and will be labelled by the
pair (¢, n).

Earlier, we had indicated that DTG provides a mechanism to control the components that can be
appear within d-edges. Fach d-edge in elementary d-trees has an associated subsertion-insertion
constraint (SIC). A SIC is a finite set of elementary node addresses (ENAs). An ENA 5 specifies
some elementary d-tree @ € D, a component of o and the address of a node within that component
of a. If an ENA 7 is in the SIC associated with a d-edge between 7, and 7, in an elementary d-tree

*The notion of substitutability is used to ensure the SA-tree is a tree. That is, an elementary structure cannot
be subserted into more than one structure since this would be counter to our motivations for using subsertion for
complementation.

®The children corresponding to subsertion can be ordered in any arbitrary but fixed manner.



a then 7 cannot appear properly within the path that appears from 7; to 7, in the derived tree

v € T(G).

Each node at the top of an i-edge of elementary d-trees has an associated sister-adjunction con-
straint (SAC). A SAC is a finite set of pairs, each pair identifying a direction, d € { left, right }, and
an elementary d-tree, . A SAC gives a complete specification of what can be sister-adjoined at
a node. If a node 7 is associated with a SAC containing a pair (d,«) then the d-tree a can be
d-sister-adjoined at 7.

3. Parsing Framework

Our approach to DTG parsing is inspired by a methodology introduced by Lang (Billot and Lang,
1989; Lang, 1991) for CFG. This involves breaking the parsing process into two phases. For example,
given a CFG, an equivalent PDA is constructed. The transition moves of this (non-deterministic)
PDA represent the primitive steps of the recognition process. Dynamic programming techniques
then serve to determinize the recognition process, with different dynamic programming styles yield-
ing different recognition algorithms. This approach is particularly well-suited to formalisms such
as TAG and DTG that have an enlarged domain of locality, where individual structures can span
noncontiguous substrings. For example, in the case of TAG, the adjoining operation combines two
compound structures in a single derivation step. Adjunction of two structures does not correspond
to a single step in the recognition process but has to be decomposed into several more primitive
steps (in recognizers that only consider contiguous substrings). This decomposition corresponds to
the conversion from grammar to automaton in Lang’s framework.

We adopt a variant of this approach in which the primitive recognition steps are captured with
a second grammar formalism rather than an automaton model. In the case of TAG, the TAG-
equivalent formalisms of LIG or HG are suitable candidates, since for both formalisms each rewriting
step corresponds directly to the basic steps of recognition. Indeed, parsing algorithms for TAG have
been developed by adapting the algorithms for LIG or HG (Vijay-Shanker and Weir, 1993a)°.

The elementary structures of DTG, like TAG, have an enlarged domain of locality. A single subser-
tion involves one substitution and possibly several insertions. The recognition process corresponding
to a single subsertion is comprised of several more primitive steps. As with TAG, it is valuable to use
a formalism with a smaller domain of locality. For this reason, we introduce the Linear Prioritized
Multiset Grammar (LPMG) formalism. LPMG is similar to LIG differing in its use of multisets in
place of stacks.

We provide a translation from DTG to LPMG that, we believe, captures the primitive steps of DTG
recognition. Different dynamic programming techniques can then be applied to obtain different
recognition algorithms. Specialization of the recognition grammar for a specific input serves to
encode the set of all parses for that input. Clearly, one could develop an algorithm for DTG directly
and have the translation to LPMG be implicit. However, for this preliminary work on DTG parsing,
we believe we will be better served by making the translation explicit so that we can systematically
consider different dynamic programming methods to obtain different DTG recognition algorithms.
For space reasons, we consider only one Earley-style method in this paper. It would be equally
straightforward to develop a CKY-style algorithm from the LPMG grammar.

4. Definition of LPMG

We now define LPMG, which is a variant of {}-LIG (Rambow, 1994b) obtained by providing an
additional mechanism for restricting the manipulation the members of the multiset.

®The use of grammars rather than automata ties in with Lang’s later work (for instance, see Lang (1994)) where
grammars can be specialized for a specific input to represent the shared forest of derivation trees for that input. In
particular, Vijay-Shanker and Weir (1993b), show that for TAG an equivalent HG or LIG can be used in the grammar
specialization process, rather than the object (TAG) grammar.



