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Abstract

Characterizing Mildly Context-Sensitive Grammar Formalisms -

David J. Weir

Supervisor: Aravind K. Joshi

This thesis involves the study of formal properties of gra.mmétical formalisms
that are relevant to computational linguists. The formalisms which will receive the
most attention share the property that they are highly restricted in their genera-
tive power. Recent reseéxch suggests that Context-Free Grammars (CFG’s) lack
the necessary expressive power on which to base a linguistic theory. This has led
computational linguists to consider grammatical formalisms whose generative power
exceeds CFG’s, but to oﬂy a limited extent. We compare a number of formalisms
on the basis of their weak generative capacity, as well as suggesting ways in which
they can be compared on the basis of their strong generative capacity. In particular,
we consider properties of their structural descriptions (or tree sets); and fhe types
of dependencies (nested, croésed, etc.) that can be exhibitcd by each formaﬁsrﬁ.

Several formalisms that are notationally quite different (Tree Adjoining Gram-
‘ma.rs, Head Grammars, and Linear Indexed Grammars) have been shown to be
weakly equivalent. We show that Combinatory Categorial Gfammars are weakly
equivalent to these formalisms. The class of languages generated by these formalisms
can be thought of one step up from CFG’s, and we describe a number of progressions
that illustrate this.

Tl_ne string languages generated by TAL’s, HL’s, CCL’s and LIL’s exhibit limited
crossed-serial dependencies in addition to those produced by Context-Free Gram-

mars (nested and serial dependencies). By formalizing these crossed-scrial depen-
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dencies and their relationship with the nested dependencies produced by CFG’s we
define an infinite progression of formalisms.

Our work on structural descriptions_leads us to characterize a ciaés of formalisms
called Linear Context-Free Rewriting Systems (LCFRS’s), which includes a wide
range of grammatical formalisms with restricted power. The systems in thié class
have context-free derivations, and simple composition operations that are linear

and nonerasing. We prove that all members of this family generate only semilinear

languages that can be recognized in polynomial time.
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Chapter' 1
Introduction

This dissertation involves the study of formal properties of grammatical formalisms,
with particular emphasis on those properties that are relevant to computational
linguists. The formalisms which will receive the most attention share the property
that they are highly restricted in their generative power. We begin by very briefly
explaining the rationale behind the use of constrained grammar formalisms.
Chomsky (18, 16, 15]l introduced the notion of Context-Free Grammars (CFG’s),
yet he argued [18, 17) 'tha.t natural 1'a.nguages fell well outside the class of Context-
Free Languages (CFL’s). For some time after this, relatively little attempt was made
to develop fully explicit grammatical theories that could be presénted in a mathe-
matically precise grammar formalism. However, recently a number of theories have
been developed using grammar formalisms that have reasonably clear definitions,
and this has led to study of their mathematical and computational properties (for
example, [8]). Several researchers have made use of grammar formalisms that have
close to context-free power, questioning the validity of arguments that considerably

more power than CFG’s is needed to describe natural languages (see, for exam-



ple, [25, 64, 62]).

Gazdar et al [26] developed a detailed linguistic theory called Generalized Phrase-
Structure Grammars (GPSG), using a formalism whose weak generative power was
equivalent to CFG’s. There is linguistic evidence that certain natural languages are
not context-free [12, 74, 20]. Several other formalisms with slightly more power than
CFG’s that include these cases have also been introducéd, and used to implement
various linguistic theories: Head Grammars [62], an extension of CFG’s; Combi-
natory Categorial Grammars [2, 78, 75, 76], an exfension of Classical Categorial
Grammars [5] (a formalism known to be weakly equivalent to CFG’s [7]); and Tree

| Adjoining Grammars (42, 36], a tree manipulating system. This investigation of the

extent to which constrained grammar formalisms can describe aspects of natural
languages leads to a greater understanding of where the class of natural languages
falls.

There is a second benefit to be gained from this enterprise; that of allowing
the implementation of more concise linguistic theories. Although these formalisms
have constrained generative power, not all of the grammars expressible in these for-
malisms generate plausible natural languages. Thus, an a.déqua.te linguistic theory
that used one of these formalisms must also include a number of rules, or Iingﬁis-
tic stipulations, .concerning which grammars are well-formed. Use of a completely
unconstrained grammar formalism leaves the entire linguistic theory in the form of
such stipulations. One of the advantages that may arise from use of a more highly
constrained grammar formalism (when the constraints take the appropriate form) is
that fewer stipulations are needed, since some of them will fall out of the constraints
in the grammar and other stipulations. This has been demonstrated in the case of

the TAG formalisms in several ways, as discussed in [49, 48]. In [49] it is shown that
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if certain well-formedness constraints on simple sentences are stipulated, in partic-
ular that they do not begin with muitiple wh’s, then extraction from -wh—island.s is
predicted to be ungrammatical. [48] ex;ends this resﬁlt by giving an account of sev-
eral violations of subjacency using a slight variant of the original TAG formalism.
These finding suggest that the effect c;f subjacency falls out of the well-formedness
of the basic structures of the grammar and the adjunction operation. In [49] it is
also shown that by giving a simple statement of the Empty Category Principle as a
well-formedness constraint on simple sentences, it is not necessary to independently
stipulate the so-called Condition on Extraction Domains. |

Having given some justification for the use of a grammar formalism with re-
stricted expressive power, we turn to the issue of identifying what kinds of constraints
are appropriate. In using a grammatical for_ma.lism, linguists wish to capture some
of their intuitions about linguistic constraints through limitations in the descriptive
power of the formalism. To make informed choices about suitable formalisms, they
require that formalisms be characterized in a Wa.y>tha.t relates formal properties to
linguistic intuitions. There is a need to bridge the gap between the kinds of prop-
erties that are typically used to characterize a formalism mathematically, and those
requirements of a formalism that are meaningful and relevant to a linguist.

An example of such an attempt involves the so-called “constant growth prop-

erty” [36, 11].

L is constant growth if there is a constant ¢y and a finite set of con-
stants C such that for all w € L where |w| > ¢g there is a w’ € L such

that |w| = |w’| + ¢ for some c € C.

This mathematical property is intended to be an approximate characterization of



the linguistic intuition that sentences of any natural language are built from a finite
set of clauses of bounded structure using certain simple linear opera.tion's. While the
constant growth.property is too weak to capture this intuition fﬁlly, since it refers
only to strings lengths, it represents an interesting attempt to formalize a linguistic
intuition. The slightly stronger property of semilinearity may come closer, but is
still only an approximation of what is really intended.

The notior; of constant growth, together with polynomial parsability and the
ability to produce “limited” cross-serial dependencies, are three conditions that
Joshi [36] ;13ed to give a2 approximate characterization of a class of mildly context-
sensitive grammar formalisms. This characterization is a useful first step in
evaluating a formalism’s suitability. However, with the exception of the condition
on dependencies (which is not defined precjsely), this characterization is solely‘ in
terms of string languages, or weak generative capacity. This is also true of almost all
formal characterizations of grammar formalisms. While weak generative capacity is
important, it would be useful to be able to formalize other aspects of a formalism’s
descriptive power that may not necessarily be expressible merely as properties of
the striﬁg languages. Such aspects of a formalism are often referred to as its strong
generative capacity. The problem with comparing the strong generative capacity of
different formalisms and making general statements about how the strong generative
capacity should be limited is that such criteria should be applicable to a range
of radically different systems. Such criteria have been difficult to develop as, for
example, the objects comprising the grammar (e.g., productions or trees), and the
structural descriptions (e.g., trees, graphs) could be very different notationally. Part
of the work described in this thesis is an attempt to develop criteria for evaluating

the strong generative capacity of grammar formalisms. This involves elaborating



Joshi’s criteria, and applying them to a range of grammar formalisms.
We now give an outline of this document, and show how each of the chapters

are related.

1.1 Outline

Chapter 2 contains the definitions of several grammar formalisms: Context-Free
Grammars, Head Grammars, Tree Adjoining Grammars, Indexed Grammars, Linear
Indexed Grammars, and Multicomponent Tree Adjoining Grammars.. Particular
~ attention is paid to a comp;rison of the class of structural descriptions or tree
sets that they can produce. We focus on their derivational process as reflected
by their deriv:a.tion trees and find that a number of the fonﬁa.lisms have similar
properties. In considering the derivational process of a variety of formalisms that
are mildly context-sensitive, and comparing them with others that are not, we may
have come closer to formalization of the linguistic intuition behind the constant
growth property.

The discussion of tree sets in Chapter 2 points to the existence of a range of new
mildly context-sensitive formalisms. In Chapter 3 we define various progressions of
grammar formalisms, and associated progression of string automata that appears to
form natural progressions from Regular Languages to CFL’s to TAL’s, and beyond.
In an attempt to understand better the notion of “limited” crossed dependencies,
we investigate how to.forrnalize string dependencies. We do this by describing single
languages exhibiting all of the dependencies produced by the formalism, and again
defining a progression of language classes. Each of the different progressions that

are described in this chapter arise from the ability to formalize certain aspects of the



strong generative capacity of previously defined formalisms. We can then maintain
what appear to be the important similarities while generalizing certain differences.

In Chapter 4 we define a class of grammar formalisms that appears to resemble
the class of mildly context-sensitive Grammar Foﬁﬁsm. This class contains sev-
eral of the formalisms considered in Chapter 2, and Chapter 3. We give details of
how grammars of various formalisms can be expressed within this framework. We
then consider properties of the string languages of members of this class, showing
that they are semilinear languages, and that they -a.rera proper subclass of the lan-
guages recognizable in polynomial time. Much of the contents of this chapter were
first presented in [86].
' Chapter 5 focuses on Combinatory Categorial Grammars. \A version of Catego-
rial Grammars is described that is shown to be weakly equivalent to Tree Adjoining
Grammars, Head Grammars, and Linear Indexed Grammars. We discuss two ex-
tensions to this system and show that they increase its generative power. At the end
of this chapter we briefly examine the tree sets prodﬁced by CCG’s, and consider
some issues associated with the representation of their derivations. .

Chapter 6 summarizes the main contributions of this thesis and suggests topics

of further research that arise from this work.



Chapter 2

Grammar Formalisms and Tree

Sets

The study of the relationship between different grammar formalisms has almost al-
ways been in terms of weak generative capacity. While this has been valuable, our
goal in this chapter is compare aspects of formalisms that have to do with tﬁe more
important property of “strong” generative ca.i;a.city. ‘We considér a number of for-
malisms and for each we examine the structural descripi:ions that are produced, and
focus particularly on the derivation process. The structural descriptions produced
by CFG’s take the form of phra.se;-structure trees. These trees provide an analysis of
the sentence on the frontier, showing how it is decomposed into its constituents. Not
all of the formalism that we will be discussing generate such structural descriptions.
We consider tree sets that have annotated nodes, in which the yield of the tree can
not simply be read off the frontier in the usual way. Some of the systems that we
discuss in this chapter are not string manipulating formalisms. In some cases the

structures being manipulated at the object level are themselves trees. In such cases,
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two tree sets can be associated with a grammar: the object level tree set that the
grammar generates, and set of derivation trees that encode the derivation process.

We consider properties of the tree sets associated with CFG’s, Head Gram-
mars (HG's), Tree Adjoining Grammars (TAG’s), Indexed Grammars (IG’s), Linear
Indexed Grammars (LIG’s), and Multicomponent TAG (MCTAG’s). We examine
both the complexity of the paths of trees in the tree sets, and the kinds of dependen-
cies that the formalisms can impose between paths: two properties that are not only
linguistically relevant, but also appear to have t_:ompﬁta.tiona.l importance. We find
that the different formalisms produce a variety of families of tree sets. However, it is
striking that several of the formalisms appear to share certain common properties.
These similarities become clear when examining the derivation trees produced by
each formalism. Derivation trees are very useful since they help us overcome the fact
that we are comparing formalisms that are notationally very different. Derivation
trees are very abstract structures that depend only indirectly on the details of the
formalism’s composition operation, and the structures being manipulated.

As we show, a number of the formalisms, with a fairly wide range of weak gener-
 ative power, can be grouped together as having identically structured derivation tree
sets, derivation tree sets that are similar to those of CFG’s. All of the differences
- between the formalisms arise from the way in which their derivation trees must be
interpreted in order to determine the structures that were derived in the derivation.
This close relationship between some of the formalisms suggests that by generaliz-
ing the notion of context-freeness in CFG’s, we can define a class of grammafical
formalisms that manipulate more complex structures. In Chapter 4, we outline how
such a family of formalisms can be defined, and show that like CFG’s, each mem-

ber possesses a number of desirable properties: in particular, the constant growth



property and polynomial recognizability. [86] includes some of the material in this

chapter.

The first characteristic of tree sets that we will be examining is the path set of

a tree set.

Definition 2.0.1 The path set P(v) of a labeled tree v is the set of
strings that label some path from the root to a leaf node of 4. It can be

defined by induction as follows.

e If 4 consists of a single node labeled by a symbol X, then
P(n)={X}

o If the root of 4 is labeled by X and has k children dominating

subtrees v,...,7: then

For a tree set T _

2.1 Context-Free Grammars

Definition 2.1.1 A CFG, G, can be written as G = (Vy, V7, S, P)

where
Vn is a finite set of nonterminal symbols
Vr is a finite set of terminal symbols

Vn and Vr are disjoint sets



S, the start symbol, belongs to Vy and

P is a finite set of productions of the following form:

A—>a aE(VNUVT)-,AEVN

The set of derivation trees (phrase-structure trees) produced by a CFG, is called
a local set. From Thatcher’s work [79, 80], it is obvious that the path set of every
local set is a reg'ula.f language!. Since {:his property of local sets is important in
the context of this chapter, we will show how to construct a nondeterministic finite

state machine that recognizes the path set of a given CFG.

Suppose we have a CFG, G = (Vr, Vy, S',Pj with- tree set T(G). Let us
define a NFA, M = (Vr U Wn, @, gs, F, 6) such that L(M) = P(T(G)).
Let us assume that G is in Chomsky Normal Form. Let the set of states
@ =1{gx|X € Vr, or X € Vs }. Let the set of final states F = {q, |
a € Vr}. For each production A — BC € P we let gg € §(q4,A) and
gc € 6(ga,A). For each production A — a € P we let g, € §(ga,A). If
S — € € P then include g5 in F.

CFG’s are so named because the choice during a derivation of which production
is used to rewrite a nonterminal is entirely independent of the derivation context.
This choice of rule depends only on the identity of the nonterminal (which comes

from some finite set).

IThatcher actually characterized recognizable sets: for the purposes of this discussion we do
not distinguish them from local sets. '
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2.2 Head Grammars

Head Grammars (HG's), introduced i)y Pollard [62], is a grammar formalism that
manipulates pairs of strings. Not only is concatenation of these pairs possible, but
head wrapping can be used to split a string and wrap it around another string.
In fact, there are many other operations over pairs of strings. Some, but not all, of
these operations can be simulated by the concatenation and wrapping operations of
HG’s. For an example see Chapter 4. The productions of HG’s are very similar to
those of CFG’s except that tﬁe operation used must be made explicit.

Pollard [62] discusses the linguistic relevance of HG’s, and a number of math-
‘ematical properties of Head Languages (HL’s) are given in [65]. HG’s are weakly
equivalent to a number of other grammatical formalisms. It has been shown in [87,
43] that HG’s a.nd TAG’s are weakly equivalent. In [89] the linguistic implications of
this result are discussed. In [82] HG’s and TAG’s were proved to be weé.kly equiva-
lent to a linear version of Indexed Grammars (defined in Section 2.4). In Chapter 5,
we show the equivalence of Combinatory Categorial Grammars with these systems
(also discussed in [88]). |

One of the differences between HG’s and CFG’s is the ability of HG’s to provide
an account of discontinuous constituents in natural la.nguagés. Suppose that we are
interested in giving an analysis of a string in which, on the basis of certain criteria,
we decompose the string into parts one of which is not a substring of the original
string. For example, the phrase “easy problem to solve” should perhaps be broken
down into the constituents: “easy to solve” and “problem”. The constituent “easy
to solve” does not form a continuous substring of the final phrase, and is therefore

discontinuous. In HG’s, unlike CFG’s, it is possible for a nonterminal to derive a

11



discontinuous constituent such as this since the elements of the pair of substrings
derived by a nonterminal need be adjacent in the derived string. Work on HG's has
formed part of the motivation for the cievelopment of a system called Head-Driven
Phrase Structure Grammars [63].

The definition of HG's that we use here differs slightly from the original definition
given in [62], and we believe it to be a more uniform system than the original?. In

our definition, we use split strings, which are written a pair of strings.

Definition 2.2.1 A HG, G, can be written as G = (Vn, V7, S, P) where
- Vn is a finite set of Inqntermina.l symbols |
Vrisa ﬁnite set of terminal symbols
Vn é.nd Vr are disjoint sets
S, the start symbol; belongs to Vi and

P is a finite set of productions having one of the following forms:

A— Ci(ay,...,an) wherel <i<n
A - W(ay, )
where A € Vy and ay,...,a, € Vy U (V5 x V)

The operations C; are concatenation operations, and the operation W is a wrap-
ping operation. The string language L(G) generated by a HG, G is defined as
follows.

L(G)= {wywy | § %" (wlvwz)}

2Pollard’s original definition used headed strings or strings which (unless empty) contained
a distinguished terminal called the head. The formalism suffered from the problem that the
composition operations were partial functions. The problem arises from the fact that Pollard
allows use of the empty string, which has no head. Thus, the composition functions were undefined
whenever the headed empty string was supposed to contribute its nonexistent head to the resulting
headed string.



The derives relation is defined such that 4 =;:- (wy, wy) if the following holds.
A— flaq,...,on) €P
and fof each 1 <1 < n, either o; = (wi;, wi2) or a; => (wiy, wiz2) and
F{wr1,01,2) 5+ -y (Wn 1, Wn2)) = (wy,ws)

The function f will be one of the folldwing functions.

| Ci({wy 1, W1,2) 5 e ey (Wids Wia) s o vy (Wng, Wa2)) = (1w Wi, Wig - Wa 1 Wa o)
W (w13, w12) s (wa, wa2)) = (wiaw2y, wz.z_wl.z)

Example 2.2.1 | Consider a HG generating {a"b"c®d® |n 2 0}.

S — Ci({e,€)) S — Cy({a,€),T,{d,€)) T — W(S,{b,c))

We can represent derivations of HG’s with trees thé.t encode the use of produc-
tions in a very similar way to the derivation trees for CFG’s. For example, Figure 2.1
shows a derivation tree of the above grammar for the string aabbcedd. Each internal
node is annotated by the operation (concatenation or wrapping) used to combine
the pairs of strings that are derived by the daughters of that node.

Notice that HG derivation trees differ from phrase-structure trees. We can not
simply read the derived string off the frontier of the tree from left to right (unless
only concatenation operations were used). The increased complexity of the string
languages of HG’s arises not from derivation trees with. more complex structure,
but from a more complex “yield” function. CFG’s can be seen as a special case of

HG’s in which only concatenation operations are used. The HG derivation process

13



S C2

T~

<a,e> Tw <d,e>

N

S <b,c>
<a,e> Tw | <d,e>

N

SCi <b,c>

<t,E>

Figure 2.1: HG derivation tree

is essentially the same as tha_t of CFG’s. At each stage in the derivation a nonter-
minal is rewritten according to a production that matches that nonterminal in the
grammar. .In fact, derivation tree sets generated by HG’s are similar to those of
CFG’s. Although there is an infinite number of operations (C; for each 7 > 0), the
number of operations in any grammar is finite. This annotation can be incorporated

into the nonterminal labeling the nodes. Thus, the derivation trees of HG’s are local

sets, i.e., identical to those of CFG's.

2.3 Tree Adjoining Grammars

TAG’s were first introduced in Joshi, Levy and Takahashi [42] and Joshi [36]. Certain

changes have been made to the formalism since its inception (primarily concerning
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how local constraints are specified). The definition given here is derived from that
given in Vijay-Shanker and Joshi [85], Joshi [38], and Vija.y-Sha.nker-[82]. TAG’s
differ from string rewritiﬁg systexﬁs such as CFG’s in that the& generate trees.
These trees are genefated from a finite set of so-called elementary trees using the
operation of tree adjunction. There are two types of elementary trees: initial and
auxiliary. Linguistically, initial trees correspond to nonrecursive phrase structure
trees for basic sentential forms, whereas auxiliary trees correspond to modifying
structures or complements. The use of these trees in a linguistically meaningful way
has been discussed in a number of recent papers [51, 50, 48, 69, 40, 49, 52, 34]. The
use of TAG’s in generation is discussed in [39]. A number of mathematical results
concerni‘ng the class of Tree Adjoining Languages (TAL'’s), (including certain closure
properties, an upper bound for string recognition, and a string automaton) are given
in [82]. A 'parsing algorithm based on the Earley algorithm for CFL’s is discussed
in [71, 70]. The complexity of their paraﬂel recognition complexity is discussed

in (58]. TAG’s have been embedded in a unificational framework in (82, 83].

Definition 2.3.1 A TAG is a 5-tuple G = (Vi, Vi, S, 1, A) where
Vy is a finite set of nonterminals, |
Vr is a finite set of terminals,
Vn and Vr are disjoint sets
S is a distinguished nonterminal,

I is a finite set of initial trees and

A is a finite set of auxiliary trees.

Initial trees have the properties that their internal nodes are labeled by nontermi-

nals; leaf nodes are labeled by either terminals or the empty string; and the
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root node is labeled by S.

AN

w

Auxiliary trees have the properties that their internal nodes are labeled by non-
terminals; there is exactly one node on the frontier (the foot node) which is
labeled by the same nonterminal that labels the root node; all other leaf nodes

are labeled by either the empty string or a terminal.

A
Wi A w2

The set 1 U A is the set of elementary trees. There is one operation adjunction
with which trees can be composed. Let 7 be some node labeled A in a tree v at
address a,,; Let 4’ be a tree with root and foot labeled by A. When 4’ is adjoined
at 7 in the tree 4 we obtain a tree 4”. The subtree under 7 is excised from «, the

tree v’ is inserted in its place and the excised subtree is inserted below the foot of

16



~'. We say v" = 7[ay, 7).