A multiset over the finite alphabet V is a function m : V' — N where N is the natural numbers. The
set of all multisets over V is denoted NV. For two multisets m; and m, over V, multiset addition
and subtraction are defined as follows. For all v € V:

(my @ ma)(v) = my(v) + ma(v) (my 8 ms)(v) = maz (my(v) — ma(v),0)

When context permits we will abuse this notation and not distinguish between a symbol and the
multiset that contains only that symbol. Thus if m is a multiset over V and v € V then

m(v') ifvo#£0

m(v)+ 1 otherwise

(m @ v)(v') = {

m(v') ifv#£0

maz (m(v) — 1,0) otherwise

(m & )(v) = {

An ordering on multisets is defined as follows.
my C my iff my(v) < my(v) forall v e V

The empty multiset is denoted ¢. The number of elements in the multiset m is denoted size (m).

A LPMG is a six tuple G = (Vy, Vy, Vi, 9,00, P, p) where Vi, Vp and Vy, are the nonterminal,
terminal and multiset alphabets, respectively; S € Vy and oy are the initial nonterminal and
multiset symbols, respectively; P is a finite set of productions (see below); and p C Vyy X V) is the
priority relation.

The objects appearing on the left of productions come from the set Vy U {e} U P(Vy, Vi) U
P*(Vy, Var) where
P(VN,‘/M) = {A[Ul,...,Uk] |A S ‘/Nv k Z land o € VM }
P (Vn,Vu)={A[-01,...,00 | |AE VN, E>0and oy,...,00, € Viy }

Productions in LPMG have one of the following forms.

1. A[-o-- ] — X1... X where £ > 1 and X; € P(Vy, V) UP (Vy,Vy) fori (1 <i<k)

2. Alo] — o where A € Vy and z € Vo U {e}.
Given a priority relation p we define p-selectable as follows: o is p-selectable from a multiset m iff
m(c) > 1 and for all ¢’ such that (¢’,0) € p we have m(o’) = 0.

In derivations sentential forms are strings of objects taken from Vp U M(Vy, Vi) where
M(Vy, Vi) = {A[m] |A € Vy and m € NV™ }
For all T;, T, € (M(Vy, Vi) U Vp)*:

if Alo] -z € P
then Y, A[c]T, = T12T>;

if Alvo]— X;... X, € P,
o is p-selectable from m,
moeo=mi&...H6m,
X, = Ailoj1,...,0i0,] or Xi = Aj[--0;1,...,0,, ] for each ¢ (1 <1< k),
m;=m;®0;1P...80;,, foreach i (1 <i<k)and
m; = ¢ if X; = Ailoy1,...,0;,,] foreach ¢ (1 <i<k)

K3

then YT;A[m|T, = Ty A [my]. .. Ag[mg]Ts.



In this latter derivation step, we are attempting to rewrite A[m] by using a production with A[-- o -]
in its left-hand-side. Of course, this is possible only when ¢ € m and the contents of m and the
priority relation allows the rewriting. Note both of these constraints are verified by the definition
of p-selectivity. The application of the rule will remove the ¢ from m and the remaining multiset
elements are distributed amongst the £ elements in the right-hand-side of the rule. The multisets
inherited by the ¢'* element is indicated as m;. Thus, m|&---&m) must be equal to mco. If the ith
element is A;[o;,,...,0;,] then derivation from it should only have the multiset ¢ o;, & ... Do, ..
That is, it does not inherit any multiset elements. This is indicated above by stating that m} = ¢
in this case. On the other hand, if the i** element is A;[-- 0,,...,0;, -] then derivation from it
should not only have the multiset elements o;,,...,0; s, associated with it, but also m}, that part
of the multiset m that is inherited by the X;.