. S '
/\ A “ A
. ‘7”: /\

A wy A wjp wi A wy
i | AN
w

We denote the adjunction of several trees «,,...,4k into a tree « at distinct addresses

‘ay,...,ak, respectively, by -~

¥ = vla;, ] .. [ar, ]

The definition of adjunction allows more complex cbnstra.ints to be placed on
adjoining®. Associated with each node is a selective adjoining (SA) constraint
;pecifying the subset of aﬁxilia.ry trees which can be adjoined at this node. Trees can
only be included in the SA constraint associated with a pa.rticula.xr node if their root
and foot are labeled with the same nonterminal that labels the node. A mechanism
is provided for ensuring that adjunction is performed at a node. This is done by
associating a obligatory adjoining (OA) constraint with that node*.

If the SA constraint specifies an empty subset of trees, then adjunction cannot
be performed at this node — we call this constraint the null adjoining (NA)

constraint.

31n the original definition of TAG’s constraints were associated with each tree. These constraints
were used to determine the context surrounding a node at which the tree could be adjoined [41].

4In the feature structure-based TAG system [82, 83] these adjunction constraints are implicit
in the feature structures and the success or failure of unification during the derivation.
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Given a TAG, G = (Wn, V1, 5,1, A), we define TAG derivations by induction on

the number of steps in the derivation.

e D%(y) = {4} for+v € IU A suchthat v has no OA constraints.

o DEF(w) is the set of all
' 71, 7] - -« [0k, Y]
where 4! € D&(v;) for 1 < i < k, and the auxiliary trees v,...,7x € A
are included in the SA constraint at the k distinct nodes of 4 with addresses
ag,...,a, respectively. Also, the address of each OA node of v must be

included in a,,...,a.

De(v) = U D)

i>0

If v is an initial (auxiliary) tree then ' € Dg(v) is referred to as a derived
initial (auxiliary) tree. Note that in the definition of Dg, derived auxiliary trees are
adjoined into elementary trees, and all derived trees are complete, in the sense that
they have no nodes with‘QA constraints.

The tree set of a TAG G is the set of trees

T(G) = | Ds(e)
a€l
The string language L{G) of a TAG G is
L(G) = {w | w is the frontier of some v in T(G) }

We now prove a theorem concerning the path sets of tree sets T(G) where G is

a TAG.

Theorem 2.3.1 For every tree set, T(G) of a TAG, G, there exists a
Context-Free language L such that L = P(T(G)).
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Proof: )

We will define a pushdown automaton, M, for each TAG, G, such that
L(M) = P(T(G)), where M terminates on final state, i.e., the stack
need not be empty. We give the construction, but omit the full proof of

the result.

I G=(Vn,Vr,5,1,A) then let M =(Q,L%,T,6,q0, Zo, F') where

Q = {90, 91}

F={a} E=VyuVr
1"={Zo,Zl}U{7xn|7€IU.A and n is anaddrasizry}_
We define é as follows.

e For each initial tree a € I let
(QO, (a, 5) Zy) € 6(qo, S, Zo)

e If there is a node in a tree v with address n, with no NA constraint,

and B can be adjoined at n then

(40, B+ ) (v,) € Blgone, (i)

We keep the node at which we adjoined on the stack so that if we
follow a path through £ from the root to foot, then we will be able

to return to 4 and continue from where we left off.

e If there is a node in a tree ¥ € I U A with address n, no OA
constraint, and the i** daughter of n, ni, is labeled X € Vy, then

if nz is an ancestor of the foot node of v

((101 (7’ ni)) € 6(‘101 ‘Y’ (77 n))
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otherwise, (ni is not an ancestor of a foot node) let

(g0, {7, n1)Z1) € 8(g0, X, (7,7))

Z; is used to indicate that the contents of the stack below it are to
be ignored. We do this because we are not following a path from
the root to foot of an auxiliary tree. When we reach the frontier of
~ we will have finished, we do not have to return to the tree that +

was adjoined at.

If there is a foot node in a tree 8 with address n, then let

(QO, 6) € 6(q0’ <, (ﬁs Tl))

We return to the tree into which 4 was adjoined.
If there is a leaf rode in a tree 4 with address n, and labeled by

a € V1 U {¢} then let

(QO, 6) € 6(QOs ¢, <7a Tl))

We have finished and will have left either Zg or Z; on top of the

stack. -

Finally, let

(q1,€) € 6(qo, €, Z1)
(q1, €) € 8(qgo, €, Zy)

Notice that in both cases we have changed to state ¢; which indi-

cates that we have finished.

O
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2.3.1 TAG Derivation Trees

Like the strings derived from a CFG or HG, the trees derived by a TAG do not
encode their own derivation history. They do not show how the components of the
grammar (in this case trees) were combined to produce the derived structure (the
derived initial tree). It is possible to construct TAG’s in which the same tree can
be derived in several ways, e.g., by using different subsets of the elementary trees.
This is a novel form of ambiguity that does not arise in the case of CFG’s where
each tree iidentiﬁes a single derivation. The only aspect of a CFG derivation that -
is not encoded in a CFG derivation tree is the order in which nonterminals were
‘rewritten. CFG derivation trees can be thought of representing a class of what are
usually regarded' as being entirely equivalent derivations.

In the case of CFG’s, the strings are the object level structures, and the deriva-
tion trees the meta level structures. In comparing the tfee sets of CFG’s with
TAG’s, we should look at TAG derivation trees (meta level structures). They should
indicate how intermediate (object level) trees were combined during the derivation
to produce the derived tree. Derivation trees of this form were first defined in [82].

We define derivation trees inductively on the length of the derivation of a tree
~. We want the symbols that iabel nodes in derivations to refer to elenﬁenta.ry trees.
Therefore, . we need to give explicit names to each of the elementary trees in the
grammar. Let the set of elementary trees | U-A ={7,-.-,7m } be given the names

{7, ,9m }-

e Ify;isan elementéry tree without OA constraints, the derivation tree consists

of a single node labeled ¥; where 1 <: < m.



e Consider the a derivation in which 4’ is produced as follows.

‘7’ = ;F[al"y]’.] s [akv 7;:]

where 1 < i < m and k > 1, and all of the OA nodes in v; are included in
D BYyee.qy Bk

For each 1 < j < k, let 4} be derived from the elementary tree v;;, where this

derivation is represented’by thé derivation tree T;. The root will be labeled

by ;-

Let T; be the tree T; except that its root is relabeled as <%, a_.,->. The

derivation tree for 4’ will be rooted with a node labeled by F; with k subtrees,

Ti,for1<j<k

Example 2.3.1 Figure 2.2 shows-a TAG derivation tree. It is best
to read this tree from the bottom up. A tree was derived from the
tree na.méd By by adjoinling tWo auxiliary trees named B; and B into
it addresses 12 and e. This derived tree is adjoined into the initial tree
named @ at addréss 1. The auxiliary tree B, is also adjoined into & at

address 3.

From the definition of TAG's, it follows that the choice of which derived trees
to adjoin into an élem_enta.ry tree is not dependent on the history of the derivation,
i.e., how the derived trees were produced. The choice is predetermined by a finite
number of rules encapsulated implicitly in the SA constraints associated at nodes
of elementary trees in the grammar. Thus, the derivation trees for TAG’s have the
same structure as local sets. For any TAG we can give a CFG whose tree set is
exactly the set of derivation trées for the TAG. In Section 4 we propose one such

scheme. As in the case of HG’s, derivation structures are annotated; in the case of
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—

<B1,1> <B4,3>
— T~

<B7,12> <P3.e>

Figure 2.2: TAG defivation tree

TAG’s, by the trees used for adjunction and addresses of nodes of the elementary
'trée where adjunctions occurred. In order to calculate the yield of a TAG derivation
tree, we can not simply read the frontier of the tree from left to right. In fact, the
terminals de not appear in the derivation tree, and the left to right ordering of nodes
is not relevant in determining the yield of the tree®.

In light of this discussion of TAG?s, it is perhaps worth noting that CFG’s can be
interpreted as being notationally very similar to TAG’s. We can think of a CFG as a
tree manipulation system, where a grammar consists of a finite set of trees, that are
combined with the tree substitution operation. Each of the trees in the grimmar will
have its root labeled by some nonterminal A having n children that are leaf nodes
labeled by nonterminals or terminals X,,...,X,. This tree directly corresponds
to the productioﬁ A — X,...X,. Any tree rooted by A can be substituted for a
frontier node in another tree that is also labeled by A. The string language of the
CFG is the set of strfngs labeling the frontier of trees, all of whose leaf nodes are

labeled by terminal symbols.

5Joshi (personal communication) has pointed out that there are cases (involving adjunction
into root and nodes) where derivations that appear to be equivalent have distinct derivation trees.
This suggests that the scheme given here may not be the best way of representing derivations.
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Thus, a CFG c;an be associated with a set of object level trees, and a set of
meta level (derivation) trees. Assuming that the derivation trees are analogous to
those of TAG’s, each node of the deriva.-tion tree could be labeled by the name of an
elementary tree and tree address. If this scheme is used then the derivation tree will
be essentially the same as the object level tree whose derivation it represents, except
that all of the object level’s terminal nodes will not be present in the derivation level
tree. Thus, unlike TAG’s, the family of derivation tree sets and object level tree

sets of CFG’s will be same.

2.3.2 Simple TAG’s

' In this section we consider how much hierarchical structure is needed in the elemen-
tary trees in order to get the full genefative power of TAG’s. This is a question that
was raised in [37, 42], but the results in thae papers do not apply to the current
version of TAG’s since the way in which adjunction constraints were defined differed

from the present definition.

Definition 2.3.2 Define a simple tree as one that has at most two
nonterminals on any path from the root to the frontier of the tree. A
simple TAG (STAG) is a TAG in which every elementary treé is sim-
ple. Simple TAG string languages (STAL’s) are the class of languages
produced by STAG’s.

Theorem 2.3.2 STAL = TAL

Proof: The inclusion of STAL in TAL is obvious since every STAG is
a TAG. To show the other inclusion; we first give a construction from a

arbitrary TAG to an equivalent STAG.
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Let G = (Viv,Vr, 5,1, A) be an arbitrary TAG. We construct a STAG
G' = ({S},Vr,5,I'A"). With every nonterminal node of the elemen- -
tary trees of G, there will bé ez;ctly one elementary tree in G'. Note
that S is the only nontermiﬁal of G’, so with each nonterminal node we

need only specify the OA and SA constraints.

Consider some node 7 of some elementary tree 7. Let there be a simple
tree 9n, in G’ whose root has an OA constraint if and only if 7 has an
OA constraint. For each A in the SA constraints of 5 include the name
of tree in G’ corresi:oonding to the root node of 8 in the SA constraints
of the root of v,. Suppose n has k children 7;,...,7% then the root of
4, will have k children. 75j,...,7;. For 0 < ¢ < k, the node 5] depends
on 7; according to one of the following cases. Note that when k& = 0 we
have a foot node, and the tree in G’ corresponding to this node will have

just one node.

o If n; is labeled by a terminal then 7! is labeled by the same terminal.

e If 7; is the foot node of v or n does not dominate a foot node and
t = 1 then 7, is the foot node of the tree and has an OA constraint
and a SA constraint that includes just the tree in G’ corresponding

to the node 7; of +.

e Otherwise, let 7/ have an OA constraint, with a SA constraint that
includes just the tree in G’ for 7; of 4. A, should include a node

below 7; labeled by the empty string.

Since the order of derivation makes no difference, let us assume that the

first phase of the derivation of a tree in G’ is the construction of derived
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trees corresponding to elementary trees of G' (we call these derived ele-
mentary trees). Once this phase is complete, the remaining derivations
in G and G’ are essentially identical. We now justify the claim that the
“derived elementary” trees of G’ a.nd‘fhe elementary trees of G are equiv-
alent. The elementary trees of G are constructed one level at a time by
trees in G'. There is exactly one tree in G’ for every nonterminal node of
G. OA constraints are used on all non-root nonterminal nodes of trees
in G’ to ensure that the entire elementary tree in G is produced. The;
constraints at a node 7 of a tree v in G will match those in the “derived
elementary” tree of the STAG since we associate the corresponding con-
straints with the root node of the tree in G for 7 used to build up 7.
The only difference between the elementary trees of G a.nd the “derived
elementary” trees of G is the inclusion of additional nodes labeled by the
empty string in the trees of G'.* These additional nodes have absolutely

no effect on the strings that the grammar produces. O

| 2.4 Indexed Grammars

Indexed Grammars (IG’s) and a corresponding automata were introduced by Aho [3,
4] as a generalization of CFG’s, their weak generative power falling between CFL’s
and CSL’s. An algebraic characterization of IG’s is given in [54], and a pumping
lemma is given in [33]. There has been recent interest in the application of IG’s to

natural languages. Gazdar [24] considers a number of linguistic analyses which IG’s

61f we allowed the use of substitution in addition to adjunction then we could construct the
elementary trees of G precisely.



(but not CFG’s) can make.

Definition 2.4.1 An IG, G, is denoted by G = (Vn, Vi, Vs, S, P) where
Vn is a finite set of nonterminals, .
Vr is a finite set of terminals,
Vs is a finite set of stack symbols,
Vn, Vr and Vs are disjoint sets
S € Vy is the start symbol, and

P is a finite set of productions, having the following form.
Al -zl = ay...an
where z € V;, and foreach 1 <i<ne;=A[-y], i = Alz],or a; = w
"where A € Vn, w € V7, and y,z € V5.

The notation f§r stacks uses [- - I] to denote an arbitrary stack whose top symbol
is {. "We have allowed IG productions to be of a fairly general form. A fixed number
of symbol can be “popped” from the left-hand side stack. Each of the nonterminals
on the right-hand side can be given either fixed sized stacks, or the unbounded stack
from the left-hand side onto which a fixed number of additional stack symbols may
be “pushed”.

The derives relation is defined as follows.

A -z]—acP
BiAlyz]f = BB,

where o' is the string a with y substituted for each occurrence of

The language, L(G), generated by G is

{wl|we Vg, 5[] %’w}

(3%
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An IG can Be viewed as a CFG in which each nonterminal is associated with
a stack. Each production can push or pop symbols on the stack as can be seen in .
the following example. The derivation— of IG’s can be represented with derivation
trees whose nodes are labeled by nonterminals and stacks. Each internal node and

its children would show the use of one of the productions, just as in the case of

derivation trees for CFG’s.

Example 2.4.1 An IG with the following productions will generate the
string language {a™b" | n > 0}. Derivation trees will be of the form

shown in Figure 2.3.

S[-] = S[-+1] SI-] — Al-1BL-]

A+i] = ad[] Bl 1] — Bl-1b
Al — ¢ B[] — €

Tree sets that are often associated with IG’s do not include the stack annotations.
These trees are true phrase-structure trees, whose yield can be read off the tree
from left to right. However, if wé wish to consider derivation trees then the stacks
associated with occurrences of nonterminals must be included explicitly in the tree.
If these are omitted then the resulting trees may be ambiguous, i.e., the same tree
could be produced by two distinct derivations (using different productions)’.

The class of string languages generated by IG’s is considerably larger than that
of TAG’s, and this is related to certain differences in their tree sets. Trees derived by
IG’s exhibit # property that is not exhibited by the trees sets derived by TAG’s or

CFG’s. Informally, two or more paths can be dependent on each other: for example,

“There have been a number of papers concerning a related, (though somewhat different) fam-
ily of tree sets whose string languages are IG's. This family (produced by Context-Free Tree
Grammars) was defined by Rounds [66], and later characterized by tree automata in [72, 32].
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Figure 2.3: Dependent paths produced by a IG

they'could be required to be of equal length, as in the trees of Figure 2.3. Although
the path set for trees in Figure 2.3 is regular, no CFG or TAG génera.ta such a tree
set. IG’s can produce tree sets in which trees have unboundedly large dependent
subtrees with the use of productions in which an arbitrarily large stack is shared by
more than one nonterminal on the right-hand side.

Gazdar [24] argues that sharing of stacks can be used to give analyses for co-
ordination. Analogous to the sharing of stacks in IG’s, Lexical-Functional Gram-
mar’s (LFG’s) [44] use the unification of unbounded hierarchical structures. A num-
ber of other grammar formalisms can also do this [45, 61]. Unification is used in
LFG’s to produce structures having two dependent spines of unbounded length as in
Figure 2.3. Bresnan, Kaplan, Peters, and Zaenen [12] argue that these structures are

needed to describe crossed-serial dependencies in Dutch subordinate clauses. Pro-



viding a formalisms with this kind of power appears to lead to a dramatic increase
in generative capacity. Berwick [9, 10] argues that it is just this sort of capability
that leads to a grammar formalism’s ability to generate “unnatural” languages, and

that it should be avoided, since he believes that it is unnecessary.

2.5 Linear Indexed Grammars

Linear Indexed Grammars (LIG’s) were considered by Gazdar [24], and are a re-
striction of Indexed Grammars introduced by Aho [3]. 'I:his system is called Linear
Indexed Grammars because it can be viewed as a restriction of Indexed Grammars
in which only one of the non-terminals on the right-hand side of a production can
inherit the stack from‘ the left-hand side, i.e., only one of the right-hand side non-
terminals is associated with the unbounded stack denoting using “--”. The other

nonterminals on the right-hand side may be associated with any fixed sized stacks.

Example 2.5.1 The following productions form a LIG that generates
the string language { a®"c*d" |n > 0} »
ST-] ~ oS- - i}d St = T
T[- - i) — bT[--)e T[]~ ¢
As a result of the restriction on the form of productions in LIG’s, dependencies

between unbounded branches are not possible in such a system. Vijay-Shanker [82)
has shown that LIG’s are weakly equivalent to TAG’s (and HG’s). In fact, the class
of object level tree sets of TAG’s are identical to the class of derivation tree sets of
LIG’s, if we omit the stacks associated with each node. In the case of the tree set
of a LIG the nodes are labeled by arbitrarily large stacks. Thus, a LIG does not

determine a bound on the number of node labels in its derivation trees.
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2.6 Combinatory Categorial Grammars

In Chapter 5 we define CCG's and show the eciuivalence of Combinatory Ca.tego-rial
Grammars (CCG’s) and LIG’s. A corollary of one of the constructions used in this
result is that the treé sets of CCG’s are isomorphic to the tree sets of LIG’s. Thus,
all of the comments concerning the tree sets of LIG’s also apply to the derivation

tree sets of CCG’s.

2.7 Multicomponent TAG’s

-An extension of the TAG system was introduced in [42] and later redefined in [38]
in which the adjunction operation is defined on sequences of elementary trees rather
than single trees. A principle underlying TAG’s is that when we use TAG's to
irhplement a linguistic theory we need only express relationships (dependencies)
locally. The hypothesis is that dependencies need only be stated between nodes in
the same tree; or between a node in an elementary tree and an entire tree that is
adjoined at that node,. i.e., a tree derived from a tree mentioned in the SA constraint.
Thus, single tree forms the structure within which all of these linguistic dependencies
must be stated. Joshi describes the elementary trees as the domain of locality over
which dependencies can be stated. MCTAG's are an extension of TAG's that provide
a mechanism to increase the domain of locality of TAG’s by allowing us to group
dependent symbols in one structure: a tree sequence. A MCTAG therefore consists
of a finite set of finite elementary tree sequences. Since we only use one initial tree in
any derivation, we assume that each initial tree sequence has length one. Grouping

the elementary trees into sequencés has two consequences. First, we must adjoin all
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trees in an auxiliary tree sequence at once in a single step in the derivation. Second,
since a sequence of trees is now one object in the grammar, we have.increase the
domain of locality from a tree to a finite sequence of trees. This means that in a
grammar we can express relationships between two nodes in different trees if both
trees are in the same tree sequence. An example of such relationships would be the
coindexing of two NP nodes or the equality of a feature of one node with a feature
of another.

There are four ways of defining the adjunction operation with respect to tree
sequence (multicomponent adjunction). We distinguish between elementary tree
sequences and derived tree sequences. A derived tree sequence is a tree sequence
obtained from an elementary tree sequence by any number of adjunctions into that

sequence (including none).

1. All members of a sequence of trees are adjoined into distinct nodes of a single
elementary tree, i.e.,-derivations always involve the adjunction of a derived

auxiliary tree sequence into a single elementary tree.

2. Each member of a sequence of trees can be adjoined into distinct nodes of any
member of a single elementary tree sequence, i.e, derivations always involve
the adjunction of a derived auxiliary tree sequence into an elementary tree

sequence.
3. Trees in a derived tree sequence are all adjoined into a single derived tree.

4. Each member of a derived sequence of trees can be adjoined into distinct nodes

of any member of a single derived tree sequence.

The first of these definitions does not change either the weak generative capacity,



or the tree sets that can be generated, compared with TAG’s since OA constraints
can be used to insure that either all or none of the members of a tree sequence
are adjoined into the particular tree. The three other definitions all increase the
generative capacity of the formalism and the extent of this increase appears to be
related to the maximum size of auxiliary free sequences. However, the third and
fourth definitions allow the adjunction of trees into a set of nodes that may not have

derived from an elementary object of the grammar. This violates certain intuitions

related to the principal of locality. We therefore adopt the second of these definitions.

Definition 2.7.1 A MCTAG is a 5-tuple G = (Vn, V7, 5,1, A) where
Vn is a finite set of nonterminals,
Vr is a finite set of’terminals,
Vn and Vr are disjoint sets
S is a distinguished nonterminal,
I is a finite set of initial trees sequences of length 1, and

A is a finite set of auxiliary tree sequences.

The adjunction operation with respect to tree sequences (multicomponent ad-
junction) is according to the second alternative mentioned abové, i.e., the trees in
a a derived auxiliary tree sequence are adjoined into distinct nodes of trees in an
elementary sequence. We extend the notation for adjunction to denote multicom-

ponent adjunction as follows.

(717 try 7k> [(il.lv a1.1)1 ety (il.mx ’ al.mx) <7;'19 ttc 7{,m1>]’ s
[(in,l7 an.l)s ey (in.mna an,mn)s <7~r,1.,11 ey 71{1..mn>]

That is, adjunction into {<;,...,v) occurs at the positions

(il.la al.l)s I (il.m1 D al,mq)a ceny (in.la an.l)s sy (in,mns a‘n.mn)
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Each position (ip,q,a5,9) is a pair that identifies a node with address g, , in the 7, ,th
tree in the trees in (v;,...,7k). For eaf:h sequence (‘7;'1, . "Y;,m,> being adjoined,
(1 < ¢ £ n) there is a group of m, positions preceding it, oﬁe for each tree in the
sequence. The order of positions matches the order of trees in the sequence. Thus
the pth tree in <7,’,'1, cee ’7«;,m.,> will be adjoined into 7;,, of (71,...,7) at address
agp, foralll <g<n,and 1< p<m,

Given a MCTAG, G = (Vn, V71, S, I, A), we define derivations formally.

o DZ({(7,-- 7)) ={{m:--,70) } .
for (¥1,...,7k) € I U A, where none of the trees 7;,...,7: contain OA nodes.

o DE1((va,..., 7)) is the set of all

(‘71v LERE ‘71:) [(ilvl’ 411,15, LR (il.mx ’al-mx) <‘7{.1’ o "7{,m1>]’ AR

[(fa1,8n1)s - -+ (inmns Gnima)s <‘7,I.,1, ) ‘7:;,m,.>]

such that <7_;-'1, ceny 7_;-',,“) € DE((Y15+ -+ »Yimy)), for 1 € j < n, and according
to the SA constraints at the nodes of trees in (v1,...,7) € A, the n auxiliary

tree sequences
(‘71,11 sy ‘71.1111) IR (77&.11 vevy 7n,m,.)

can be adjoined into (7;,...,vx) at distinct positions

(il.lv al.l), ceey (il.ml ’al.ml)’ LR ] (in.lv an.l)s rey (in,mn’ an,mn)

Also, adjunction must take place at all of the OA nodes in trees in {71,...,74).

DG((‘YN e ’7k)) = U Dé((717 s 7‘71:))

i>0
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Note that in the definition of Dg, derived auxiliary tree sequences are adjoined
into elementary tree sequences. Since we wish to derived a single initial tree, we

stipulate that initial tree sequences are always of length 1. Thus the definition of
T(G) and L(G) for MCTAG’s is identical to that of TAG’s.

MCTAG’s are more powerful than TAG’s, as can been seen by the following
example.
Example 2.7.1 The MCTAG shown in Figure 2.4 generates the lan-

guage Lg = {al...a3 | n 2 0}. The trees that are generated by this

S | ANA BNA
A B < ai A . a4 as B ag >
€ € aj ANA as ag BNA a7

Figure 2.4: MCTAG for the language Lg

grammar will have the form of trees in Figures 2.5.

By increasing the number of trees in the auxiliary tree sequence, this example
can be generalized to give grammars for any language {a}...af | n 2 0} for some
fixed k. In Chapter 4 we give a characterization of th.e weak generative power of
MCTAG's.

The tree sets generated by MCTAG’s differs from a TAG tree set in two ways.

First, the path set may not be a CFL.

Example 2.7.2 The tree set of the MCTAG shown in Figure 2.6 has a
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A B
aj...a1as...a3 A as...aza4...a4 as...asag...ag B a7...a7ag...a3
€ E

Figure 2.5: Dependent paths produced by an MCTAG

path set that is the language Lz = { SA®B"C" |n 2 1}.

S
A
A B o
AU
A B o
C ’ y

Figure 2.6: MCTAG whose path set is L3

Second, the tree set has dependent paths as shown in Figure 2.5. In faf:t, MC--
TAG'’s can also generate tree sets of the form shown in Figure 2.3. The number
of dependent paths in a MCTAG tree set is bounded by the length of the longest
elementary tree sequence. This bound on'the number of dependent paths leads to a

difference between IG tree sets-and MCTAG tree sets. The following example gives
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an IG whose tree set can not be generated by any MCTAG.

Example 2.7.3 An IG with the following productions will generate the

string language {a?” [ n > 0}. Derivation trees will be of the form

shown in Figure 2.7.

5[..] N 5[. - 1] 5[..] — A[--]A[--]

Al 3] = A[-]A]-] Al] —a
S0
]
1
S [i..d]

A [i..d] A [i.d]
- - ~ -~ -~ ~
Al Al Al Al

Al Al All Al All All AQ Afl

a a a a a a

Figure 2.7: Unbounded number of dependent paths
In the trees shown in Figure 2.7 every path from root to frontier is identical and
can therefore be said to be dependent. Thus the number of dependent paths is equal

to the length of the derived string and thus, not bounded by the grammar.

2.7.1 MCTAG Derivation Trees

As in the case of TAG's, we must distinguish between object and meta level tree

sets of MCTAG’s. The encoding of MCTAG derivations as trees can be achieved
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by a similar method to that for TAG’s. Instead of labeling nodes by the names
of elementary trees and tree addresses, the nodes of MCTAG derivation trees are
labeled by elementary tree sequences together with adjunction positions. -

We define derivation trees inductively on the number of steps in the derivation
of a tree sequence (m,...,7k). As in the case of TAG’s, we must explicitly name
the elementary trees with symbols that can be used in the labeling of nodes in the
derivation trees. Let the set of all elementary tree sequences J U A be enumerated
as follows.

TUA={{n1---Ta) s {(Imis- - Yminm) }
Corresponding to this enumeration of the m tree elementary tree sequences, we give

the tree sequences the names 77, .. .5, respectively.

® If (vi1,---,%n;) is an elementary tree sequence with no OA nodes, where

1 € i € m, the derivation tree consists of a single node labeled ;.

e Consider the a derivation in which (¥],...,4%) is produced as follows.

(7{7 s 1‘72) = <7i.17 .. ,7i.n.') [(jl.h al.1)7 ey (jl.ln al.‘x)’ <7;,11 RN ‘7{,11 >],

covy [Gtrna)se - os G @nta)s (Yoo -1 Yot )]

where adjunction takes place into all of the OA nodes in (¥;1,--.,%in)- For
each1<p<n, <‘7;,'1, cee ,7,',',,> is derived from the elementary tree sequence
with the name 7;,, where this- derivation is represented by the derivation tree.
T, whose root is labeled by 7;,. Let T} be the tree T, except that its root is re-
labeled by [(75,1+@p,1)5- -+ (Jpiss @pip)s Tip]- The derivation tree for (v1,...,4;)

will be rooted with a node labeled by ¥;, and have n subtrees, Tifor 1 <p < n.

Notice that the number of node labels of MCTAG derivation trees is bounded

by the grammar. Just as in the case of TAG’s, the selective adjunction constraints
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of the MCTAG encapsulate a finite number of rules governing which adjunctions
are permitted. As a result, like CFG’s, TAG’s, and HG's the derivation tree set
of a MCTAG will be a iocal set. -This reflects the fact that the choice of which
multicomponent adjunctions should be made at a certain point in the derivation is
independent of context. A MCTAG can be encoded as a finite set of rules each of
which specifies that any tree sequencé derived from a éiven elementary tree sequence
can be adjoined at a given set of positions in another elementary tree sequence.

It is interesting to note that object level tree sets with dependent paths, and
relatively complex path sets, can be generated by a formalism whose derivation
trees are local sets. Thus, if a linguistic theory calls for a certain analysis that re-
quires dependency between a bounded number of subtrees then it may turn out that
MCTAG’s have sufﬁcieni:. descriptive power for this. As we shall see in Chapter 4,
MCTAG’s can achieve this level of descriptive power without sacrificing certain de-
sirable computational and linguistic properties associated with formalisms having

reasonably constrained generative power.

2.8 Summary

In this chapter we have considered a variety of formalisms that are notationally very
different and found that several of them share certain properties. CFG’s, HG’s,
TAG’S; and MCTAG’s produce derivation trees that are structurally identical: they
are local sets. In looking at derivation trees we abstract away from the formal-
ism’s notation, and can then compare formalisms that, because of their notational
differences, have proved difficult to compare (other than in terms of their string lan-

guages). Our assumption is that properties of the derivation tree set reflect certain
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crucial computational and linguistic properties of the formalism.

A grammar formalism whose derivation trees sets are local sets has the property

‘that a grammar can be expressed in ti1e form of a finite set of “context-free like”

rules, or productions. These rules may only be implicit in a traditional formulation _
of a grammar. The selection of which rules to apply at each stage of the derivation
made independent of context. These context-free like rules can be thought of as
rewrite rules, and the derivation process as context-free rewriting. Systems that
have this property could therefore be called Context-Free Rewriting Systems.

As we have said, the derivation trees abstract away from the details of the struc-
tures that the formalisms manipulates, and the operations over these objects that
are allowed. We must define a yield function for that formalisms which determines
what structure has actually been derived in the derivation that is encoded by a
derivation tree. In the case of CFG’s, we simply concatenate the terminal symbols
labeling the leaf nodes, from .left to right. As we have seen however, things get pro-
gressively more complex with regard to HG’s, TAG’s, and MCTAG’s. Calculating
the “output” of a HG derivation tree involves the application of wrapping and con-
catenation operations on pairs of strings. For TAG’s we must perform adjunction
over trees, and for MCTAG’s we perform multicomponent adjunction over tree se-
quences. Although wrapping, adjunction, and multicomponent adjunction are more
complex operations than string concatenation, they all share certain properties with
concatenation. In the Chapter 4 we will make some attempt to characterize the way
in which these operations are restricted, however, this will be somewhat difficult
since they each operate on different structures. Informally, each of these operations
is “size preserving”: i.e., the result of the operation is some structure that is formed

by “adding” together its arguments in some way that they are not copied or erased.
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They should also be “structure preserving”, in the sense that they do not restructure
their arguments. Chapter 4 investigates the class of formalisms whose derivation
tree sets are local sets and whose composition operations are_size preserving. We
call these systems Linear Context-Free Rewriting Systems (LCFRS’s).

In Chapter 3 we consider new formalisms that are also LCFRS’s. These systems

arise from a comparison of the differences between CFG’s, TAG’s and HG's.
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Chapter 3

Progressions from CFL’s to TAL’s

3.1 Introduction

Four grammatical formalisms (TAG’s, HG’s, CCG'’s, and LIG’s) have been shown
to be weakly equivalent [87, 89, 82, 88], and Chapter 5. In this cbapter we examine
the relationship between this class of languages and CFL’s. CFG’s can generate
the language Ly = {a™0" | n > 0} but not the language Lz = {a™b"c® |n 2 0 }.
TAG’s (and the other equivalent formalisms) can generate both of these languages
as well as Ly = {a™"c*d® | » > 0} but not the language Ly = {a"b"c*d"e" |
n > 0}. Furthermore, CFG’s, unlike TAG’s, can not generate the cépy language
L? = {ww | w € V7 }; whereas neither CFG’s or TAG’s can generate the double
copy language L? = {www | w € V5 }. When a formalism can generate the language
L, = {a}...a} | n > 0} it is said to be able to count to k. Thus, CFG’s can
count only up to 2 whereas TAG’s can count up to at most 4. These observations
suggest that the class of languages produced by these formalisms is in a certain

sense a natural one, and that there is an interesting progression from CFL’s to these
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slightly more powerful formalisms.

In this chapter we characterize this relationship between the class of languages
generated by these formalisms and CFL’s by showing several ways in which a natural
progression can be established from CFL’s to this language class. TAL’s, HL’s,
CCL’s and LIL’s can be characterized in a variety of ways, several of which we make
use of in this chapter. In particular, we will consider tree sets, grammars, automata,
and generators as means of describing the differences between these formalisms and

CFG’s.

Grammars and Tree Sets In Chapter 2 we déscribed several grammar for-
‘malisms and their associated tree sets. We found that CFG’s produced tree sets
that had regular path sets and independent paths, the path sets of TAG’s had
context-free path sets and independent paths. This suggests that there will be a
family of tree sets with tree-adjoining language path sets and inglependent paths,
and so on. It was also observéd in Chapter 2 that CFG’s and TAG's had similar
derivation tree sets, and that the extra complexity of TAL’s could be viewed as aris-
ing from a slightly more complex yield function being applied to derivation trees. In
Section 3.2 we define a progression of TAG like formalisms. Their object level tree
sets follow the progression suggested above, and hence their string languages also
become increasingly complex. All of the membgrs of the progression have deriva-
tion trees that are local sets, and hence the yield function changes as each stage in
the progression. We also consider alternative grammatical characterizations of the
same class of Janguages: HG's, and a novel kind of control grammars. For each of -
these formalisms we show how they can be generalized in a similar way producing

progressions of language classes.

43



String Automata Another method used to characterize a class of string lan-
gﬁags is in terms of the languages. accepted by a family of automata. CFG’s
generate the same class of languages accepted by pushdown automata [14]. Vijay-
Shanker [82, 84] describes an extension of the pushdown automaton that corresponds
to TAL’s. In Section 3.3 we compare these automata for CFL’s and TAL’s and define

a progression of automata based on this comparison.

String Dependencies and Generators _As we mentioned in Chapter 1, string
dependencies’ has been used as e; tool for characterizing the descriptive capacity
of grammar formalism. The entire range of dependencies exhibited in a class of
languages can be captured in a single language if that language generates the whole
class when closed under certain simple operations. The Dyck language is such a
language for CFL’s and in Section 3.4 we describe the corresponding language for
TAL’s. The dependencies exhibited by CFL’s and TAL’s form the first two stages

of a progression, that we describe in Section 3.4.

3.2 Progressions of Tree Sets and Grammars

3.2.1 Multi-level Tree Adjoining Grammars

In Chapter 2, it was observed that there are several formalisms whose derivation txl'ees
are structurally similar, reflecting common features of their derivation processes.
Variations in the generative power of these systems results from differences in the
way in which the labels of the derivation tree are interpreted. Each formalism has an
associated “yield” function mapping derivation trees onto derived structures such as

strings or trees. The yield of a derivation tree need not be the string on the frontier
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of the tree, in fact, it may not be a string at all. In the case of TAG's, the “yield”
function outputs derived trees that resemble phrase-structure trees. TAG tree sets
and local sets are in many ways very _simila.r: they both have independent paths,
and take their node labels from a finite set. As we saw in Chapter 2, the principal
differences between them lies in their path sets. We also characterize families of tree
sets that share the similarities of local sets and TAG tree sets, while generalizing
the differences in their path sets.

Local sets have path sets that are regular languages, and string languages that
are CFL’s. TAG tree sets have path sets that are CFL’s, and string languages that
are TAL’s. We will continue this progression, characterizing at the next stage tree

‘sets with path sets that are TAL’s, and string languages that fall in some class
larger than TAL’s, say L£i. At the ith stage, we have tree sets with path sets in
the class £;_,, and string languages in £;. The tree sets at every stage should have
independent paths, and be labeled by members of a bounded sized alphabet.

The CFG yield function produces strings from phrase-structure trees; the TAG
yield function produces CFG derivation trees (phrase-structt-lre trees) from TAG
derivation trees. In defining the string language of a TAG, the TAG and CFG yield

function are composed. This is shown in Figure 3.1. The composition of the TAG

TAG phrase- Tree
o Yrac Yera
derivation structure Adjoining
—_— —_—
tree set tree set Language

Figure 3.1: Composition of CFG and TAG yield functions

and CFG yield function gives a composite yield function that when applied to local



sets of TAG derivation trees, gives TAL’s.

A natural generalization of this would in_volve producing more complex composite
yield functions by composing yield fu_nc—tions. For example, consider a yield function
whose output was TAG derivation trees. This yield function would then be of the
appropriate tyﬁe to be composed with the TAG yield function, followed by the CFG
yield function. These three yield functions give a composite yield function that can
be applied to appropriately labeled local sets to produce string languages. What
form should these additional yield functions take?

As the TAG yield function has been described it maps from the TAG meta level
to structures that are at both the TAG object level and the CFG meta level. This
Eha.ra.éteriza.tio_n is overly restrictive: the only constraint is that trees in the domain
of the function be well formed derivation trees (meta-level trees) for some TAG.
Consider a TAG G, whose ob ject;level trees are meta-level trees of some other
TAG, G;. The élementa.ry trees of G, are labeled by the names of trees in G,, we
will call these trees level-2. In this case, the yield funct__ions of the two TAG's can be
composed. This progression can be continued further, by considering level-3 trees:
trees whose nodes are labeled by the names of trees whose nodes are labeled by the
names of trees that are phrase-structure trees. Figure 3.2 illustrates the ith stage

of this progression.

Level i Level 2 Leve] ¢
Y1aG Y1aG Y1aG ‘PS. Ycra
deriv. e deriv. string
— — — tree set —
tree set tree set language

Figure 3.2: Composition of n yield functions
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At each stage in the progression we include one additional TAG at level ; with
derivation (meta level) trees sets that.are local sets, and whose object level tree sets
form the TAG derivation trees or métz;-level trees with respect to another TAG at
the level below. The same TAG yield function is used at each sta.ge. to move down
one level, until ultimately, we obtain phrase-structure trees to which the CFG yield
function can be applied. The term Multi-level TAG’s (MLTAG’s) is used to refer to
these formalisms. The composite yield function that applies to local sets of i-level
trees will be the composition of (¢ — 1) TAG yield functions followed by the CFG
yield function.

_ Let us define the TAG yield function. Let G = (Vn, V7, 5,1, A) be a TAG such
that JUA = {7,...,9x }. Remember that the elementary tree «; will be referred
to in the derivation trees by ;.

For a derivation tree T produced by the grammar G, the function Y is defined

as .follows.

o if T is a single node labeled by the tree named ¥; then Vg(T) = y;for1 <i <
k.

e otherwise, if the label of the root of T is 7_;, and T,,..., T, are the subtrees

rooted at the addresses 1,...,n in «;, respectively, then

Va(T) = wlar, Ya(T1)],- - - s [an, Ya(Ta)]

where a,,...,a, are the address in second component of the pair labeling the

nodes with addresses 1,...,nin Y.

Let (Gy,...,Gy) be a sequence of TAG’s such that trees in the tree set of G; are

i-level trees, for 1 < ¢ < n. We define the object level tree set T(G,,...,G,) of a
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sequence {G1,...,Gy) as follows. For n =1,

T(G1) = { Vs, (Y) | T is derivation tree of G, }

Forn>1
T(GI"--scu)={yG1(T) lT ET(Gg,...,Gu)}

An alternative expression of this definition is as follows.

T(G1y. .y Gr) = Vo, Ve (... (V6.(D(Gr))...)

where D(G) is the set of derivation trees of G. From this definition, we see that every
tree in T(Gh, ..., Gy) is derived from some derivation tree of G, by the composition
of Y n times. As a final step we can apply the standard yield function (for phrase
structure trees) to members of T(G},...,Gy) to obtain a string language. We have
thus defined a generalization of TAG’s, which we call multi-level TAG’s. Although
the trees in T(Gy, . - ., G») produced by the composite grammar (G, ...,G,) become
increasingly complex as n grows, the set of derivation trees for this grammar are

exactly the set of derivation trees for G, which are therefore a local set.

3.2.2 Progression of Control Grammars

We turn to control grammars, an extension of CFG’s in which derivations are “con-
trolled”. The notion of control grammars was previously discussed in [6, 21, 30].
For a general discussion of properties of control grammars see [68]. In this section
we describe a variant of control grammars called Labeled Distinguished CFG'’s. We
then define a generalization of these grammars that give a progression of language
classes. We then describe a.‘n earlier attempt to describe a progression of control

grammars producing classes of languages beyond CFL’s.
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Labeled Distinguished CFG’s

In general a Control Grammar consists of a CFG whose productions are labeled.
The general idea is that §ve can restrict (filter) the derivations of the grammar that
are permitted. A set of control words indicating the productions used in the
derivation is associated, in some way, with each derivation of a CFG. By specifying
a set of such control words (a control set), we can define the language L(G, C)
generated by the grammar G, controlled by a control set C, as the set of strings in
L(G) having derivations whose control words are in C. We must define how control
words are associated Wit}.l a derivation. In our deﬁnition; a control word is associated
with each path in the derivation, thus, at every point in a derivation, each symbol
X; in a sentential form X ... X, is paired with a control word.

We wish to define a Vt;rsion of control grammars whose tree sets have independent
paths. This requires a novel method of controlling derivations. In order to keep
each path of the derivation independent we must not allow different paths to share
control words. Whenever, according to a production, a nonterminal A is expanded
by a string of symbols, only one of t.hese symbols extends the control word associated
with A; t;he other symbols begin recording the derivation from that point. This is
done by specifying a symbol on the right-hand side of each production in the Labeled
CFG’s as distinguished (we show this by marking the chosen symbol with ~ ). We
shall refer to such CFG’s as Labeled, Distinguished CFG’s (LDCFG’s).

Definition 3.2.1 ALDCFG, G, can be written G = (Vn, V7, VL, S, P, L)

where
Vn is a finite sets of nonterminals

Vr is a finite sets of terminals
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V1 is a finite set of production labels
Vn, Vr and V. are disjoint sets -
S € Vy is the sta.rt’ symbol -

P is a set ’of distinguished productions, and

L is a one-to-one function from P, to V.

Each member of P is a pair consisting of a standard Context-Free production
and an integer corresponding to the position of one of the symbols on the right-hand
side of the production. We will write the production p = ((X, X;...X,),i), where

L(p)=l,and 0 <1< nas
p=1:X—-vX1...X;...Xn

where each X; € V, UV, for1 < j<n,orifn=0then:=0and Xo=¢
Sentential forms will associate a control word with each symbol (terminal and
nonterminal), and will therefore be of the form (X;,w)) ... (Xg, wa).