The language generated by G = (Vy, Vy, Vi, S, 00, P, p) is defined as

L(G) = {w evy

*
S [UO] ? w }
where % is the reflexive, transitive closure of =

5. DTG to LPMG Conversion

We now show how a DTG can be converted into an equivalent LPMG. The construction described
here is similar to the TAG to LIG conversion described by Vijay-Shanker and Weir (1994) that
has been used in the development of TAG parsing algorithms (Vijay-Shanker and Weir, 1993a).
Adjunction has the effect of embedding one elementary tree within another and the LIG’s stack is
used to control the potentially unbounded nesting of elementary trees that occur in TAG derivations.
Following the UVG-DL to {}-LIG conversion described by Rambow (1994a), the DTG to LPMG
conversion described below is similar to the TAG to LIG conversion except that multisets rather
than stacks are used to control the embedding of d-trees. This is because there is a certain degree of
freedom associated with the positioning of components inserted during a subsertion. In particular,
there is only limited control over the relative positioning of the inserted components of two subserted
d-trees. As a result, a multiset (whose elements are unordered) rather than a stack is used to encode
the embedding contexts in DTG derivations.

Embedding context are multisets of ENAs (elementary node addresses) and at the start of a deriva-
tion this multiset contains only the root of some elementary d-tree that is labelled by the initial
nonterminal. Embedding of d-trees occurs only at nodes at the top of d-edges and when this hap-
pens the multiset stores the ENA of the node at the bottom of the d-edge. When the node at
the bottom of the d-edge is reached in the derivation, this ENA will be removed from the multiset
and the remainder of its elementary d-tree can be traversed. Hence, we say that open d-edges
are represented by elements of the multiset (corresponding to nodes at the bottom of the d-edge)
and that the removal of these elements from the multiset corresponds to closing the corresponding

d-edge.

LPMG nonterminals are used to encode the current ENA and the productions for each ENA are
determined by the context of ENA in its elementary d-tree. That is, the productions depend on
whether the node is at the top of a d-edge, top of an i-edge, or a substitution node. Productions cor-
respond to inserting or not inserting within a d-edge, substituting a component, or sister-adjoining
a d-tree. When we apply a production corresponding to the insertion of some ENA we must check
that the ENA does not appear in the SIC that is associated with some open d-edge. As every open
d-edge is represented in the multiset by the ENA of the node at the bottom of the d-edge, SICs can
be checked as follows. First we define the priority relation so that whenever the multiset contains
an ENA at the bottom of some open edge it is not possible to select from that multiset an ENA that
is in that d-edge’s SIC. Second, not only is the current ENA encoded by the nonterminal symbol
but we also store it in the multiset. Whenever a production for some ENA is applied we also specify
that the corresponding ENA must be removed from the multiset. Thus, it is not possible to use



a production for an ENA whose positioning at that point in the derivation violates a SIC. This
explains the apparent redundancy in productions where an ENA is encoded both in the multiset
and in the nonterminal.

One way to understand the LPMG productions obtained in the conversion is to view derivations
top-down. The multiset will record the next node in an elementary d-tree to be visited in a top-
down traversal of the derived d-tree. While LPMG nonterminals encode the nodes being visited,
their productions insist that their ENAs are present in the multiset to ensure that they can be
visited in the derivation.

Before giving details of the conversion, we note that for explanatory purposes we have slightly
simplified the initial presentation of the construction. Two complications are discussed at the
end of the section. Given a DTG G = (Vy, Vs, 5, D) we construct an equivalent LPMG G’ =
(V&, Ve, Vg, S, 00, P, <). Let Vg be the set of ENAs of trees in D whose members will be denoted
n with or without subscripts and primes. Let Vi = Vy U{ 5"} and Viyy = Ve U {0y }. p is defined
such that if 7, is the d-edge daughter of some elementary node and 7, is in the SIC associated with
this d-edge then the pair (7, 7,) is included in p. P is defined as follows.

Case 1: As the root of a derived tree can correspond to the root of any elementary d-tree
that is labelled by S, for each 7, labelled by S5 that is the root of some d-tree in D
include the following in P.

S[ 00+ — m [ -]

Case 2: For each terminal node 5 that is labelled z include the following in P.
nn] — @

This production ensures that when a terminal node is visited the only ENA in the
multiset that can be present at this point must be that of the terminal node.