For a LDCFG G = (Vn, V1, V., S, P, L), we define relation = as follows.
a; (X, w) ay = o (X1,6) .. X wl) .. (Xn,€) a2

if P contains the production p=1: X — X;... X;... X

The language L(G,C), generated by G = (Vn, V1, V1, S, P, L) and control set C is
{ay...a, | (S, €) =;> (a1, wy) ... {(an,wq),a; € Ve U {e},wy,...,w, €C}

Since the control set is merely a language over an alphabet of labels of pro-
ductions in.a CFG, we can define this set as the language generated by another
grammar. For example, the production sets of the control grammar for the lan-
guage {ww | w E. {a,b}"} is given below. Derivations involving the productions in

P, are controlled by the language generated by a CFG whose productivns are P,.
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Example 3.2.1

P1= {1155'—"05’, P2= {S’—*Tls,

I: S — bS8, T —e
I3: S — Sa, T — 1T,
l;: S — Sb, T — LTI}
Is: S — &}

Higher-level Cc;ntrpl Grammars -

‘We can define a progression of Control Grammars. A grammar in the i** level of
the progression will consist of a LDCFG controlled by a language generated by a

level : — 1 control grammar.

Definition 3.2.2 C' = (Gl,..;,G,-) is an ith order control gram-
mar, where
each G; = (Vnj, VrjsVijnSi, P L), 1 <j <i—1,is a LDCFG;
Gi = (Vn,i, V1., Si, Pi) is a standard CFG; and
foreach j,2 < j <4, Vrj = Vi o1 |
We denote the class of languages generated by grammars in the i* level

of the progression by C'.

_ The language, L(C") generated by C* = (Gy,...,G;) is defined by induction as
follows. L(C*) = L(G1,C) where C = L(C*"!) and C'™! = (Gy,...,Gi).

In Section 3.3.2 we show the relationship between this progression and a progres-

sion of automata that we define. Certain properties of this progression, particularly

the complexity of recognizing its languages have been investigated in [57, 73].



The Hierarchy of Khabbaz

The existence of a progression of 1angﬁ_age classes, having a geometrically increasing
ability to count symbols, was proposed by Khabbaz [46, 47]. The first class in his
hierarchy was CFL’s. Given a class at one level £, the next higher class was that
class generated by a formalism in which a labeled linear CFG is controlled by
language in £. A labeled linear CFG G controlled by a language L generates the
following language. A derivation of a string is included only if the concatenation of
labels of productions used in the derivation (the control word) is in the control
language L. Since we are always controlling linear CFG’s it is apparent that the
classes in his hierarchy are not closed under concatenation and therefore not full
AFL’s.! The second member of Khabbaz’s hierarchy appears to be equivalent to
linear TAG’s which are known not to be closed under concatenation?®. It seems
probable that Khabbaz used labeled linear CFG rather than arbitrary CFG for the
following reason. At each point in a derivation of a linear CFG there is at most one
nonterminal to expand, i.e., the leftmost and rightmost derivations are the same.
However this breaks down in the case of non-linear CFG’s. In a control grammar
we must define a control word for any derivation, i.e., the string of labels giving the
productions used in that derivation. This is straightforward for labeled linear CFG,
but for arbitrary CFG’s there are many ways to associate the control word with
a derivation. We have given one such association which corfesponds to Khabbaz’s

definition in the case of linear CFG’s.

'Full AFL’s are families of languages, first described by Ginsburg and Greibach [28], that are
closed under concatenation, union, Kleene-star, arbitrary homomorphism, inverse homomorphism
and intersection with regular languages.

2A linear TAG is a grammar in which any node in an elementary tree has at most one child
labeled with a nonterminal [42].
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3.2.3 Progression of Head Grammars

In this section we very briefly present'a_suggestion of how HG’s might be generalized
illustrating the difference between CFG’s and HG’s to and produce a progression
of language classes that we conjecture will correspond to the other progressions
discussed in this chapter. We will not attempt here to prove this relationship.

The primary distinction between HG’s and CFG’s is that HG’s have three com-
position operations over pairs of strings, whereas CFG’s involve concatenation of
strings. For the ith level of the progression, we will define generalizations of HG’s
that use operations on k-tuples, where k = 2* for some 7 > 0.

The first operation is a generalization of the wrapping operation to k tuples.
Wk((uy,...,uL), (Viy.eyvp)) = (U10102UUZVIVUUS - . - Uk 1 Vo ViU gUL)

As in the case of HG’s, there will be a number of concatenation operations. For
each 7 > 1.
CE(wiay- -y W1k} 5o ey (Wnay- -y Wnk))
= (Wi WikeoWilyene WikWale.  Wek)
Note that these operations degenerate to the CFG operations for k¥ = 1 and HG
operations for k = 2.
Grammars using these operations, will in every other respect resemble HG's, i.e.,
they will be further examples of Generalized Context-Free Grammars, as described
in [62]. Thus, they can be classified as Linear Context-Free Rewriting Systems (see

Chapter 4).



3.3 Progression of String Automata

Vijay-Shanker [82] describes a string .a:utoi'na.ton (an nested pushdown automaton)
that recognizes exactly the class of Tree Adjoining Languages. We shall describe
this automaton and relate it to the pushdown automaton (PDA) that characterizes
CFL’s. We then show how this automata can be generalized to produce an infinite
progression of automata. It should be noted that the automata differs from the

nested stack automaton [4] an automaton which correspond to IG’s.

3.3.1 Nested Pushdown Automaton

‘A PDA consists of a pushdown store, a finite state control and a one-way read only
input tape. A move of the PDA depends on the top stack symbol, the next input
symbol, and the state. A move can read over the next input symbol, change state,
and replaces the ‘top symbol of the stack by a sequence of n (n 2 0) stack symbols.
An nested pushdown automaton (NPDA) consists of a finite state control and
a one-way read only input tape, together with a pushdown of nonempty pushdown
stores. The move of the NPDA depends on the top symbol of the top pushdown, the
next input symbol, and the state. A move can change state, read an input symbol
and modify the pushdown of pushdowns. This modification has two phases. First,
the top symbol A of the top pushdown store T is replaced by a sequence of n stack
symbols B; ... B, (n 2 0) yielding the store T’. In the second phase, T' is replaced
by a sequence of k£ nonempty pushdown stores, including Y’ if it is nonempty. An
example is shown in Figure 3.3. In this example, each new stack contains only one -
stack symbol. However, in general, any finite number of stack symbols can be placed

on these stacks.



finite state NN

control

N | N

Figure 3.3: A move of an NPDA

The computation of an NPDA can be seen to correspond to the derivation of a
TAG by relating the moves of an NPDA to the expansion of nodes in elementary
trees in a top-down left-to-right order. When an NPDA imitates a TAG derivation,
a stack is associated with each node. This stack encodes what is required to follow
in the subtree under that node. Since we are concerned only with string recognitbn.
# linearized encoding of the subtree can be stored in a stack. When we adjoin at a
node we push an encoding of the spine of the auxiliary tree being adjoined on top
of the stack. New stacks are placed above And below this stack encoding that part
of the adjoined tree to the left and right of the spine respectively.

In several respects, this is a simple generalization of a PDA. Both the PDA and
NPDA have a finite state control, and one-way read only input tape. Only the top
symbol of the storage can be examined. The increase in power of the NPDA arising

from the ability to insert symbols below an unbounded stack. something that can

(W)}
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not be simulated by a PDA.

3.3.2 Progression of NPDA

If we consider the store of a PDA to be a 1st order data structure (pushdown list)
consisting of stack symbols, the store of an NPDA will be a 2nd order pushdown
consisting of 1st order stores. Thus, a progression can be established in which the
ith order NPDA manipulates ith order stores. We define an :th order store as either
a pushdown of stack symbols for i = 1 or as a pushdown of (i — 1)tk order stores,
for : > 2. An ith order NPDA consists of a finite state control, one-way read only
input tape, and an ith order pushdown store. We will consider a 0tk order store to
be a single stack symbol. An automata with an Oth order store will be a finite state
machine. | |

A transition of an ith order machine depends on the next input symbol, the
state, and the top symbol ‘on the store. The input can be read, the state changed,
and the ith order store manipulated. The manipulations of an ith order store can -
be described recursiveiy as a i step process: in terms of (1 — 1) steps involving
manipulation of an (z — 1)th store, plﬁs one additional step.

Consider some arbitrary ith order store, T}. It will contain some finite number
of (i —1)th order stores. Suppose, by induction, that T3, the top of these (i — 1)th
order stores, can be transformed into Y5 in (i — 1) stages. A transformation of T?
into T} would involve removal of the top element Ti™! of T{ and its replacement
by a finite number of (i — 1)th order pushdown, one of which must be Titif it is
nonempty, the others being fixed sized stores. The basis of this recursive definition
is given by the definitions of NPDA'’s.

Rather than showing moves in terms of a transition function, we shall express
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the legal moves of an automaton with a finite set of rewrite rules. Unbounded
pushdowns are denoted by varié,bles (lower case letters near the end of the alphabet
with superscripts indicating the order o:f the pushdown). Stack symbols are specified
in the rules with constants (capital letters near the beginning of the alphabet). Greek
letters will be used to denote terms containing variables and constants. A pushdown
is represented by a lists, and a noﬁempty ith order store can be written as follows:
[z*! | ¥]. *~! is a variable that denotes the top (z — 1) level stack and z is a
variable the.Lt denotes an arbitrary (possibly empty)r list of the remaining (: -1)
order stores. For e#ch 1 > 1 we define the class of ith order rules. .

For i = 1 (PDA’s) a first-order transition rules has one of the following forms,
<qs a, [A | $1]> - <¢1', [Ah see 7An | zl] s>

(g0,2) = (g [Arr-r 4a | 21

"where ¢, € Q,a € LU {¢}, and A, A,,..., A, are stack symbols, n > 0.

Assume that a' and ' are such that

(wae) = (¢,6)

is an ith order move (note that o' and 3 contain a mixture of constants and vari-

ables). An (7 + 1)th order move has the following form. If 5 is nonempty then
<q’ a, [ai | zi+1]> - <q', [Si, . ,s;,ﬂ", 3§+1, . ,é; | zi+1]>

where 1 < j < n, and si,...,s! are constant ith order pushdowns. If #* is empty

then

<q,a, [cxi | :J:"”D — <q', [si, ey st .‘L"'+1]>

()]
-1



where 1 € j < n, and si,...,s} are constant ith order pushdowns. We also allow

~ the following rule.

(0,54 = (g [shy-. i [ 241])

Example 3.3.1 We now give an example move of a 3rd order machine.
The state of the 3rd order pushdown before and after the move is also

shown.

(oa [[[4121] 127 12%]) = (& [[4uT1[[4s] [ Aa s | 2] [4s] | =7 [[46]] | =°])

=
= E[E

||

We write an :th order NPDA as M = (Q,Z, T, g0, Zo, F, R) where
Q is a finite set of states; '
% is the input alphabet;
I’ is the stack alphabet;
go € @ is the initial state;
Zy € T is the start symbol;
F C @ is the set of final states; and

R is a finite set of :th order rewrite rules as described above.
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The yields relation, 3y, is defined directly from the rewrite rules. An instan-
taneous description of an ith order NPDA is a 3-tuple having the form (g, w, s’)
where: ¢ € Q; w € £*, the reﬁﬁnder of the input; and s’ is the current stack. The
yields relation is a binary relation on instantaneous descriptions, and is defined as

follows.
-<q, aw,s’.> Y <q',w,'¢)(a;)> if <q,a,a'i> - (q',a;>

where: 1 is a ground substitution such that s' = 1(a}), ¢ € Q,and a € T U {€}.
The language L{M) accepted by an ith order machine M = (@, L, T, qo, Zo, F, R)
-is define thus.

L(M) = {w | {g0,w, ['Zo]") F3s (91,6 [1") 195 € F}

We denote the class of all languages generated by NPDA in the ith level of the
progression by M.

The nested stack automaton [4] is a generalization of the stack automaton [29]
in which stacks can be dynamically nested to arbitrary depth. The NPDA sug-
>gests a similar generalization of the PDA, in which the pushdowns can be nested
dynamically to arbitrary depth during a computation. In defining the progression
of NPDA in this section, we des;:ribe how pushdown of every nesting level can be
manipulated. It would, therefore, be straightforward to modify this definition to
give a machine that can increase the level of nesting dynamically. Since the level of
nesting of the pushdown for each computation will always be finite, any language
accepted by one of these machines will be acceptable by a member of the progression
that has a level of nested as deep as needed. Thus, the languages accepted by this

NPDA is presumably the union of the progression described here.
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Example 3.3.2 Using the notation we have introduced, we describe a

3rd order NPDA M recognizing the language Ls = {a}...a3 [n 20}

{90,1,2%) — (g1, [[[a2][ad]]{[as]] | =°])

{g1,01,[[z* | 2% | 2%)) = (@1, [[[a2 | 2'}[ad] | z°]([as]} | 2°])
(91,€,7%) = (22,2°)

(92,83, [[[ez | 27] | 2% | 2°]) = (g2, [[z'[as] | 2°][[ar]] | 7))
(g2,€,2%) = (g3, 2°%)

(g3, 03, [[as] | z%] | z°]) = (ga, [z?[[aé]] | =°])

(g3, €,2%) = (g4, 2%)

(94,24, [[[aq] | 2] | 2°]) = {ga, [=*([[as]] | =°])

(90,6, 2°%) — (g5, 2°)

(gs, as, [[[as]] | z°]) — (gs,2)
(g5, € 2%) — (g6, 2°)

(g6, ae, [[[as]] | z%]) — (g6, %)
(gs,€,2%) = (g7, %)

(g7, a7, [[[a7]] | 2°]) = (g7, 2%)
(g7 €,2%) — (g8, 2°)

(s, as [[[as]] | 2°]) — (gs, 2°)
(gs: €, [[1Z6]] | 2%]) = (g,2°)

The notation we use for :th order NPDA does not allow us to present, in a
concise way, an :th order NPDA recognizing the language L. = {a}...al, |n >0}
for arbitrary :. We hope that is it is clear from the previous example that we could,

in fact, define such an automaton.
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Closure Properties of M’

In this section we show that M® is a substitution-closed full AFL..

Theorem 3.3.1 M is closed under NR, k, ™1, U, -, kleene star, and

substitution.

Proof: The proofs of each of these properties are analogous to those

that have been given for the case of M!, or PDA’s. We will very briefly

describe each one.

NR

Suppose that for some k we have an instance of a k level machine,
ME. We havé a finite state machine M accepting R. We produce
a machine accepting L(M ¥) N L(M) using the cross product of the
state sets of M and MF as its state set. The start (resp. final)
states are those containing start (resp. final) states of both M and’
M*. The moves of the machine are restricted to those of M* that

are also legal in M with respect to its component of the states.
This follows from closure under substitution.

Suppose that for some k we have an instance of 2 k level machine,
M*. Define a slight variant of M* as follows. On input a, the
machine stores the string A~1(a) in a finite buffer (part of the finite
control) and M* works on this strings as though it were the next
symbols of the input. Once the buffer is empty the next real input
symbols is considered and the process repeats. By finishing the
string in the buffer before moving on to the next input symbol, the

buffer can be of bounded size.
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U  Suppose that we have two machines M{ and M} with distinct state
sets and stack symbols. A iqachine constructed from these that ac-
cepts the union of the languages, would nondeterministically choose

to simulate one or other machine.

o  Suppose that we have two machines Mf and MJ with distinct state
sets and stack symbols. A machine constructed from these that
aécepts the concatenation of the languages would begin by adding
an special symbc;l on the bottom of the pushdown storage and then
simulating My. There would be moves that on final states of M}
remove the special symbol from the bottom of the pushdown and

move to the initial state of M.
Kleene Star This is similar to the previous case except that the two

machines are the same and so it can repeat the computation of the

machine any number of times.

Substitution Suppose that we have a machine M k and for each symbol
a we have a machine M¥ recognizing L(a). We construct a machine
that simulates M* except that instea.vd of reading an input symbol
a it puts a marker on top of the pushdown and “calls” the machine
ME. Only when M* has finished is the marker removed. In that

way the pushdown of M* will remain unaffected by the call to M,

a

At the end of the chapter we present a proof of the equivalence of the classes of
languages produced by the control grammar progression in the classes of languages

accepted by the NPDA progression, i.e., we prove the following theorem.
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Theorem 3.3.2 C'= M fori>1

3.4 Progression of Generators

We begin by describing the notion of a generator and explain how it can be used
to characterize the string dependencies exhibited by a class of languages. We then
describe the generator for TAL’s and relate it to the generator for CFL's. In the
final section we define a progression of generators based on the differences between

the generators of CFL’s and TAL’s.

3.4.1 Generators

The following definition shows that a generator of a class of languages, has that

property with respect to a specific set of operations on languages.

Definition 3.4.1 A generator for a family of languages £ with respect
to a certain set of operations O is a single language L, such that £ is
the smallest family of languages containing L that is closed under each

of the operations in O.

What makes the generators that we discuss in this section useful for describing
dependencies is the choice of the set of operations. The three operations that we
use are intersection with regular languages, arbitrary homomorphism, and inverse
homomorphism® A homomorphism #, is a function from symbols in one alphabet
to those in another. The homomorphism kh(w), of a string w is the string resulting

from replacing the symbols of w by their image under A. The homomorphism A(L}),

3A class of languages that is closed under these these operations is called a trio [27).
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of a language L, is the set of strings w’ such that w € L and k(w) = w’. Given
some homomorphism 4, the inverse hbl_nomorphism h=1(L), of a languages L, is set
of strings w such that there is a w’ € L and A(w) = w’.

Loosely speaking, these operations have the effect of introducing new languages,
but not new, more complex kinds of dependencies. This claim is illustrated by the
fact that the class of regular languages, which exhibit the simplest forms of de-
pendencies, a.relclosed under these 6perations. Thus, any form of string dependency

that is exhibited by some language in the class must also be present in the generator.

Generator for TAL’s

It isa well'known result that the Dyck language is a generator of CFL’s with
respect to arbitrary homomorphism, inverse homomorphism, and intersection with
regular languages [19]. In this section we describe the Dyck language and then give
a TAG that produces a language that is a generator for TAL’s. In proving this
result, we use an alternative language, denoted D3, which is defined in terms of the
intersection of two Dyck languages. We prove that D? is a generator of TAL’s and
that T = D2.

Definition 3.4.2 The Dyck language over £ = {a;,a},...,an,a,}
is generated by G = ({S},Z,S,P), where P contains the following

productions.

S—SS S —e S — q;54d! 1<:<n

]

Strings in a Dyck language are strings of matching pairs of brackets (some a; and

a!). The form of dependencies exhibited by the Dyck language, and hence CFL's are
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called nested dependencies. Each occurrence of an a; is dependent on an occurrence
of an af and these dependencies are always nested. If we view a; as the right iﬁvgrse
of a; (a;a} = €), the Dyck language consists of all strings that ca.nl be reduced to ¢,
the identity.

Consider the language generated by the TAG in figure 3.4. We shall refer to

g g
Figure 3.4: TAG for Tree Adjoining Dyck Language

the language generated by a TAG of this form with n sets of symbols as the tree
adjoining dyck language (TADL) over n symbols, or simply T,. We have proved
the following theorem for TAL’s which is analogous to the Chomsky-Schiitzenberger
theorem for CFL’s [19].

Theorem 3.4.1 For every TAL L, there is a positive integer n, a regular

set R and a homomorphism h such that L = h(RN T,).

Proof: This theorem follows from Lemma 3.5.1 and 3.5.2 that we prove

in Section 3.5. 0



Notice that Theorem 3.4.1 invc;lves an infinite number of languages T, for each
integer n. In fact, as shown in Lemma 3.4.1, there is a single language T, that
when closed under inverse homomorpl-aism produces the class of all T, for all n.
It is known [82] that TAL’s are closed under intersection with regular langu#ges,

arbitrary homomorphism, and inverse homomorphism. Thus T} is the generator of

TAL’s with respect to these operations.

Lemma 3.4.1 There exists a homomorphism % such that A=Y(T3) =
UnZl Tn

Proof: We define A such that k(a;;) = a.-'la{'ga.-,l for 1 <i<4and

j 2 1. First, we outline the proof that A~!(T2) € Uny1 Tn

Suppose w € h~}(T3). Then there is some w’ € (T3) such that h(w) = w'.
Consider such a w’. Since it is in the range of k it must have the form
as _1a{1’3a;1 Q- a.-hla{:'za,'hl for some ;,...,1; and jy,...,Jk. Hence,
W = a;, j ..-Gi - We can show by induction on the derivation of w’

that if w' € T then w € T, where n is the largest integer of jy,..., jk-

We now describe how to show that Uny1 Tn € 27%(T2) Suppose w €
Uny1Tn. Let n be such that w € Ty, and let w = a;;, ...a4,,;. Let
h(w) = w'. We can show by induction on the derivation of w in T, that

if w € T, then w' € Ty Q

I we look at the form of dependent symbols in strings generated by T, we find
that we produce strings with the following properties. Considering the six possible
pairings between dependent a; ;’s, @2;'s, a3;'s and aq;’s, we find that: a;;’s and a,;’s

are nested; az,;’s and ay,’s are nested; a,;’s and a4 ;’s are nested; a;,;’s and a3;'s are
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nested; a;;’s and a3;’s are crossed-serial; and a;;’s and ay;’s are crossed-serial. This
suggests that there is a close relationship between T, and Dyck languages.

The Dyck language (let us call it D) in which a,;’s are paired with a,;’s and
" ag,’s are paired with a4;’s generates all of the strings in T, capturing the correct
(nested) dependencies between a;;'s and a;’s and between a3;’s and aq,’s. D is
not equal to T}, because D also includes strings not in T, in which dependent a, ;s
and a4 ;’s or dependent a,;’s and a3;’s are not n&fed. However, consider a second
Dyck language, Di, in which we pair up each group of four symbols differently:
ay,;’s are paired with a4;,-’s; and a;;’s are paired with aa,;fs. D', like -D, includes
.all of the strings in T, as well as strings not in T, in which dependent a,;'s and
az;'s or dependent az;'s and a,;'s are not nested. D' when intersected with D
gives exactly T,. By intersecting these two Dyck languages we have simultaneously
imposed two different sets of nested dependencies: corresponding to the description
given of dependencies in T,.