Case 3: For each n and 7, such that 7, is the root of an elementary d-tree that (according
to the SAC at ) can be left-sister-adjoined at 7 include the following in P.

nfn - = melnenl--n -]

For each 7 and 7, such that 7, is the root of an elementary d-tree that (according to
the SAC at 77) can be right-sister-adjoined at 1 include the following in P.

nl-n-1—nl-n-n(n]

As sister-adjunction is being considered, we ensure that the multiset associated with 5
is not distributed to the element in the right-hand-side of the rule that corresponds to
the d-tree being sister-adjoined.

Case 4: Suppose that nis a node in some d-tree in D with i-edge daughters 7y, ...,n, where
k> 1.

Include the following productions in P.
wbon-d =l ]l ]

Here the multiset is to be distributed (in any manner) amongst the children, indicating
that the open edges can be closed in the subtree below any of them. Viewing the
derivations bottom-up this indicates that the components that are to appear above the
individual children nodes must appear above the parent (connected by i-edges).

Case 5: Suppose that 7, is a node in some d-tree in D with d-edge daughter ;.



If n, and 7, are labelled by the same symbol then include the following production in
P.

m[..m ] N 7717["7717 ]

For each i that is labelled with the same symbol as 7, and is the root of some elementary
d-tree in D include the following in P.

el e ] — nl--m,ms -]

For each n that is labelled with the same symbol as 7;, is the root of some elementary
component but is not the root of a d-tree include the following in P.

Nelo=me ] — ml o -]

The first production corresponds to the case where a component is not inserted within
this d-edge. The latter two productions consider insertions at this d-edge. Note 7,
is added to the multiset at this point indicating that it will be the next node in its
elementary d-tree that is to be visited. When the component (with root 7) that is to
be inserted at this point is not the topmost component of its elementary d-tree (see the
third production) then 7 must be found in the multiset and should not be added. this
constitutes a guess that #n is in the multiset, but note that it will only be possible to
apply a production for the nonterminal 7 if this is the case. On the other hand, when
the component is the topmost component in its d-tree (see the second production) the
multiset at this point in the LPMG derivation will not record this instance of this tree
(as this is where we are considering the embedding of the d-tree for the first time),
hence 7 is added to the multiset.

Case 6: Suppose that 1 is a substitution node in some d-tree in D.

For each 7, that is labelled with the same symbol as 7 and is the root of an elementary
d-tree in D include the following in P.

For each 7, that is labelled with the same symbol as 7, is the root of an elementary
component but not the root of a d-tree in D include the following in P.

i) — el

Any component (whether the topmost of an elementary d-tree or not) can be substituted
at a substitution node provided their labels match. As in Case 5, we need to consider
whether the component is the topmost component of its elementary d-tree. Thus, in
second production the multiset is assumed to include an instance of 7,.

As mentioned, the above construction has been oversimplified slightly. In order to incorporate
the substitutability conditions described in the definition of DTG derivations we must check that
each elementary d-tree is involved in only one subsertion. This can be done by using two forms of
multiset symbols for each ENA: one that is used for nodes in d-trees above the node that will be
substituted; and the other for nodes below the substituted node. The substitutability constraint
can be enforced by allowing substitution only with nodes encoded by the first form of ENA and by
changing from the first to the second form of ENA at this point.

A second complication concerns the enforcement of SICs. The definition states that an ENA that
is in a SIC at a d-edge between 7, and 7, cannot be place properly within the path from 7, to ;.
Since the root node 7 of a component that is inserted immediately below 7, will be merged with
7, it should not be possible for the SIC at the d-edge from 7; to 1, to block the insertion of 7

10



and, in addition, it should not be possible for the SIC at the d-edge immediately above 1 (when 7
is not at the root of a d-tree) to block the positioning of 7;. However, in the above construction,
7, will be in the multiset at the point that the production for 7 is applied and 7 could be in the
multiset when the production for 7; is applied. The construction must be altered so that we do
not put 7, into the multiset until after we have applied the production for n. This can be done
by temporarily recording 7, in the nonterminal. Similarly, in the above construction, it is possible
that the selection of 7, may be blocked by the presence of 7 in the multiset. Thus, we must remove
7 from the multiset before attempting to applying the production for 7,. Again, this can be done
with extra nonterminals that temporarily record the identity of 7.

6. Earley-style DTG Parsing

Let the components of the LPMG G, be G = (Vy, Vi, Vi, S, 00, P, p) and the input string be a;...a,.
The algorithm completes the n + 1 item sets Iy, ..., I,. We assume that the DTG from which G
has been constructed is lexicalized.

Items in item sets have the form ((wy — wy - wq, my), (M2, 7)) where wy — wywy is a LPMG produc-
tion, ¢ is the index of the item set that introduced the production; and m, and m, are multisets. In
a LPMG production such as A[--o0 --] — Ay[-- 01 -] ... A[-- 0p --] there is no restriction on how the
multiset associated with the nonterminal on the left is distributed among the nonterminals on the
right. Rather than considering all possible distributions of the multiset in the predictor step, we
pass the the entire multiset to the first subtree and propagate the multiset through the remaining
subtrees in a top-down, left-to-right traversal of the derived tree. The underlying idea is that in an
item ((wg — wy - wa, M), (Mo, 1)) € I; the multiset ms is the multiset at the time that we introduce
the dotted rule wy — -wyw, into item list I;, and m, is the current value of the multiset that is the
remainder to be passed onto subtrees not yet considered (corresponding to parts to the right of the
dot in this dotted rule).

Initialization:

if S[-og ] mweP
then ((S[ Oo ] — W, ¢)7 (007 O)) € I
Note, initially the the multiset contains just oy. As the use of this rule will cause it

to be removed, the empty multiset will be the current multiset that is passed to the
descendant.

Prediction:

1. if (wo —wy - Al 01,0y 0p Jwa, my), (Ma, §)) € I;

Alvo] - weE P,

o is p-selectable from m; @ o, @ ...H o and

size(my @ o1 ®...60,50)<n+1

then ((A[-o-]—= w,m @o®...0060),(my,1)) € L.

As indicated above, m; is the current value of the multiset, whereas the multiset to be
passed onto the first descendant is obtained by adding o4, ...,0 to m; and removing (one
occurrence of) ¢ from the resulting set. Note that the condition that o is p-selectable from
my P o, @ ...0P o, ensures that o is in m; P o1 B ... P 0. Due to the assumption that
the underlying DTG is lexicalized we limit the application of this predictive step to situations

where the number of elements in m; G o, &. . .Bo, S0 does not exceed n+1 (for an explanation
of this see Section 7).
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2. if (wo — wy - Aloy, ..., 0w, my), (Mg, 7)) € I
Al-o-] - weP,
o is p-selectable from ¢ G oy B ... P o, and
k<n+1
then ((A[--0- ] = w, 0B o1 B ...B0rS0),(my,1)) € .
In this case we do not feed the entire multiset m; into the new production since the new
production is “called” with a multiset containing just oy,...,oy.

Scanning:

1. if (wo — wy - A+ 0 --Jwa, my), (Ma, 7)) € I
Alo] — a € P and
a4 = Qjyq1

then ((wo — wiAl--0 -] wa,my), (M2, ) € Lig:.

2. if ((wo — wy - A[-- 0 --Jwa, m1), (M2, 7)) € I; and
Alo] —e€ P

then ((wy — wiAl--0 -] wa,my),(Ma,j)) € L.

3. if (wo — wy - AloJws, m1), (ma, 7)) € I,
Alo] — a € P and
a4 = Qjyq1

then ((wy — wiAlo]-ws,my), (M2, ) € Lits.

4. if ((wo — wy - Alo|ws, my), (M2, j)) € I; and
Alo] —e€ P

then ((wy — wiAlo]-ws,my),(ms,j)) € 1.