With a single Dyck language, we were able to group dependent symbols in pairs.
By intersecting two Dyck languages in this way we formed groups of 4 dependent
symbols. Let us introduce some concepts that will help in making this relationship

between the two generators more precise.

Definition 3.4.3 A bracketing Bonan alphabet ¥ is a binary relation
such that: for every symbol a in X either {a,a’) € B or (a’,a) € B,
a # a’,a’ € I; and furthermore, for any symbol @ in ¥ @ occurs in only
one pair in the relation B. -

For a bracketing relation, B, the Dyck language, D(B), is generated by
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a CFG with the following productions.

S—S85  S—e¢ S—aSa’  foreach (a,d') € B

Let ¥, be the finite alphabet
Th=1{0a11,821,831,841,-+ 3810 B2,n) 03,y B4 }
Define the two bracketings By, and B, on the alpha.bret Ya as follows.
B, = {(01.i,42.i), (asira44) |1 <i<m}

B, = {(a14,a44),(a24,933) [L 1 <n }
Let D? = D(B,) N D(B,).
In Section 3.5, we pr;ove that T, = D? and that for every TAL L there is a

positive integer n, a regular set R and a homomorphism & such that L = k(RN D?).

This serves to prove Theorem 3.4.1.

3.4.2 Progression of Generators

We define an infinite sequence of generators giving rise to successively larger classes
of languages, the i** generator involving the intersection of i Dyck languages and
creating groups of 2° dependent symbols. As in the case of the generator for TAL’s,
in each point in this progression, we decompose more complex types of “limited”
crossing dependencies into the simultaneous use of several nested dependencies.
Notice that we have definitions of both CFL’s and TAL’s in terms of Dyck
languages. This allows us to formalize the relationship between these two classes
in terms of a progression of generators that are all defined using Dyck languages.

We identify the progression between the generator for CFL’s and the generator for
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TAL’s and then, by repeating this progression, produce a class of languages that
has the same relationship to TAL’s as TAL’s have to CFL’s.
Let T be the infinite alphabet ¥ = { a;,az,...}. For each n > 0 let X, be the

first n members of this alphabet. BX is a bracketing on I, defined as follows.
Bk = {(agor)zhsir Gighojpr) [ 1 S < rﬂ, 1<j <251}
We define a sequence of genaators as follows.
Foreachn>1 DS=ZX:

Fori2>1

Foreach n >1 D! = Di;'nD(B})

The :* family £° is formed by closing D3 under the operations of intersection

with regular languages, arbitrary homomorphism, and inverse homomorphism.

Theorem 3.4.2 L0 is the class of Regular la.ngdéges.

Proof: One direction follows from the fact that the class of Regular
languages is closed in intersection, homomorphism, and inverse homo-
morphism. Suppose R is a regular language over an alphabet T,. Let A

be a homomorphism mapping all elements of £, to a;.
R (D) = k7 ({a1,05}7) = &

Thus R belongs to £° since R=X;N R o

Theorem 3.4.3 L! is the class of Context-free languages.
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Proof: D] is the Dyck language on two pairs of letters. Therefore this
is the Chomsky-Schiitzenberger Theorem {19]. a

We have shown that £? is the class of TAL’s, and therefore the class of HL's,

CCL’s, and LIL’s.

Theorem 3.4.4 L' is closed under GSM mappings and inverse GSM

mappings, and substitution by regular sets.

Proof:_These properties are all well known corollaries of the fact that

each L' is a trio (see [27, 35]). ]

Let us define the class £ as follows.
£ = U.‘Z]_Ei

Theorem 3.4.5 Under the assumption that for all : £; is properly in-

‘cluded in £;4+; then £ is not principal.

Proof: This can be shown by contradiction. Suppose L was a generator
of L. L must belong to £, so for some k it belongs to some £*. But, £F
is an AFL so £ € £* which contradicts the assumption that each class

is properly included in the one above it. o

3.5 Proofof Characterization Theorem for TAL’s

Lemma 3.5.1 T.=D?



Proof: In order to make the proof easier we use a slightly different
grammar G = (Vr,Vn, S, 1, A), for T, shown in Figure 3.5. Let G; and
G2 be the CFG’s generating D(én) and D(BY}), respectively. To prove
T. C D? it is sufficient to show by induction that if w;Swj is the frontier

of « then

SoA S OA
I S 0A S oA S OA S 0A
= | | |
£ S OA S £
S OA
ai i S oA as i S NA
as i S 0A as i

Figure 3.5: Alternative Tree Adjoining Dyck Grammar

For the basis of the induction consider each auxiliary tree in A with no
OA nodes. It is straightforward to show that the required derivations in

G, and G, are possible.

For the inductive case, consider a derived auxiliary tree v € D(3) derived



in k steps.
e [ is the tree: -

S oA

7N\

S OA S 0A

£ S OA

Suppose 71,2, ¥3 with frontiers u,Sua, v, 5v2, w1 Sw, where adjoined

at the nodes with address ¢, 1,2, respectively. .By induction,
S G=:> Uy, S G=-1> Us, S G:: u15u2
S G=:> v, S ’;—%‘3’ V2 S f-} '015‘02
S = w;, S =>w;, S5 = uwSw
- .Gy I < U G2
Thus we can obtain the following derivations.

S = S§S§
G

U-

G, U1V
SSSS
VW Waldz
u1 Sus

u; SSu,

u1v15v2w15w2u2

uy UISUQWIWQ‘UQ

s ol sp ol e o)

-3
Q)



. B is the tree:

- SO0A

7N\

S OA S OA

S €

This case is very similar to the previous one.

e [ is the tree:

S OA

AR

ay S OA asj

T~

ay; S OA asi

Suppose 4,, vz, 43 with frontiers u,Su,, v, Sv9, w1 Sw, where adjoined

at the nodes with address ¢,2,2 - 2, respectively. By induction,
S = U S = Uz S = u1Su,

S G=17"'01, S ?‘Uz, S ?vlsvg

S ?wl, S G=1>w2, S ?wISwg



Thus we can obtain the following derivations.

558

"n

31[- 9]1 9]1- 9]1» 91[. .91[ su. .S’Jlu

u15w1
ulal.isaz,iwl
U141,iV102,iw
SSS

waSuz
W2a3,iSaq,iU2

Wol3 V24, U2

u;Su,
‘Ulal,is a4,;U2
¥181,iV15V284 ;U2

?‘141.iv1az.i5 Q3,{V2Q4,U2

su- .s’jl .9]1- .5*1[ @jl-

u14a1,;v1G2,5u1 S W2a3,iV204,,U2

To prove D? C T, we prove the following, by induction on the length of

w. For this proof we use the original grammar for T}, given in Figure 3.4.

If w € D? then there will be a derived tree y of G, with frontier

w such that for all u;,u,,us where w = ujususz and
2
U141,i@2,4203,a4,u3 € Dy

for some 7, then there will be a node in v labeled S dominating

exactly the string u,.



We will consider the order of TAG derivations in which we always ad-
join into a derived initial tree.” The basis of the induction follows im-
mediately. Suppose that w € D2 and |w| = k for £ > 0, then w =

Uya) 4G U2a3 ka4 kU3 fOr some k (1 < k < n) where uy,up,u3 € D2.

By induction, there will be a tree 4 with frontier u,u,u; such that for
all ways of writing ujuzus a.s V1V203 Where v181,m82,mV203,ma4,mVs € D2
for some %, there is a node labeled S dominating v;. In particular, there
will be a node 7 in 4 dominating u,. Let 4’ be the result of adjoining the .
tree containing the symbols a, ;, a2, az;, a4 at 7. Thé tree 4’ is shown

in Figure 3.6. To show that 4’ satisfies the above proposition for w =

S
u S us

Figure 3.6: Derivation of Tree Adjoining Dyck Grammar

U181,a2,U2a3 a4 ;uz We must show that for all of the ways in which w can
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be split into strings wy, we, and w3 such that wyey ma2mW2e3 masmws €
D? for some i, ¥’ contains a node dominating w;. There are a large

number of cases that must be considered to verify this, and we will not

enumerate them here.

O

Lemma 3.5.2 For every TAL L there is a positive integer n, a regular

set R and a homomorphism h such that L = k(RN D3?).

‘Proof: Given a TAG, G, we give a construction of a right-linear CFG
G', generating the regular language R. I will assume that the TAG has
trees only of the form in which there is a single initial tree and 4 types

- of auxiliary trees.*

. We choose a one-to-one correspondence, f, between the nodes in ele-
mentary trees and the first n integers where n is the total number of
nodes in all elementary trees. In this way, we associate 4 symbols in £,
aif, 5844, With each node, n of v. We will use tree addresses [31]

to depote nodes in the trees.

e Corresponding to single initial tree «
S 0A

£

4This normal form is described in [87, 89, 43].



include the following productions.

S - alvfﬂ.ogl

e For each auxiliary tree 8

Sy = aﬁ.}a,o a3.fa.0£f

gf - a4vf¢l.0

ANA

N

Boa

ANA

Al = a1,5,,82,45 01,15, Bl
4. — aS.fp.ua‘i-fp.na3vfa.1Bf

Q — 82,f5, a3.fa.zar

o For each auxiliary tree 8

C.OA '

€

BJ — 02,f5191,fp11 aZfa,nAl

B, — 4,15, alvfa,zcl

.ET" — Q4,fp 2 a3.fa.oa4ufa.oAf

ANA

N\

Boa

£

A — Q1,f9082,f50%1,fa, B’

B, — Q4,f5191,fa2 Cy

4, — Q3,521 84,1521 83,15, Lr

-1
-1

CoA

ANA

B — 02.f5,1a3-fa,1ﬁr

QI - a2vfﬂ.2alvfa.21a2'fa.nAl

Cr— Q4,f3293,f8,0 a4vfﬁ.0‘4"



e For each auxiliary tree 3
_ ANA

BoA

coA

ANA

A — al.fp.anfp.oal‘fp.lB’ Bl = a2,f5, al.fa,nal

Ci— a'2.fp,nal.fa,n:a2.fp.1uAl A — a3, fs,111 a4.fp.1ua3.fp.nar

Cr— Q4,fs11 a3.fp,1Er B, — Q4,f3183,f3084.f3,0 A,

e For each auxiliary tree 8

ANA
ai ANA az

Al = 81,§5082,55 001,15, 02,15, 83, f3.1 F4.fp 131 2 a2-fa.2Al

Ar ™ Q3,f5234,f5231,15.302,/5,333,/5.3%34,5,383,f2,0%4.f80 A,

The homomorphism & is defined such that k(a; s ,) = € for all 7,7, and
~ unless 7 is the address of a leaf node of 4 labeled by a terminal a, in
which case h(ayy,,) = a.

We wish to show that L(G) = A(D2 N L(G')). Let G; be a CFG gen-
erating D(B,) and G, generate D(B.). We first show that L(G) C

h(D? N L(G")). We induct on the height of the derivation trees of trees
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derived in G. The basis of the induction simply involves considering each
elementary tree in G and is straightforward. The inductive hypothesis

is as follows.
Assume that for any tree 4 € D(B) for some 3 € A if the derivation tree
for 4 has height less that k then the following will all hold:
Zl G%' wd;, 4. 'f,’v" w2zr
where A labels the root of «;
S =w, S =ws S =>wSw; h(w)=w;, h(w)=uw
G Gy : G2 ’
where w} and wj form the frontier of 4 to the left and right of the foot

node.

There will be one case for each type of tree in A. All of the cases are very
similar so we illustrate one of the cases. Suppose 3 is the tree following

tree.

ANA

/N

B OA coa

ANA £

Two derived auxiﬁiry trees v; and 4, with frontiers u;Bu; and v,Cv,
will have been adjoined into the nodes 1 and 2 of J, respectively. By

induction the following holds.

Bl G-:’ ul-BI’ Br f-,'# u2Br
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S G='1>1{1, S G='1> u;, S =G'2> u Suz  h(uy) =uj, h(u) = u)

S =>v, § =vy, S =>v;Sv3 h(v1)=v], k(vy)=1,
Gy Gy Gp
By the construction, we have

A — al.fn,oa'z-!n.oal.fp,:Bl B — a2.!n,1“1.fp.u“2.fp,uAl

Ar = 03,7511 34,7511 a3-fn,JBf B, — 04,15101,152 Ci

r — a4n!ﬁ,2a3'jﬁ,° a4vjﬁ,0Ar

Q)

Ci— 82,4,,83,4,,C
Thus we have the following derivations in G’.
A
@1,58,0%2.58,0%1, 05,1 B

81,/8,082,f30%1,f5,1 u By

QU m.u- QU

1,15,092.05,001.15,1 ¥182,f5,1 01,1511 02, Sp,11 4

4,

? Q43,7811 94,111 aa‘j,'lﬂ..

Q3,fp,11934.1p,1193,fa, u2 B,

Q3,f8.11%4,1a,1183,fa; U284, 15, 81,15, Ci

= 93fsn at!n..u Q3,fp 3 ¥204, 45, 01,15, 1Y

= 3,153 %4,55,11 93,5, ¥204,15 101,15 3 V102,052 83,15, L
@3, 18,11 %4.55,11 33,151 Y284, 15, 01,152 V192,15 233,15 2 v2C,

o 33.Jp.1104.05,1183,/5,1 204,151 01,45 2 V192,15,2 33, 5,2 V204,15 2 33,150 *4.Sp.0 A,

We can also show that the required derivations in G; and G are possible.

We consider the other inclusion, i.e., A{(D2 N L(G")) C L(G). We induct

on the length of derivations in G'. It is clear that S ? wand w € D?

80



if and only if the following hold.
5, %:- w98, S, % WeSy, S G='1>_‘w1, S % wy, S ? wySwy

Thus, it is sufficient for us to prove the following, which we do by induc-

tion on the length of derivation in G'.

If the following hold

-Zl G-=' wlAh Ar %} 'LD:A,-
S = w, S = w,, S = w,Sw,
G, Gy Ga

then there is a tree ¥ € D(f) for some 8 € A such that the root of 4
is labeled by A, A{(w;) = wi, and h(w;) = wj where w] and wj form
the frontier of v to the left and right of the foot node, respectively. It
is clear that productions of G’ must be used in groups corresponding to
some elementary treé. There will therefore be one case in the induction

for each group of productions. o

3.6 Equivalence of Control Grammar and NPDA
Progressions

Lemma 3.6.1 cc M fori>1

Proof: In order to simplify the proof, we will assume that the control
grammars are in CNF (for a proof that this can be done, see [57]). This

will not change the power of the machine. We will prove by induction
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that for any level i control grammar, there is an equivalent level : ma-
chine, using a single state. We ‘only need one state because we assume

that the pushdown machines have been extended to allow for a bounded

number of symbols can be read off the top of the pushdown store.

The basis of the induction consider a level 1 grammar which is a CFG,
" and it is well known that there will exist an equivalent PDA of the

appropriate form [14].

Consider an i level control grammar C' = (Gy,...,G;). The grammar

Ci-1 = (Gy,...,G;)is an (i—1) level grammar (whose strings are control
words for G,). By induction, there will be a machine M*-! fecognizing
L(C™'). Define a machine M* recognizing L(C") as follows. For each
rewrite rule

(ersi™) = (arsf™
of the machine M*~!, and for each nonterminal A of G, we include the

following rule in rule set of M®.

(oA 1]} = o [ 1]

For each rewrite rule

(:1,s77) = (g 657)

of the machine M*~!, we add a rewrite rule to M* based on the type of
production in G; that has the label [.

If G, contains ! : A — BC then include the following in M".

<q, e, “i—lA} i1 s | ::‘]> - <q, “.'_13]':'—1 siv, [i—lCJi—l g1 ‘ z

A

)
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where $%~! is the starting pushdown state of M.

If G, contains ! : A — BC then include the following in M.

<q, e [[;_1A]-‘—1 &1 z‘]) . <q, [["IB] 1 i1 [i—lc] i-1 Ry zi])

If G4 contains I : A — & then include the following in M".

(e[ 1] = o [l o]

In addition to these rules we add for each terminal a of Gy, the following
rule.
<q,a, [[.-_1a] i~1 Iz,-]) - (g,2")
The pushdown of the machine M* when it begins a computation should
be [[""151]'._1 , S‘"l] where S'~! is the start pushdown of Mi~1,
We describe how M is simulating a deﬁvation of C*. We first describe
| an instantaneous description (ID) of a level i control grammar. This is

a representation of some intermediate point in a leftmost derivation of

the grammar.

e Fori: =1, an ID a! is a pair (w, a) where w is a string of terminals,
a is a string of terminals and nonterminals, and wa is a séntential
form corresponbding to a leftmost derivation of the grammar. The
ID for a completed derivation of w will be (w, €). The ID for a start

derivation is (¢, S) where S is the start symbol of the grammar.

o For a control grammar C**! = (G,,...,Gi41), 2 level (i+1) ID o**!
will be a pair, (w, (X, a})... (X, b)) where each X; is a terminal

or nonterminal of G,, and each a_‘;- is an 7 level ID, encoding the point
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that sorﬁe level ¢ leftmc;st derivation of the grammar (G,...,Giy;)
has reached in deriving the control word for that branch of the
derivation. The ID for a comﬁleted derivation of a string w will be
{w,e). The ID for a start derivation is (¢, (S1,s)) where § is the

start symbol of G, and s is the start derivation of (Ga,...,Gis).

By induction, we describe how a level i pushdown can encode what

remains of a level 7 ID.

e Fori = 1, an ID (w,a) where o = _3("1...Xﬂ is encoded by the
pushdown [X3, ..., X,], where each X is a terminal or nonterminal,
1€75n

e An (i+1)th level ID (w,a™*!) where a'*! = (Xy,al) ... (X5, el) is
encoded i)y the (i + 1)th order pushdown that pairs symbols with

an encoding of what remains of the derivation of their control word.
. -1 . -1
[ R N s A Ay

where .sj- is the pushdown encoding a;'- for 1 € 7 € n. Since the
control grammar is in CNF, in a legal derivation, when X; is a
terminal a} must be € and hence .sj- will be empty and therefore not

appear on the pushdown.

It can be shown that a transition is possible between two ID’s of the
grammar just in case a transition is possible in M between states en-

coding the two grammar ID’s.

a
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Lemma 3.6.2 MicCC for:>1

Proof: Given an ith order NPDA M’ = (Q, Z,T, qo, Zo, F, R), we define
an ith order control grammar C' = (Gy,...,G;), wherefor 1 < j < i
G; = (Vng, Vrj» Vijs Zo, Pj, Lj) and Gi = (W, VT, Zo, Bi), such that
L(M?) = L(C?). We assume that the NPDA terminates on final state

and empty pushdown.

Before giving the construction, we will describe how top-down leftmost
derivations of the grammars G,,...,G; will simulate the computat;ion of
M'. The content of the pushdown will be encoded by the remaining un-
expanded nonterminals in derivations of the grammars. The pushdown
of M consists of (i — 1) order pushdowns. Intermediate sentential forms
of G; encode the topmost symbol on each of these pushdowns. Inter-
mediate sentential forms of the derivation of G, that is controlling the
derivation of GG; corresponding to the kth of the (z — 1) level pushdowns
will encode the topmost symbol of each of the (i — 2) level pushdowns
.on this pushdown. Eventually, the sentential forms of G; will encode
the entire remaining contents of the k;_;th pushdown of the k;_,th 2nd
order pushdown of the ... of the k;th (i — 1) order pushdown, for each
ky,.... ki1

We will assume, without loss of generality, that i level pushdown transi-
tions have the following form. For i = 1 the-transitions have one of two
forms.

[Al2] FAdz] 2] or  [A]2F [2

85



Fori > 1,if si™' F s5! is an (i — 1) level transition, then the following

are : level transitions.

[8,;-1 |vz,-] - [[,-_1 A1] i-1 sit [1'-1 Az] i-1 | z‘;]
[3';"1 | .1:"] F [sé‘l ] .1:"]

where A, A;, A, € T'. We say that si™!  s5! is the (i ~ 1) level compo-
nent of this transition. We will make use of the inductive form of this
definition, to decompose each level : pushdown transition into i compo-

nents: one level k transition, for each 1 < k < 2.

We fix an enumeration of the rewrite rules in R so that each rule will
be associated with a unique number 7, where 1 < j < |R|. We consider
each rewrite rule and specify those productions that are to be included

in the grammars of C*, in order to encapsulate the rule.

Let the jth rule be of the form

(pra,si) F (. 5%)
We will introduce productions depending on the i components of the

transition s! b s}. For each k where 1 < k <3
e if the k leve} component is of the form
' k=1 k=1
[sf“ | zk] - [[k-—lAl] sh-1 [k-IAz] | Ik}

then if the topmost symbol of 557! is a constant stack symbol B € T

add the following production.

5p: A= L5V A1 BA; € Pk
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where A is the topmost symbol of s¥~1. Alternatively, if s5~! con-

tains only variables then for _all X € TU{ e} include the production
Byt A= L3 A XAy € Pijn
o if the k level component is of the form
[s’{'l |1:"] + [.s’;'1 lz"]
the1-1 if the topmost symbol of s~ is a consta.ntrstack symbol B €T
If,s 1A L_l,-H'lB € Pick+1

where A is the topmost symbol of s5~1. Alternatively, if s5~ con-

tains only variables then for all X € I'U{ ¢ } include the production
If'x tA— Lf“'l)—( € Picikn1

We must deal with the two cases where £k = 1 and & = : First when

k = 1, if the 1 level component is of the form

s 12 ] s a7

1

then if the topmost symbol of si™! is a constant stack symbol B € T,

then for each r,s,t € Q, let

U grse’ (AP = a (A1,q,3) (B,s,t) (A, t,7) € Py

1

where A is the topmost symbol of si™!. !

Alternatively, if s5~! contains

only variables then for all X € TU {€¢} and r,s,t € Qinclude the pro-

duction

;'X‘m‘t : (A,p,7) — a (A1, q,s) (X,'.s,t) (Aq,t,r) € P
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If the ¢ level component is of the form
[s'i"l | zi] F [sg"l | zi]

1

then if the topmost symbol of si~! is a constant stack symbol B € T

then for all r,s,t € @ include the production
I_‘;',B.r,o,t : (A1p1 T') — G(B,.;", Q) € Pl

where A is the topmost symbol of s¥~1. Alternatively, if s5~! contains
only variables then for all X € T U {¢€¢} and r,s,t € Q include the
production

Bxras: (Apr) = a(X,rq) € Py
Finally the case where i'=1. The transitidns has one of two forms.
[A | :1:1] F [AlAg | zl] or [A | :1:1] F [zl]
In the first case, add the production
A— L2A1A € P
In the second case, add the production

A-—FL?EP;

In addition to the above productions, for each 1 < k < i we include

k

TApgr for k = 1 for all

productions for L¥ giving ¥, for k¥ < i or !
A eTU{e} and p,q,r € Q. Rather than productions for the start

symbol of each grammar, for the sake of simplicity let us assume that
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our grammars can have a set of start symbols rather than a single symbol.

We let the entire nonterminal sét of each grammar be in the start set.

At each stage in a computation of M*, one of the rewrite rules, say the
jth is used. Corresponding to the use of this rule, there will be i pro-
ductions one in each of the gramma.ré of C* used. This is guaranteed by.
the use of labels one for each of the productions ¢ components of the jth
rewrite rule. Derivations of G; encode the topmost symbol on each of
the (i —1) order pushdowns. The derivation of G that is controlling the
derivation of G, coﬁesponding to the kth of the (i — 1) level pushdowns
will encode the. topmost symbol of each of the (i — 2) level pushdowns
on this pushdown, and so on, until eventually, G; will encodes the entire
remaining contents of the k;_,th pushdown of the k;_;th 2nd order push-
down of the ... of the k;th (¢ — 1) order pushdown, for each ki,...,k;_;.
Each time M® reads a symbol when using a rule j, the production for

rule j in grammar G, will introduce that symbol into the derived string.

=]
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Chapter 4

Linear Context-Free Rewriting

Systems

As a result of the obserﬁtions made in Chapter 2, we outline how a class of Linear
Context-Free Rewriting Systems (LCFRS’s) may be defined and show how the string
languages generated by these systems are semilinear and recognizable in polynomial
time. Our goal is to capture the common properties shared by a number of grammar
formalisms, without being unnecessarily restrictive. There are two ways in which we
wish to constrain LCFRS’s. Their derivation trees should be local sets, reflecting the
fact that the deriv#tion process should in a certain sense be context-free. Second,
their composition operations should roughly speaking be linear and nonerasing. We
begin this chapter by giving a more detailed description of LCFRS’s. We then go on
to show that they always generate semilinear languages, and that their recognition
problemisin P. In Section 4.5 we show that the class of string languages generated
by MCTAG's equals the class of languages generated by all LCFRS’s. Sections 4.1,

def-lcfr-b, semi-lcfr, and lcfr-in-P were presented in [86].
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4.1 Generalized Context-Free Grammars

We define Generalized Context-Free Grammars (GCFG'’s), first. discussed, though

with a somewhat different definition, in [62].

Definition 4.1.1 A GCFG G is written as G = (V, 5, F, P), where
V is a finite set of variables
S is a distinguished member of V
F is a finite set of function symbols

P is a finite set of productions of the form
A - .f(Alv"'vAn)

where n 2 0, f € F,and A, A4,,..., A, € V.

The set of terms, T(G) derived from a GCFIG, G is the set of all ¢ such that

S ?;*’ t where the derives relation is defined as follows.
* A = FOHf A= f()is a.production.

e A =;=> f(t1,...,t.) if A = f(A4,...,A;,) is a production, and A; %;» t; for

1<:<n..

Notice that in GCFG’s, rewriting choices during the derivation are independent
of context. As we have seen in the previous discussion of Chapter 2, a GCFG will
generate a set of trees that can be interpreted as derivation tree in various gramrnar
formalisms. We wish to define a class of formalism for which this is true, called
Linear Context-Free Rewriting Systems. By giving an interpretation for each

of the functions in F, each term (tree) in T(G) can be seen as encoding the derivation
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of some derived structure. For example, F may be functions over DAG’s, in which
case, each term will encode the composition of some derived DAG.
We will write the interpretation of some term t € T(G) in some formalism F, as

[t] ;. In order to illustrate some of the range of possibilities, we now consider several

example of LCFRS’s, giving one possible representations of their derivations.

Context-Free Grammars CFG’s are string manipulation systems, thus the mem-
bers of F' will range over strings on some alphabet. For each zero arity function
f, we let [f()]crq = w for some constant string of symbols w. For each func-

tion of n arguments, where n > 1, we let

IIf(tl’ R t"‘)]CPG = EtI]CFG ©...0 [t"]CFG

i.e., the concatenation of the interpretation of its arguments.

Head Grammars HG's are a system that ma.nipuiates pairs of strings. For each
zero arity function f, we let [f()],c = (w1, w,) for some constant strings w,

and wy. For each function of n arguments, where n > 1, we let

'IIf(tlv ey tn)]}lc = fHG(IItl]]HG’ LK ) [tﬂ]HG)

where fyg is C; for some 1 <i < n, or W in which case n = 2.

Tree Adjoining Grammars TAG’s are tree manipulation systems, thus the mem-
bers of F' will range over labelled tree;é some of which have distinguished foot
nodes. For each zero arity function f, we let [f()];.c = ~, where v is a
complete elementary tree (i.e., has no OA nodes). For each function of n

arguments, where n > 1, we let

[F(t1,- - t)lrae

= fas, [tilrac) - - 8, [tnlrac]



~ is a tree in which at addresses ay,...,an trees [t1]; ;- .-, [tn)r.c are ad-

joined to produce [f(?1,... tn))rac-

Multicomponent Tree Adjoining Grammars MCTAG’s are tree manipulation
systems, and we define the composition operations on finite sequences of trees,
rather than tree sets. For each zero arity function f, we let [f()]ycric =

{(71,---Yk) Where each 7 is a complete elementary tree. For each function of

n arguments, where n > 1, we let

[f(t1y- - s ta)licrac =
(713 LR} 71:) [(il.h al.l)v «sey (il.mp al.m1 )1 [tI]McrAG] R

[(in,lv an.l)s ceny (in.ﬂu ’ a'n,Mn)’ [t'A]]McrAa]

This indicates that the tree sequence [f(t1,...,%n)]ycrac is derived from the
sequence (¥y,...,7;) such that the pth tree in the sequence [t,], o, is ad-

joined into «v; , at the node with address a,.

4.2 Composition Operations

In each of the LCFRS’s that we have given, the functions (combining strings, trees,
or sequences of strings and trees) share certain constrained properties. Although it
would be a desirable accomplishment, we will not attempt to completely characterize
the entire class of such functions that will be permitted. This would be difficult since
we are considering formalisms with arbitrary structures. Instead, we will give two
restrictions on the functions. We would like these restrictions to ensure that the
- functions dé not “copy”, “erase”, or “rest‘ructure” unbounded components of their
arguments. The result of composing any two structures should be a structure whose

“size” is the sum of its constituents plus some constant.
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Every intermediate structure that a grammar derives contributes some terminals
to the string that is yielded by the structure that is finally derived. However,
the symbols in the yield of an interrr_xediate structure do not necessarily form a
continuous substring of the final string. In general, t-hough, we can write the yield
of an intermediate structure as a finite sequence of substrings of the final string.
If [t], is some intermediate structure produced by some formalisms F (ie., t is
a subterm of some t' € T(G)) then let there be a function ¢ giving the yield of

structures, such that ¢=([t],) = (wy,...,ws), where (w,,...,w;) is a sequence of

terminal strings.

Restriction 1: Given a LCFRS, F, for each f € F there will be a

unique yield function (which we denote fr) such that if

é([ti];) = (wrss -, wrm)s
) d’f(lltn]r) = (Wn1se--, wﬂvkn)

and
(ﬁ}'(ﬂf(th Sy t,.,)]}_) = (wl, ey wk)

then
Fr({wig oy wig )y e ey (Wngy v oy Waka)) = (w1, - .., wi)

Thus, the sequence of substrings that is the yield of an intermediate
structure is independent of how that structure is used later in the deriva-

tion.

x

As we have stated, the composition operations should be “size™ preserving. Thus,
with respect to the yield of the structures being manipulated, we should expect the
composition operations to do no more than reorder their arguments and insert a

bounded number of additional terminals.
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Restriction 2: It will be possible to define each fr with an equation of

the following form.

f}'((zl,ls L 1zl.m1)1 ceey (In.h e 1In.mn)) = (tla R ,tm)

where n > 0, each ¢; is a string of variables (z’s), and some finite number
terminal symbols. The equations are regular (all the variables appear-
ing on one side appear on the other) and left and right linear (the

variables appear only once on the left and right).

In order to study the string languages generated by members of the class of
LCFRS’s, we can view their grammars as follows. Let F be some LCFRS, a grammar
'of F can be expressed as (G, E) where G = (V, S, F, P) is a GCFG, and E a finite
set of equations; E, defining each function fr where f € F as given in Restriction
2. .

The set of strings L(G, E) defined by such a grammar is given as follows.

L(G,E): {wi...wn | S G='E> (wiy...,wm)}

where the derives relation is defined as follows. A G='E> (wy,...,wn) if one of the
following holds.
o A— f() € Pand fr() = (w;,...,wn) € E.
o A— f(A1,...,An) € P,
A, ? (Wigye s Wimg )y v 1y An g—'? (Wn1ye -y Wrm, )
FrU(Z1as- oy Tamg)se ey (Zads ooy Tnma)) = (tyeeestm) € E
and w;for1 <:<m r@ults from substituting all occurrences of z,, in ¢; by

Wpq, foralll <p<nandl<qg<m,
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. Notice that we have not allowed any erasing, not even to a bounded extent. This
may turn out to be a restriction that we wish to overcome. However, at this point,

- all of the systems that we have considered do not allow any erasing.

4.3 Semilinearity of LCFRL’s

Theorem 4.3.1 If L is a language generated by a grammar of some

formalism that is a LCFRS, then L is a semilinear language.

Semilinearity and the closely related constant growth property (a coﬁsequence of
semilinearity) have been discussed in the context of grammars for natural languages
by Joshi [36] and Berwick and Weinberg [11]. Roughly speaking, a language, L,
has the property of semilinearity if the number of occurrences of each symbol in
any string is a linear combination of the occurrences of these symbols in some fixed
finite set of strings. Thus, the length of any string in L is a linear combination of
the length of strings in some fixed finite subset of L, and thus L is said to have
the constant growth property. The definition is given in Chapter 1. Although this
"property is not structural, it depends on the structural property that sentences can
be built from a finite set of clauses of bounded structure as noted by Joshi [36].

The property of semilinearity is concerned only with the occurrence of symbols
in strings and not their order. Thus; any language that is letter equivalent to a
semilinear language is also semilinear. Two strings are letter equivalent if they
~ contain equal number of occurrences of each terminal symbol, and two languages
are letter equivalent if every string in one language is letter equivalent to a string in
the other language and vice-versa. Since every CFL is known to be semilinear [60],

in order to show semilinearity of sorme language, we need only show the existence of

96



a letter equivalent CFL. _

Given some fixed alphabet £ = {'a,...,a,}, let ¢(w) (the Parikh mapping of
w) be defined such that $(w) = (i1,...,in) where each ij, 1 < j < n is an integer
equal to the number of occurrences of the symbol a;; in the string w. The Parikh
mapping ¥(L), of a language L is the set of all vectors ¥(w) such that w € L. For
each language L generated by a grammar of a LCFRS, we will show that there is a
CFL, L', such that ¥(L) = ¥(L'). ,

Let F be some LCFRS, consider a grammar of 7 where GCFGis G = (V, S, F, P),
and E contains the definition of each function fr such iha.t f€EF. We; now define
a CFG, G’ = (V,Vr, 5, P') such that ¥(L(G, E)) = ¢(G").

e fA— f()€ Pand fr() = (w1,...,wn) € E then

‘A—')wl...meP'

A f(Ay,...,An) € P and

ff((zl.l’--"zl,m1)7
ey (ZTngseeesTmma)) = (t1y e stm) € B
then

A—-vAl...A,,wEP'

where w is the concatenation of all occurrences of the terminal symbols ap-
pearing in some ¢;, for 1 < ¢ < m, i.e., the bounded number of new symbols

introduced by fr.
It can be shown by induction on the length of derivations that
A E—'?» (wyy..., W)

‘where w(wlh. ..Wm) = v if and only if A =G': w where ¥(w) = v.
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4.4 LCFRL’s in P

Theorem 4.4.1 If L is a language generated by a grammar of some
formalism that is a LCFRS, then L can be recognized in polynomial

time on a turing machine.

We now. turn our attention tc; the recognition of string languages generated
by these. formalisms (LCFRL’s). This can be seen as a special case of a result
in [67]. Although embedding this version of LCFRS’s in a framework developed by
Rounds in [67] is stra.iglitforwa.rd, our motivation was to capture properties shared
by a family of grammatical systems aﬁd generalize them defining a class of related

formalisms.

4.4.1 Alternating Turing Machines

We use Alternating Turing Machines [13] to show that polynomial time recognition
is possible for the languages discussed in Section 4.4.2. An ATM has two types
of states, existential and universal. In an existential state an ATM behaves like .a.
nondeterministic TM, accepting if one of the applicable moves leads to acceptance;
in an universal state the ATM accepts if all the applicable moves lead to acceptance.
An ATM may be thought of as spawning separate processes for each applicable move.
A k-tape ATM, M, has a read-only input tape and k read-write work tapes. A step
of an ATM consists of reading a symbol from each tape and optionally moving each
head to the left or right one tape cell. A configuration of M consists of a state of
the finite control, the nonblank contents of the input tape and k£ work tapes, and
the position of each head. The space of a configuration is the sum of the lengths

of the nonblank tape contents of the k£ work tapes. M works in space S(n) if for
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every string that M accepts no configuration exceeds space S(n). It has been shown
in [13] that if M works in space log n then there is a deterministic TM which accepts
the same language in polynomial time. In-the next section, we show how an ATM
can accept the strings generated by a grammar in a LCFRS formalism in logspace,

and hence show that each family can be recognized in polynomial time.

4.4.2 Recognition of LCFRS’s

Given a grammar (G, E), where G = (V, S, F, P), belonging to some.LCFRS, F,
we describe the operations of an ATM, M, recognizing L(G, E). M performs a
.top-down recognition of an input a;...a, in logspace.

A substring of the input string is encoded by a pair of integers marking the
two end positions of the substring. These positions range from 0 to n where n is
the length of the input string, and can therefore be encoded in O(logn) space. We
encode a m-tuple (wy, ..., wy,) of substrings using 2m tapes. Let k be the maximum
number of components of any tuple on the right-hand-side of an equation in E. At
any stage in the derivation, we may have to store 3k pairs of integers requiring 6k
tapes. In addition to. the tapes for holding these indices, M requires working tapes
for indices recording the position of terminals appearing in the equations in E, and
requires one additional tape for temporary storage of indices.

Without loss of generality, we will assume that every function fr is defined so
that it is either a constant function or a binary function whose arguments and result
are k tuples. The tuples can be “filled” with empty strings, if necessary.

We will describe how M will recognize an input string a; ...a,. Starting in an

existential state, the machine will nondeterministically choose any one of the ways
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of spanning the input string with k substrings, storing these on the first 2k tapes,
and moving into an existential state gs. |

At some arbitrary point .in the derivation, M will be in a configuration intended
to determine whether the k substrings wy,...,w; can be derived from some symbol
A at a specific k positions in the input. M will be in an existential state q4, with
integers iy and i, representing w; in the (2i — 1)* and 2:i** work tape, for 1 < i < &.

For each rule A — f(B,C) € P and equation

Frl(Z1re e rZk)s W1re - U8) = (1o ta) € E

.M must break wy,...,w; into the unbounded substrings z,,...,zx and y,,...,yx
and a finite number of terminals in specified positions. M spawns as many processes
as there are ways of breaking up ¢i,...,¢ and rules with A on their left-hand-side.
Each spawned process must check if z;,...,z and y,...,¥x can be derived from B
“and C, respectively, and that each of the terminals occurring in some #; appear in
the correct position in thé input. To do this, the z’s and y’s are stored in the next
4k tapes, and the positions of any terminals appearing in the equation are stored in
the additional tapes. The identities of the nonterminals and terminals deriving the
various substrings that are being stored on the working tapes can be encoded in the
finite state control. The “calculation” of the new indices that result from the use of
an equation will involve a series of moves. The pair of indices ¢; and 77, encoding
each t; will result in a number of new pairs of indices that as a group “span” the
complete gap from ?; to 7. Each of this group of new pairs of indices is placed on
a pair of tapes according to the equation that has been used.
Once each of the t;’s has been considered, M goes to a universal state which has

succeeding states checking that B derives z,,...,z}, C derives yi,...,yk, and each
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terminal a to appear in the specified position. One successor process will put M
in the existential state g with the indices encoding z,,...,z; moved onto the first
2k tapes. Another succeeding state will put M in the existential state g¢ with.the
indices encoding ¥, ..., yx moved onto the first 2k tapes. '

For rules A — f() € P such that fr() = (w1,...ws,) € E where each w is a
constant string, M must enter a universal state and check that each of the k constant
substrings are in the appropriate place (as determined by the contents of the first

2k work tapes) on the input tape.

4.4.3 Proper containment in P

The class of languages generated by LCFRS’s is a proper subset of P. There are
_languages in P that are not semilinear and can not be gene1.'a.ted by any LCFRS.
For example, the language {a*" |n > 0} isr not a semilinear language and can be
recognized in polynomial time. A Turing Machine recognizing this language could
read the input from left to right checking that each symbol is an a, and counting up
hc.:>';;v many symbols it has read, storing the length of the input in binary on a work
tape. Once the right end marker is reached the Turing Machine must check that
the number stored on the work tape is 10™ for some » > 0, i.e., that the length of

the input is 2™,

4.5 LCFRL’s and MCTAL’s

In this section we show that the class of languages generated by MCTAG's is weakly
equivalent to the union of languages generated by LCFRS’s (LCFRL’s). We also
show that a generalization of CFG’s (MCCFG’s) is also equivalent to NMCTAGs.
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We will not address the question of whether MCTAG's are strongly equivalent to
every LCFRS. Normally strong equivalence is defined in terms of tree éets, however,
this will not'be possible in the case of LCFRS'’s which need not generate object level
tree sets. It would be interesting to investigate whether there exist LCFRS’s with

object level tree sets that can not be produced by any MCTAG.

4.5.1 MCTAL’s C LCFRL’s

We show that fér each k > 1, the class of MCTAG's whose longest elementary
-tree sequence is no longer than k, form a LCFRS. This shows that MCTAL’s are
included in LCFRL’s.

Consider some MCTAG whose longest tree sequence is k. We will show that
this grammar can be expressed in such a way that the criterion for membership of
LCFRS’s are met. As we have show in Section 4.1, it follows directly from the defi-
nition of the formalism that we can-repr&sent MCTAG derivation by trees generated
by a CFG. It is also clear that the calculation of the yield of any intermediate struc-
ture is independent of derivational context (Réstrictions 1 of Section 4.2). It remains

to be shown that the composition operations conform to the following restriction.

For each composition operation f, fprcrac can be defined with an equa-

tion of the following form.

f-MCTAG((Il.h . 111'7“1), ey (Iﬂ‘l, P aIn,mn)) = (tlv caay tm)

where n > 0, each ¢; is a string of variables (z’s), and some finite number
terminal symbols, the equations are regular and left and right linear (the

variables appear only once on the left and right).



Each composition function f mentioned in the CFG encoding the MCTAG
derivations, corresponds to one of the ways that n derived tree sequences can be
multi-adjoined into an elementary tree- sequence. For an arbitrary such f will de-
scribe the equation for frmceTac, and show that it conforms to the above restriction.

The yield of a derived auxiliary tree sequence (1,...,7m) Will be the following
2m tuple.

¢MCTAG((711 KR 17m)) = (ulv uiv ore g Upp, u:n)

where u; and u; .a.re the yields to the left and right or the foot node of 4;, respectively.
In the case of a derived ixﬁtia.l tree, v, ¢MCTAG('Y)- = u where u is the frontier of +.

We consider an arbitrary multi-component adjunction. Our only assumption
will be that we are adjoining into an auziliary tree sequence, it should be clear how
this case can be modified to deal with initial trees. Let f correspond to adjoining

members of the n derived auxiliary tree sequences -

(71,1, e ,71.m:) KRR ] (71!.11 reey 7ﬂ.mq|) :

into the elementary tree sequence (¥1,...,9m)-
By assumption, we know that m,m;,...,m, < k. Our goal is to describe each t;,

and t; in the following equation.
£ . ’ ’ ‘ ’
fMCTAG((zl.lv T110-++1T1,my 21,m1> PR <zn.1, Tr1rec zn,'rnnvzn.mn>)
= (t1, ], ety 2

In this equation, t; and ¢; should give us the frontier to the left and right of the foot
node of v; after this multi-component adjunction has taken place. z;; and z; are
variables that will match the left and right frontier of the jth tree in the ith tree

sequence, 1.e., v -
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It is clear that this equation will be regular and linear. Regularity (the same
variables appear on each side) follows from the restriction in MCTAG’s that every
tree in a tree sequence is involved in the.a.djunction.. Linearity (va.rié.bles only appear
once on each side) follows from the restriction that each tree in a tree seqﬁence is
only adjoined into a single place.

We now describe the terms t;, and t; giving the frontier of ~i. We do this by
defining two functions f; and f. giving the terms corresponding to the yield of
subtrees of tree in the sequence (vy,...,7m) such that fi(v;) = t; and f.(v;) = ¢
These functions are defined by induction on the height of ;. Suppose that «; is a

.single node.
o If it is the foot node and none of the auﬁliary tree are adjoined at this node
then fi(v) = fr(v) = e
e Suppose that v,, was adjoined at this node, in this case fi(v;) = z,, and

ff’y" = :;-Q'

o If this node is labeled by a (a terminal or the empty string) then let fi(v); = a
and fr(7) =e.