Completer:

Loif ((A[U] —>w-,m1),(m2,j)) € I;
my E Moy,
(wog = wy - A+ 01, ..., 04 -+|wa, ma), (M3, 1)) € I,
o is p-selectable from ms, @ oy @ ... F o and
size(me @ o1 ® ... 00, S0)<n+1
then ((wo — wiAl--01,...,08 ] -wa,my), (m3,1)) € .
Note that ((A[-- 0 -] — w+,my), (M2, 7)) € I; means that before we considered the use of the
rule the multiset was m,. Part of this has been used up in the derivation from A and the
remainder is m;. This means we need to verify that m; C m,. Furthermore, because the use of
this rule must have been predicted earlier (when we were considering /;) then we must expect

the presence of an item in [; containing a dotted rule of the form wy — wy-A[-- 01, . .., 04 --|ws.
In particular, the completed item expects that the current multiset in that item must be m..

2. it ((A[U] _>w'7¢)7(m17j)) EIiv
((wo — Wy A[Ub .- -yUk]Wfb ml), (m27 l)) € Ij7
o is p-selectable from ¢ @ o, B ... P o, and
k<n+1
then ((wo — wiAloy,...,0] -wa,my), (Mo, 1)) € ;.
In this case we are moving the dot over a nonterminal that is associated with a fixed multiset.
Thus, the multiset associated with the completed production must be empty and the multiset
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my remains intact since it was not fed into the completed production (see case 2 of the
predictor step).

The input is accepted if ((S[-- 00 -] — w-, 9),(00,0)) € I,.

A LPMG parse forest can be extracted from the completed item sets in the usual way. Since it is
possible to recover the derivation graphs, and therefore SA-trees, of the underlying DTG from the
corresponding derivation tree of the constructed LPMG grammar the LPMG parse forest provides
a reasonable encoding of the set of DTG derivations for the input string. In one respect, the LPMG
parse forest is particularly compact since there is a one-to-many mapping from LPMG derivation
trees to DTG derivation graphs. When reconstructing a DTG derivation graph from a LPMG
derivation tree it is necessary to establish which occurrences of ENA’s (occurring in the multisets at
nodes of the LPMG derivation tree) should be associated with the same occurrence of a d-tree in the
DTG derivation. Because no distinction is made between different occurrences of the same multiset
symbol in multiset there may be several ways of associating occurrences of a multiset symbols
at different nodes in the derivation tree. Thus, it is possible that for a given LPMG derivation
tree there will be several ways of making the correspondence of occurrences of multiset symbols
to occurrences of elementary d-trees. This is attractive because for every possible way of making
the correspondence there will be a legal DTG derivation. Thus, a single LPMG derivation tree is
compactly encoding a set of DTG derivations. The issue of parse forests will be discussed at greater
length in the full paper.

7. Complexity Analysis

We now discuss the time complexity of the algorithm. We assume that the DTG from which the
LPMG was constructed was lexicalized. We will only be interested in the dependence on the length
of the input string. The item sets contain tuples of the form ((wo — w; - wq, my),(Mma,t)) where
wy — wiwy is a production, m; and ms are multisets, and 0 < ¢ < n where n is the length of
the input. Clearly, the number of items in a item set depends crucially on the number of possible
multisets. Since we assume that the underlying DTG grammar is lexicalized the number of open
d-edges at any node in the derived tree is bounded by the length of the input string. Although
the derived LPMG is not lexicalized, the construction presented in Section 5 is such that the size of
any multiset used in a derivation by a LPMG thus constructed is bounded by n + 1. The number
of such multisets is bounded by O(n*), where is k is the total number of d-edges in the elementary
d-trees of the grammar. Thus, the number of items in a item set is bounded by O(n?**1).

The completer step dominates the running time of the algorithm since for each of the O(n?**!)
items in I; we consider O(n?**1) items in I;. Thus the running time of this step is O(n***?). Since
there are n + 1 item sets the total worst-case running time of the algorithm is O(n**?). Note
that the running time of the recognizer is sensitive to the number of open d-edges that arise in
derivations and that in some applications (such as with grammars of English) this number may be
very small (perhaps as low as 1 or 2).

8. Conclusion

We have presented an Earley-style parser for DTG. In future work, we intend to make more explicit
the derivation of both the SA-tree and the full DTG derivation structure from the LPMG derivation.
We also intend to follow the work of Lang (1994) and investigate how the LPMG parse forest can
be obtained from the original grammar by grammar specialization.
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