Consider that «; has height &, and that the root of 4; has r subtrees Yiys oo Vi

and the root node is in 7.
o If none the auxiliary trees are adjoined at the root of «; then let

fl(7i) = fl(‘ﬁl )ff(‘y"l) 6...0 fl(7ir)

and
fr(7i) = fr('Yi,,) ©...0 f‘(‘yir)f‘r(‘yir)

l.e., concatenate the yield of each subtree.
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o If 4,, was adjoined at the root of 4;, then let

film) = zp S ) fe (i) 0+ 0 fils,)

and

Se) = folvi) 0 -0 fil%i ) ol )25

The variable z,, (or z, ) corresponds to the yield to the left (or right) of the

root node of v,,,.

4.5.2 LCFRL’s C MCTAL’s

.Consider a LCFRS F that involves manipulation of k-tuples with a set of operations -
F producing languages over the terminal alphabet £. Without loss of generality we
will assume that every operations in F is over exactly k-tuples. Given a grammar
G = (V, 5, P, F) of this formalism F, we describe a. MCTAG, G’ such that L(G) =
L(G").

e Suppose that P contains

A= f()

where fr() = (wy,..., w).

Corresponding to this production the MCTAG, G’ will contain an auxiliary
tree sequence containing k auxiliary trees, as follows.

For each 1 £ 7 < k, if w; = a;;...a;,;, then the ith tree in the sequence
will be the following tree. It is rooted by an NA node labeled (A,:) with
|w;| + 1 children. The first |wi| of the children are labeled by the terminals
@i1y---+8@im,, and the remaining child is the foot node and is a NA nqde

labeled by the nonterminal (A,z).
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be rewritten by one of the production for that symbol. It is not possible to ensure
that a certain restricted combination of productions are used. Furthermore, there
is no distinction between terminals and nonterminals, and every sentential form is
in the language generated. As a result, OL-systems are unable to generate some
extremely simple languages such as { a,aa }.
| While 0L-systems resemble MCCFG’s because they involve simultaneous rewrit-
ing, there is another system called matrix grammars [1] that shares a different
property with MCCFG’s. Matrix grammars contain sequences of productions that
_must be used as a group. The difference between MCCFG’s and matrix gfamma.fs ié
that the sequences of productions in matrix grammars are not used simﬁitaneously,

but one immediately after another, and in a particular order.

4.6 Summary

In Chapter 2 we studied the structural d&scriptioﬁs (tree sets) that can be assigned
by various grammatical systems, and classified these formalisms on the basis of
two features: path complexity; and path independence. We contrasted formalisms
such as CFG’s, HG’s, TAG’s and MCTAG’s, with formalisms such as IG’s and
unificational systems such as LFG’s and FUG’s. In order to observe the similarity
between these constrained systems, it is crucial to abstract away from the details of
the structures and operations used by the system. The similarities become apparent
when they are studied at the level of derivation structures: derivation tree sets of
CFG’s, HG’s, TAG’s, and MCTAG's are all local sets.

In this chapter, we outlined the definition of a family of constrained grammat-

ical formalisms, called Linear Context-Free Rewriting Systems. This family repre-

108



sents an attempt to generalize the properties shared by CFG’s, HG’s, TAG'’s, and
| MCTAG’s. Like HG’s, TAG’s, and MCTAG’S, members of LCFRS can manipu-
late structures more complex than tem-lina.l strings and use composition operations
that are more complex that concatenation. We place certain restrictions on the
composition operations of LCFRS’s, restrictions that are shared by the composi-
tion §perations of the constrained grammatical systems that we have considered.
The operations must be linear and nonerasing, i.e., they can not duplica.te Or erase
structure from their arguments. Notice that even though IG’s and LFG’s involve
CFG-like productions, they are (linguistically) fundamentally different from CFG’s
because the composition operations need not be linear. By Sha.ring stacks (in IG’s)
or by using nonlinear equations over f-structures (in FUG’s and LFG’s), structures
with unbounded dependencies between paths can be generated.

Having defined LCFRS’s, we established the semilinearity (and hence constant
growth property) of the languages generated. In considering the recognition of
these languages, we were forced to be more specific regarding the relationship be-
tween the structures derived by these formalisms and the substrings they span. We
insisted that each structure dominates a bounded number of (not necessarily ad-
jacent) :;.ubstrings. The composition operations are mapped onto operations that
use concatenation to define the substrings spanned by the resulting structures. We
showed that any system defined in this way can be recognized in polynomial time.
It was previously known that CFG’s, HG’s, and TAG’s can be recognized in poly-
nomial time since polynomial time algorithms exist for each of these formalisms. A
corollary of the result of Section 4.4.2 is that polynomial time recognition of MC-
TAG’s is possible. In Section 4.5 we showed that the class of languages generated

by MCTAG’s is equal to the class of languages generated by LCFRS’s.

109



e Suppose that P contains
A — f(Al,... ,An)

where

Frl{z1aye e s T1g)se oy (Tndsee ey Tnk)) = (1,00, Tk)

Corresponding to this production the MCTAG, G’ will contain an auxiliary
tree sequence containing k auxiliary trees.
For each 1 < i < k, suppose that t; = a,7:82...a,Za,43 Where each a; €

TU{e}forl£j<r+1,andeach

Z;j € {xl.la'-'331.7:115-'-5zn,13~--yzn,m..}

for 1 € j < r. The ith tree in the sequence has its root be an NA node labeled
by (A,i). The root will have 2r + 2 children.

The 2r + 2th child is an NA node that is the foot node (labeled by (A,z)). -
For 1 £ j £ r+1 the 25 — 1th child is labeled by a;.

For 1 £ j £ r the 2jth child will be labeled by the nonterminal (A,,¢q) if
T;j = ZTpg, and each of these nodes has an OA constraint and a single child

labeled by e.

It is straightforward to show by induction on the length of the derivation in G that
when ever a nonterminal A derives a k-tuple (w;,...,w;), there will be a derived
auxiliary tree set containing k auxi]i-a.ry trees with root labeled by (A,1),...,(A,k)
and frontiers w;(A4,1),...,wi(A, k), respectively. There is one initial tree with root
labeled S having k children labeled by (S,1),...,(S,k). Each of these k nodes has

an OA constraint, and a single child labeled by e.
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4.5.3 Multi-Component CFG’s

It is worth noting that in the constr;.u_:tion given here the adjunction operation is
in effect merely simulating tree substitution. Since adjunction only occurs at nodes
.which have a single child labeled by €, we could instead have omitted the node
labeled ¢ and omitted the foot nodes of each auxiliary tree, and used substitution
rather than adjunction. Each tree would then have only two levels of nodes and NA
constraints at the root node. Each tree would therefore be equivalent to a context-
free production, and a tree sequence equivalent to a sequence of productions. We
could then have performed multicomponent substitution at each of the resulting
‘frontier node labeled by a nonterminal. Therefore, MCTAG’s and Multicbmponent
CFG’s (a system in which a sequence of CFG productions must be used concurrently)
are weakly equivalent!. The derivation of a MCCFG should be .performed “inside-
out”. It would begin with sequences containing productions all of whose right-hand
sides contained only terminals. At each subsequence stage of the derivation all of the
productions in several derived sequences of productioﬁs are simultaneously used to
rewrite all of the nonterminals on the right-hand sides of the productions in another
sequence to produce a new derived sequences. The derivation could end when a
derived sequence of length 1 was produced containing a production whose left-hand
side was the start symbol. | |

Such a system is somewhat similar to Lindenmayer systems (L-systems), partic-
ularly 0L-systems [53]. As with the system we have described 0L-systems involve
simultaneous rewriting with context-free productions. However, at each stage in

derivations of 0L-systems, every occurrence of a symbol in a sentential form must

1The extra power of the adjunction operation would be reflected in the fact that MCTAG's
would in general require smaller tree sequences than MCCFG’s to generate the same string
languages.

107



It appears that HG’s (and TAG’s) can not generate all of the languages that can
be generated by arbitrary LCFRS’s manipulating 2-tuples. Consider the following

binary operation over tuples.

F((u1,u2), (v1,v2)) = (U101, u202)

Consider an extension to HG's in which this operation can also be used together
with the usual concatenation and wrapping operations. Using this extended set of
operations we can generate the language L = {alblaJ'bTcldicd] | n,m > 0}

 with the grammar below.

S g F(Sl, Sg)
S — W({ay,di),Ty) Sz = W({az,d2), T)
S1 = Ci({e, e)) S2 — C1({e, €))

Tl - W(Sly (bh cl)) T2 - W(521 (b27 Cg))

Unfortﬁn-ately, the p1—1mping lemma for TAL'’s given in [82] (Theorem 5.5.1) is too
weak to show that this language is not a TAL. However, we believe that this
language can not be génerated by TAG’s or HG’s, and that a sufficiently strong
pumping lemma (perhaps one analogous to that of Ogden [56]) it would be possible

to show this.
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Chapter 5

Combinatory Categorial

Grammars

In this section, we examine Combinatory Categorial Grammars (CCG's), an exten-
sion of Classical Categorial Grammars [5] developed by Steedman and his collabo-
ra.tors [2, 78, 75, 76, 77]. Classical Categorial Grammars are known to be weakly
equivalent to CFG's [7], and the main result here is that under a certain definition,
CCG’s are weakly equivalent to TAG’s, HG’s, and LIG'’s. We prove this by show-
ing in Section 5.2 that Combinatory Categorial Languages (CCL’s) are included in
Linear Indexed Languages (LIL’s), and that Tree Adjoining Languages (TAL’s) are
included in CCL’s. We also presented this result in [88].

On the basis of their weak equivalence with TAG's, and HG's, it appears that
CCG’s should be classified as a mildly context-sensitive grammar formalism. In
Section 4 we consider whether CCG’s should be included in the class of LCFRS’s.
The derivation tree sets traditionally associated with CCG’s have Context-free path

sets, and are similar to those of LIG’s, and therefore differ from those of LCFRS’s.
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This does not, however, rule out the possibility that there may be alternative ways
of representing the derivation of CCG’s that will allow for their classification as
LCFRS’s. ]

Extensions to CCG’s have been considered that enable them to compare two
unbounded structures (for example, in [78]). It has been argued that this may be
needed in the analysis of certain coordination phenomena in Dutch. In Section 5.3
‘we discuss how these additional features increase the power of the formalism. In so
doing, we also give an example demonstrating that the Parenthesis-free Categorial
Grammar formalism [23, 22] is more powerful than CCG’s as defined Here. Exten-
.sions to TAG’s (Multicomponent TAG) have been considered for similar reasons.
However, we will not investigate the relationship between the extension of CCG’s
and Multicomponen.t TAG.

It is known [82] that the complexity of TAL recognition is O(n®). Thus, a
corollary of our result is that this is also a property of CCL’s. Although there has
been previous work [90, 59] on the parsing of CCG's, they have not suggested a

specific upper bound on recognition.

5.1 Definition of CCG’s

Combinatory Categorial Grammar (CCG), as defined here, is the most recent version
of a system that has evolved in a number of papers [2, 78, 75, 76, 77]. In this section
we first define CCG'’s, and then show that the class of string languages generated
by CCG.’s is equal to the languages generated by TAG’s (and LIG’s).

Definition 5.1.1 A CCG, G, is denoted by (Vr,Vn, S, f, R) where

Vr is a finite set of terminals (lexical items),
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Vn is a finite set of nonterminals (atomic categories),
Vn and Vr are disjoint sets

' $ is a distinguished member of Vi,

f is a function that maps elements of VrU{¢} to finite subsets of C (Wn),

the set of categories!, where

Vn C C(Vn) and if ¢;,¢2 € C(Vy) then (c1/c;) € C(Vn) and
(e1\c2) € C(V). '

R is a finite set of combinatory rules.

There are four types of combinatory rules, which involve object level variables

Z,¥,21,... over C{Vn), and each |; in the rules belongs to the set {\,/}.

1. forward application:

(zly) y—=
2. backward application:

y (s\y)—=
3. generalized forward composition for some n > 1:
@13) oWl nin) = oo (2l ]z
4. generalized backward composition fof some n > 1:

(- (@hzdla daza)  (2\y) = (.- (zhz)l2- - aza)

Restrictions can be associated with the use of the combinatory rules in R. These

restrictions take the form of constraints on the instantiations of variables in the

rules. These can be constrained in two ways.

INote that f can assign categories to the empty string, €, though, to our knnwledge, this feature

has not been employed in the linguistic applications of CCG.
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1. The initial nonterminal of the category to which zais instantiated can be

restricted.

2. The entire category to which y is instantiated can be restricted.

Derivations in 2 CCG involve the use of the combinatory rules in R. Let the

derives relation be defined as follows.
acf = acic2f3

if R contains a combinatory rule that has ¢;c; — ¢ as an instance, and a and 3 are
(possibly empty) strings of citegories. The string languages, L(G), generated by a
CCG, G, is defined as follows.

{a1...an | S =;=>c1...c,,,c,-ef(a,-),a,-eVTU{E},l <i<n}

Although there is no type-raising rule in the above formulation, its effect can be
achieved to a limited extent since f can assign type-raised categories to lexical

items. This is the scheme employed in Steedman’s recent work.

5.2 Weak Generative Capacity

In this section we show that CCG’s are weakly equivalent to TAG’s, HG’s, and
LIG’s. We do this by showing the inclusion of CCL’s in LIL’s, and the inclusion of
TAL’s in CCL's. It is know that TAG and LIG are equivaleﬁt [82], and that TAG
and HG é.re equivalent [87, 89]. Thus, the two inclusions shown here imply the weak

equivalence of all four systems.
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5.2.1 CCL’s C LIL’s

We describe how to comstruct a LIG, G', from an arbitrary CCG, G such that G
and G' are equivalent. Let us assume that by default the slashes associate to the
left. Thus, categories are written without parenthmes, unless they are needed to

override the left associativity of the slashes.

A category ¢ is minimally parenthesized if and only if one of the

following holds.

c=Afor A€ Vn
¢ = (Alc1]2.-.[acn), for n > 1, where A € Vy and each ¢; is

minimally parenthesized.

It will be useful to be able to refer to the components of a category, c. We first

define the immediate components of ¢.

when ¢ = A the immediate component is A,

when ¢ = (A|ic1]z2- .. |ncn) the immediate components are A, ¢y, .. . ,Cn.

The components of a category c are its immediate components, as well as the compo-
nents of its immediate components. The immediate components are the categories
arguments. Thus, ¢ = (A|;¢1]2...|ncn) 1s a category that takes has n arguments of
category c¢i,...,c, to give the target category A.

Although in CCG’s there is no bound on the number of categories that are
derivable during a derivation (categories resulting from the use of a cofnbina.tory
rule), there is a bound on the cardinality of the set of .all components that de;'ivable
categories may have. This would no longer hold if unrestricted tvpe-raising were

allowed during a derivation.
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Let the set Dc(G) be defined as follows.
¢ € D¢(G) if ¢ is a component of ¢’ where ¢’ € f(a) for some a € VrU{e}.

Clearly for any CCG, G, D¢(G) is a finite sef. D¢(G) contains the set of all
derivable components, i.e., for every category ¢ that can appear in a sentential
form of a derivation in some CCG, G, each component of ¢ is in D¢(G). This can
be shown, since, for each combinatory rule, if it holds of the categories on the left
of the rule then it will hold of the category on the right. The number of derivable
categories is unbounded because the}; can have an unbounded number of immediate
components.

Each of the combinatory rules in a CCG can be viewed as a statement about
how a pair of categories can be combined. F;)r the sake of this discussion, let us

name the members of the pair according to their role in the rule.

The first of the pair in forward rules and the second of the pair in back-
ward rules will be named the principal category. The second of the
pair in forward rules and the first of the pair in backward rules will be

named the subordinate category.

As a result of the form that combinatory rules can take in'a CCG, they have
the following property. When a combinatory rule is used, there is a bound on the
number of immediate components that the subordinate categories of that rule may
have. Thus, because immediate components must belong to Dc(G) (a finite set),
there is a bound on the number of categories that can fill the role of subordinate
c-ategories in the use of a combinatory rule. Thus, there is a bound on the number of
instantiations of each of the variables y and =, in the combinatory rules in Section 3.1.

The only variable that can be instantiated to an unbounded number of categories is
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z. Thus, we can create instances of the schematic combinatory rules by instantiating
the object level variables y and each z; with every possible combination of the finite
number of bindings that they can take. -Hence, the number of combinatory rﬁles
in R (while remaining finite) can be increased in such a way that only z is needed.
Notice that z will appears only once on each side of the rules (i.e., they are linear).

We are now in a position to describe how to represent each of the combinatory
rules by a production in the LIG, G'. In the combinatory rules, categories can be
viewed as stacks since symbols need only be added and removed from the right.
The subordinate category of each rule will be a ground category: either A, or

(Alyeilz- - - |ncn), for some n > 1. These can be represented in a LIG as A[] or

A[l1c1]z2- - - |ncn), respectively. The principal category in a combinatory rule will be
unspecified except for the identity of its left and rightmost immediate components.
If its leftmost component is a nonterminal, A, and its rightmost component is a
member of D¢(G), ¢, this can be represented in a LIG by A[- - c].

In addition to mapping combinatory rules onto productions we must include

productions in G’ for the mappings from lexical items.

If A€ f(a) where a € Vr U {¢} then A[] - a€ P
If (A|ic1]2..-|aca) € f(a) where a € V7 U {¢} then A[|icyf2---|nCn] —
ae€P

We now illustrate this construction by giving a LIG from a CCG that generates
the language
{a™b*c"d* |n >0}
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Example 5.2.1 Let a CCG be defined as follows, where we have omit-

ted unnecessary parenthesis.

A € f(a) B € f(b) C € f(o) D € f(d)

S/S1€ f(e) Si€fle)  SI\A/D/SI\B/C € f(e)
The following combinatory rules are permitted.

o Forward application involving z/y and y either when z begins with

S, and y is C, or when z begins with S and y is S; or D.

e Backward application involving y and z\y when z begins with S

and y is A or B.

e Forward composition involving z/y and y\z1/z2/z3\24 when z be-

gins with S and y is S,.

The productions of the LIG that would be constructed from this CCG

are as follows. The first 7 rules result from the definition of f.
A[]—a B[]-b C(Cl]l=c D[]—d
Si{l—e  SiI\A/D/S)\B/C] — ¢ Sl = S /C]C
S(/5)—=e  SHI—=SE-/S]S[]  S]— S[-/D]D[]
S[-]— A[]S[--\A]  S[-] = B[] S[--\B]
S[ -\ X1/ X2/ X3\ Xa] = S[ - /51] S$i[\ X1/ X2/ X5\ X4]

for all X,,..., X4 € Vn.
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5.2.2 TAL’s C CCL’s

We briefly describe the construction- of a .CCG, G’ from a TAG, G, such that G
and G’ are equivalent. In order to understand this construction, it is important
to appreciate that the order in which categories are combined is crucial in a CCG
derivation?. We must therefore take care to ensure that a particular derivation order
will occur. We will assume that the TAG is in a normal form corresponding to that
arising from the construction from HG’s to TAG’s, i.e., there is one initial tree, and
5 types of auxiliary trees.

Each of the auxiliary trees will result in certain assignments of categories by f
toa te;'minal or the empty string. Each occurrence of adjunction will be mimicked
by the use of a combinatory rule.

Adjunction into nodes to the right (left) of the foot node (which corresponds
to concatenation) will be sirmulated by backward (forward) application. Adjunction
into nodes dominating the foot node of a tree (which corresponds to wrapping) will
be simulated in the CCG by cbmposition. It is necessary that we ensure that the
subsidiary category in évery occurrence of composition has just been introduced into
the derivation by an assignment of f (see Figure 5.1). This will correspond to the
adjunction of an auxiliary tree that has not had any trees adjoined into it.

We can guarantee that composition only occurs in this context in the following
way. For each nonterminal, A of G there will be two nonterminals A® and A€ in
G'. We restrict each combinatry rule so that the subsidiary category of the rule has
the form A® (for application) or (A%|;c;...|scn) (for composition). The the other

categories in the rule has as its target category some B°.

2This is discussed in Section 3.6.
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S/oB S/ B

S/ol A AlB AlB S/A

AT T A

a a w
Figure 5.1: Contexts of composition

Forward and backward application are restricted to cases where the subordinate
category is some X°, and the left immediate component of the principal cat-

egory is some Y.

Forward and backward composition are restricted to cases where the subordinate
category has the form ((X¢|;¢1)|2¢2), or (X®|1¢1), and the left immediate com-

ponent of the principal category is some Y.

An effect of the restﬁctions or; the use of combinatory rules is that only categories
that can fill the subordinate role during cornposition are categories assigned to
terminals by f. Notice that the combinatory rules of G’ depend only on the terminal
and nonterminal alphabet of the TAG, and are independent of the elementary trees.

f is defined on the basis of the auxiliary trees in G. Without loss of generality
we assume that the TAG, G, has trees of the following form (see [87, 89, 43]).

I contains one initial tree

S OA

Thus, in considering the language derived by G, we need only be concerned with
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trees derived from auxiliary trees whose root and foot are labeled by S.

There are 5 kinds of auxiliary trees in A.

1. For each tree of the form

ANA

N\

BOA COA

ANA e
include A%/C*/B* € f(€) and A%/C*/B* € f(¢)

2. For each tree of the form

ANA

a\

BOA COA

€ ANA
include A“\B“/C" € f(e) and A°\B*/C*° € f(¢)

3. For each tree of the form

ANA
BoOA

CcoA

ANA



include A®/B¢/C* € f(e) and A°/B°/C*° € f(e)

4. For each tree of the form

ANA
a; ANA

include A%\ A4; € f(e), A°\A; € f(€) and A; € f(a;)

5. For each tree of the form include

ANA

N

ANA a;

include A%/A; € f(e), A°/A; € f(€) and A; € f(a:)

The start symbol of G’ is S*. The CCG, G, in deriving a string, can be under-
stood as mimicking a derivation in G of that string in which trees are adjoined in a
particular order, that we now describe. We define this order by describing the set,

Ti(G), of all trees produced in 7 or fewer steps, for i > 0.
To(G) is the set of auxiliary trees of G.

T:(G) is the union of T;_,(G) with the set of all trees v produced in one of the |

following two ways.

1. Let ' and +” be trees in T;_,(G) such that there is a unique lowest OA
node, 7, in 4’ that does not dominate the foot node, and 4” has no OA

nodes. « is produced by adjoining 4" at 7 in v’



2. Let 4’ be a tree in T;_;(G) such that there is OA node, 7, in 4’ that
dominates the foot node and has no lower OA nodes. 7 is produced by

adjoining an auxiliary tree [§ at 7 in v’

Each tree v € T;(G) with frontier w;Aw; has the property that it has a single
spine from the root to a node that dominates the entire string w; Aw,. All of the OA
nodes remaining in the tree fall on this spine, or hang immediately to its right or
left. For each such tree v there will be a derivation tree in G’, whose root is labeled
by _é. category ¢ and with frontier w,w;, where ¢ encodes the remaining obligatory
adjunctions on this spin’e. in «.

We define how a category ¢ encodes the spine as follows.

e If the spine contains no OA nodes then ¢ = A® where A labels the root of the

tree.

o If there is a unique lowest OA node labeled by B that falls on the left (resp.

right) of the spine, and ¢’ encodes the remainder of the spine, then the entire

spine is encoded by ¢\ B® (resp. ¢’/ B®).

o If the lowest OA node on the spine is as low as any other OA node, is labeled by
B, and ¢’ encodes the remainder of the spine, then the entire spiﬁe is encoded
by ¢//B¢. (in this case the direction of the slash was arbitrarily chosen to be

forward)

For example, the tree shown in Figure 5.2 is encoded by the category

A\A;/ A3/ A3\AS

We show that L(G) = L(G") by proving the following lemma.
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A40A 2 £
g wi A w2
Figure 5.2: Tree encoding A\ A{/A5/AS\ A%
Lemma 5.2.1 ~ € T;(G) with frontier w; Aw, for some ¢ > 0 where the

category c encodes the spine of 4 if and only if ¢ derives the string wyw;

in G’ and the last category in c has the form A?% or A° for some A € Vy.

Proof: We first. prove the only if direction by induction on :. For : =
0 we must consider the auxiliary trees of G. If follows- directly from
the construction that the spine of each auxiliary tree is encoded by a
category that derives the string on the frontier of the tree. Consider a
tree v € T;(G) for some 7 > 1. 4 may have been obtained in a number

of ways.

1. v is produced by adjoining ¥” at n in 4’, where 7 is on the left of the
spine. Since v’ and 4" are trees in T;_,(G), by induction, there are
categories ¢’ and ¢” encoding their respective spines and deriving

their respective frontier terminal strings (w, and w,). Since 4’ has
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no OA nodes, ¢’ = B® where b labels 7. ¢” must be of the form
c\B¢, so by backward application, we can obtain ¢ deriving the

string wyw,; where ¢ encodes the spine of 4 and v derives wyw,.

. There is a second case in which adjunction takes place to the right

of the spine. It is analogous to the first case.

. The final case involves adjunction on the spine. Let « be a tree in
T:(G) produced by adjoining an auxiliary tree 8 at nin v’ € T;_1(G) ‘
where 7 is labeled by B and dominates the foot node. By induc-
tion, there will be a category ¢’ = ¢/ B¢ deriving w, encoding the
" spine and frontier of 4. 8 may be any of the five types of auxiliary
trees in G whose root and foot is labeled by B. For each type of the
first three types of auxiliary trees there will be a category beginning
with B¢ in f(e) that can be combined with ¢’ using forward compo-
sition to give a category encoding the spine of 4. In the trees whose
frontier may contain terminals, again there will be a category be-
ginning with B‘ in f(€) that can be combined with ¢’ using forward
composition. We then use either forward or backward application

to introduce a; € V3 U {e} on the correct side of the spine.

We prove the if direction of the lemma by induction on the number of

combinatory rules that are used. The basis involves consideration of

categories in the range of f. It follows from the construction that the

lemma will hold of these categories.

The category c is obtained by combining two categories ¢, and ¢, using

one of the combinatory rules. By induction we assume that ¢; and ¢,
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derive w;, and w,, and are encoded by <; and v, respectively. Suppose,
c; and c; are combined using forward application. ¢; = A® and 7, is
an auxiliary tree with root labeled by A and no OA nodes. ¢; = ¢/A®
and 7; has its lowest OA node labeled by A to the right of the spine.
Thus v, can be adjoined at this node in 7, to produce a tree v with
frontier wyws that is encoded by c¢. The case of backward application
is analogous. Let us consider forward composition. The category c;
begins with some category A°, therefore c; must be a category in the
range of f, since it can not result from the use of a combinatory rule.
Thus, v, is an auxiliary tree corresponding to ¢; whose root and foot are
labeled by A. ¢; must be of the form ¢’/ A€, thus 4, contains an OA node
dominating the foot labeled A at which v2 can be adjoined to produce
4. The category resulting from composing ¢, and c; may end with a
category A;, in which case application of ¢ a.nd A; is used, immediately
to produce c. In the other cases, ¢ results directly from the composition
of ¢; and c;. By coﬁsidera.tion of each type of auxiliary tree it can be

seen that 4 will be encoded by ec. a

Example 5.2.2 Figure 5.3 shows an example of a TAG for the language
L, = {a™" | n > 0} with crossing dependencies. We give the CCG that

would be produced according to this construction.



SaNA
S NA |

S OA /\ S OA

I S10A S20A

N T
£ S NA
S2NA
S1NA S3NA S NA
a S1NA S3NA b € S NA

Figure 5.3: TAG for L,

S*\51/53 € f(¢) 5°\51/53 € f(e)
S53/5°/535 € f(e) 53/5°/55 € f(e)

ST\A € f(e) S\A € f(¢)
S3/B € f(e) S5/ B € f(e)
A€ f(a) B € f(b)
5*\S. € f(e) 5°\S. € f(e)
S. € f(e)

The CCG’s prodﬁced according the construction given here have the property
that parenthesis always have leftmost association, and can therefore be omitted.
Thus, it is a corollary of our proofs in this section that the use of parenthesis in

CCG’s does not increase the generative power of the formalism. Note that the



Parenthesis-free Categorial Grammars of [23, 22] differ from CCG’s as described
here. We show below that they generate languages that can be be produced by any

CCG.

5.3 Increasing the Power of CCG’s

In this section we discuss some additions that have been used in certain papers on
CCG’s t’hat add to the power. These were used because they were seen as being
useful in analyzing certain coordination phenomenon in Dutch. We show that they
increase the power of CCG’s suggesting that they should perhaps be avoided unless

this extra power is actually needed.

5.4 Schema for Coordination

A cha.ra.cteristic-fea.éure of LCFRS’s is that they are unable to produce two structures
exhibiting an unbounded dependence. It has beén suggested that this capability may
be needed in the analysis of coordination in Dutch, and an extension of CCG’s has
been proposed by Steedman [78] in which this is possible. The following schema is
included. |

+

zT conjz — z

where, in the analysis given of Dutch, z is allowed to match categories of arbitrary
size. Two arbitrarily large structures can be encoded with two arbitrarily large
categories. This schema has the effect of checking that the encodings are identical.

The addition of rules such as this increases the generative power of CCG’s, e.g., the



following language can be generated.
{(wo)* | w € {a,b}"}

We believe that this language can not be generated by an LCFRS3. In giving analysis
of coordination (in lé.nguag&s other tilan Dutch), only a finite number of instances
of this schema are required since only bounded categories can be coordinated. This
form of coordination can thus be encapsulated in the assignments to lexical items,
and does not require the use of powerful coordination schema.

In addition to the schema given above, Steedman [78] considers ty.pe raising
schema. These schema can be applied to the categories assigned to lexical items to

'prodqce arbitrarily many categories. An example of such a schema follows.
B — ((Ale)/((Ala)\B))-

This indicates that if the category B is assigned to a lexical item then for any

possible category (A|a) a type raised category ((A4|a)/((A|a)\B)) can be assigned

to the lexical item. With the addition of such schema, the proofs used in the earlier

section to show the equivalence of CCG’s with TAG’s would not go through.

5.5 Generalized Composition

Steedman [78] considers a CCG in which there may be an infinite number of com-

position rules. For each n > 1 there can be a rule of the form
(z/y) (... (whzai)lz--dnza) = (.- (zh21)|2- - - |[n2a)

(... (hz)lz---1aza)  (2\y) = (... (z]121)]2--- lnzn)

3Although the details of how these schema can be used in a grammar have not been formalized.
it appear that in their general form they would make CCG’s equivalent to IG’s
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With this addition, the generative power of CCG’s increases. We show this by giving
a grammar for a language that is known not to be a Tree Adjoining-language. Con-
sider the following CCG. We allow unrestricted use of arbitrarily many combinatory

rules for forward or backwards generalized composition and application.

f(e) = {5}

(a1) = {A1} f(4) =
(a2) = {A2} f(b2) = {B:}
(c1) (dy) =

(c2) (d2) =

a

~

fler) = {S\A1/D,/ S\ B} F(dy
flez) = {S\Az/D2/S\B:} f(d2

- { Dz}
When the language L, generated by this grammar is intersected with the regular

language {aja3bicibicid;d; } we get the following language.
= {aPaPEp P bpeRdPdy | nyyny 2 0)

The pﬁmping lemma for Tree Adjoining Grammars [82] can be used to show that

L’ is not a Tree Adjoining Language. The pumping lemma can be stated as follows.

Theorem 5.5.1 If Lisa TAL, then there‘ is a constant n such that if

z € L and |z| > n then
1. z = uy 0w VUV wWovLUs
2. |vywyvavawavgl < 1
3. |vyvguavy| 21
4. uyviwyviugviwgviug € Liorall i >0

This pumping lemma states that we must allow pumping at 4 points in the string.

It also states that there is a bound on the length of w; and w;. Although there are 4
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positions that when pumped would continue to yield strings in L', we can not find 4
suitable places to pump such that the gaps corresponding to w; and w; are bounded.
.Hence L' can not be a TAL. Since L' -is not a Tree Adjoining Language and Tree
Adjoining Languages are closed under intersection with Regular Languages, L can
not be a Tree Adjoining Language either.

This form of composition is permitted in the Parenthesis-free Categorial Gram-
mars which have been studied in [23, 22]. Thus, a consequence of the example given
in this section is that Parenthesis-free Categorial Grafn.rna.rs are more powerful than
CCG's.

In the remainder of this section we briefly consider changes to LIG’s and NPDA’s
'Lha.t appear to directly correspond to the addition of these schematic composition
rules to CCG’s. We make no attempt to prove that these extensions to CCG’s,
LIG’s, and the NPDA produce equivalent systems.

The appropriate addition to LIG’s would appear to.require rules of the form
Alayaz] = Bley]Claz]

in which the unbounded stack [o; @] has an unbounded number of symbols a; popped

from it.
Example 5.5.1 The language L’ given above can be generated by the
following extended LIG.
Sl — a,S[- - h]d, S[-] = a2S[- - I3]d,
5[&1&2] — 51[&1152[&2]51[' . 11] — 6151[--]C1 51[] — €
Saf- - l2] = 053]y . Saf] — €
A similar extension can be made to the NPDA’s. An unbounded number of

symbols can be popped off the top stack by permitting the NPDA transition function
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to specii:y that the top stack should be split into two unboundedly large separate

stacks.

5.6 Derivations Trees

We examine derivation trees of CCG’s and compare them to those of LCFRS’s.
In order to compare CCG’s with other systems we must choose é. suitable method
for the representation of derivations in a CCG. In the case of CFG, TAG, HG, for
example, it is fairly clear what the elementary structures and composition operations
should be, and as a result, in the case of these formalisms, it is apparent how to
.represent derivations.

The traditional way 'in which derivations of a CCG haveé been represented has
involved a binary tree whose nodes are labeled by categories with annotations in-
dicating which combinatory rule was used at each stage. These derivation trees
are different from those sysferns in the class of LCFRS’s in two ways. They have
context-free path sets, and the set of categories labeling nodes may be infinite. A
property that they share with LCFRS’s is that there is no dependence between un-
bounded paths. In fact, the derivation trees sets produced by CCG’s have the same
properties as those produced by LIG’s (this is apparent from the construction in
Section 5.2.1).

Although the derivation trees that are traditionally associated with CCG’s differ
from those of LCFRS’s, this does not preclude the possibility that there may be
an alternative way of representing derivations. What appears to be neéded 1s some
characterization of CCG’s that identifies a finite set of elementary structures and a

finite set of composition operations.



Let us consider what is in many ways the most natural way of attempting to
represent CCG derivations with a tree in which the function argument structure is
given. When some lexical item a has tl;e category ¢ = (A[1€1+ "+ |nCn), We can think
of a as having the category of a n argument function from objects of categories
€1,...,cn to an object of category A, the target category. We can therefore use
a tree to represent the function argument structure given by a CCG derivation of
A using the assignment of € to the lexical item a.. The tree would be rooted in a
node labeled by A with n subtrees showing the function argument structure of the
n arguments ¢y,...,Cq.

These function argument trees do not, however, encode the CCG derivation since
it is not in general possible to recover the derivai;ion from such a tree. The same
function argument tree could result from distinct derivations of the same string. This
has léd to the suggestion that CCG’s “suffer” from spurious ambiguity. However,
derivations of different strings can map onto the same function argument tree. We
show this wit%x the following example. Suppose that w;a could produce the three
CCG derivations shown in Figure 5.4. These three trees could be combined in two
possible ways, (shown in Figure 5.5) producing the same function argument tree.
Notice that the two trees in Figure 5.5 have distinct strings on their frontier. This
shows that CCG’s can not really be said to suffer from spurious ambiguity, but
instead, they can make more fine grained distinctions than are present in a function
argument tree?.

It is possible that there is some way of adding a finite number of annotations to

41t is interesting to note that this example is not possible in an alternative version of Categorial
Grammars considered by Moortgat [55] that derives from the Lambek Calculus discussed in [81].
In Moorgat’s system. disharmonic composition (involving slashes of mixed directionality) of the
kind used in this example is not permitted.
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S\ay/ A Al a\B B

w1 w2 w3

Figure 5.4: Three partial CCG derivations

S\ay/ o _ S\oy/ o
S\ay/ A Al B S\oy/ \B
w1 B Al 0\B w3 S\ay/ A Al 0\B
YANYAN AN
w3 w2 wl w2

Figure 5.5: Alternative derivations

these function argument trees so that they are true derivation trees from which a
unique derivation can be recovered.

The equivalence of TAG'’s and CCG’s suggests one approach to this. The con-
struction that we gave from TAG’s to CCG’s produced CCG’s having a specific
form which can be thought of as a normal form for CCG’s. We can represent the
derivations of grammars in this form with the same tree sets as the derivation tree
sets of the TAG from which they were constructed. Hence CCG's in this normal
form can be classified as LCFRS’s. -

TAG derivation trees encode the adjunction of specified elementary trees at
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specified nodes of other elementary trees. Thus, the nodes of the derivation trees are
labeled by the names of elementary trees and tree addresses. In the construction used
in Section 5.2.2, each auxiliary tree pr&duces assignments of elementary categories
to lexical items. CCG derivations can be represented with trees whose nodes identify
elementary categories and specify which combinatory rule was used to combine it.
For grammars in this normal form, a unique derivation can be recovered from these
trees, though, as we have seen, this is not true of arbitrary CCG’s where different
orders of combination of the elementary categories can result in derivations that ﬁmst
be distinguished. In this normal form, the combinatory rules are so resf.riétive that
there is only one order in which elementary categories can be combined. Without

such restrictions, this style of derivation tree must encode the order of derivation.
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Chapter 6

Conclusions

_This dissertation has been concerned with formalizations of linguistically and com-
putationally important aspects of grammar formalisms. Much of the earlier research
in this area has concerned matters of weak generative capacity. Although we have
also looked at this property of formalisms, and shown that various formalisms gener-
ate the same string languages, we have in addition, made an attempt to investigate
other aspects of the descriptive capacity of formalisms. Most attention is given to
formalisms with highly constrained generative power, in particular, a class of for-
malisms that has been named mildly context-sensitive grammar formalisms. This
class is believed to contain formalisms that are suitable for the representation of
natural language grammars.

In Chapter 2 we examined the tree sets or structural descriptions produced by
several formalisms in terms of their path sets and the dependence between paths.
We show that Tree Adjoining Grammars (TAG’s) have path sets that, like those of
Indexed Grammars (IG’s), are context-free languages. We found that formalisms

(such as IG’s) that are able to compare unbounded hierarchical structures have trees
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sets in which have dependence between paths. Although the notion of dependence
between paths is intuitively reasonably clear, we have not yet been able to give
a suitable definition that applies to a.;'bitra.ry tree sets. Formalisms such as IG’s
generated tree sets with unbounded number of unboundecily large paths. We also
observed that tree manipulating formalisms such as TAG’s had both object and
meta level tree sets associated with them. The meta level or derivation tree sets
of many of the formalisms that were considered in Chapter 2 where essentially
identical. We take this to be a reflection of an underlying similarity between these
notationally quite different fdrma.lisms. These derivation trees reflect the fact that in
each case the formalism’s derivation process is context-free. That is, choices about
how to rewrite at each stage in the derivation are independent of the derivational
context. Derivation trees prove to be useful objects to consider since they represent
an abstraction away from the details of the formalism.

In Chapter 3 we extended the observations of Chapter 2 by describing a range
of new formalisms that share many of the properties characterized in Chapter 2.
Several recent results, including those of Chapter 5 have shown that there is a class
of languages generated by a number of grammar formalisms that falls slightly out-
side Context;Free Languages (CFL’s). For a number of reasons this appears to be a
natural class of languages, and in a sense, is one step up from CFL’s. We described
a number of progressions that shed light on the relationship between this class and
CFL’s. These progressions are defined in terms of tree sets, grammar formalisms, au-
tomata, and generators. There are many questions that arise out of these definitions
concerning the relationship between each of the progressions, and other formal prop-
erties, such as closure properties, of members of each class. We have answered some

of these questions, but substantial amount of work remains before these progressions
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will be satisfactorily characterized. In addition, there are other characterizations of
a similar progression that we have not given, for example, in terms of tree automata.
We believe that in this chapter, an a.c::ount is provided of the notion of “limited”
crossed -dependencies, as they appear in Tree Adjoining Languages (TAL’s), Head
Languages (HL’s), Combinatory Categorial Languages (CCL’s) and Linear Indexed
Languages (LIL’s). According to this analysis, crossed dependencies of this form
arise from the simultaneous application of 2 nested dependencies.

Based on the observation that a number_ of grammar formalisms have similar
derivation tree sets to those of Context-Free Grammars (CFG’s), in Chapfer 4 we at-
‘tempt to formalize the class of all such forrna.lisrhs, which we call Linear Context-Free
Rewriting Systems (LCFRS’s). Not only are restrictions placed on the derivation
tree seté, but we restrict the composition operations to be linear and non-erasing.
We then investigate the computational properties of these systems. Intuitively, there
appeared to be arrelationship between the notion of independence of paths and the
ability to perform recognition based on efficient divide-and-conquer based recogni-
tion. Indeed based oz a result in [67] we find that the recognition problem for the
class of languages generated by éuch systems is properly contained in P (the class
of polynomial-time solvable languages). In [67] a class of systems is given whose
recognition problems are exactly the class P. Upper bounds for the complexity of
recognition afe given for various subclasses of these systems. These upper bounds
are determined by the efficiency of the Alternating Turing Machines produced by
the construction given in proving the inclusion in P. These appear to be very loose
bounds since, for example, TAL's and HL’s get an upper bound of O(n?°)). It would
be interesting to investigate whether, given the additional restrictions of LCFRS’s.

tighter upper bounds can be found. In Chapter 4, we show that each languages is
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semilinear, and hence constant growth. It might be possible to extend the proof of
the pumping lemma for CFL’s to give weak pumping lemmas each LCFRS’s, based
on certain parameters of the system. )

We show that the class of languages generated by LCFRS’s is equal to the class
generated by the extension of TAG’s in which sequences of trees are simulté.neously
adjoined in sequences of trees (Multicomponent TAG’s or MCTAG’s). From the
proof of this result, it is clear that MCTAG’s are equivalent to a similar generaliza-
tion of CFG’s (in which finite sequences of productions are used to simultaneously
rewrite the nonterminals on the right-hand sides of another sequence of productions).

The restrictions placed on the composition operations of LCFRS’s are given
mainly in terms of their effect on the terminal strings. It would be preferable to find
some general way of formalizing these restrictions in terms of the structures (e.g.,
trees, tree sequences, or directed acyclic graphs) that the formalism manipulates.
The intuition that we would like to formalize is that the operations should add
together their arguments without copying or deleting unbounded structure, and
in a sense they should not “restructure” their arguments. We would like to have
some general way of describing this restriction which can apply to arbitrary rewrite
systems.

Chapter 5 investigates Combinatory Categorial Grammars (CCG’s), and ex-
tension of Classical Categorial Grammars. We describe a formalization of these
- grammars and show that it is weakly equivalent to TAG’s, Head Grammars (HG’s)
and Linear Indexed Grammars (LIG’s). As a consequence of establishing their re-
lationship with other grammar formé.lisms, the results of this section show that
CCL’s inherit the results that have previously been established for these other sys-

tems. In particular, this results shows that CCG’s can be recognized in pulynomial
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time (in fact an upper bound'of O(n®) has been given). We also show that addi-
tions to the system that have been used for certain Dutch coordination phenomena
significantly increase the power. In déing so, we also show that Parenthesis-f‘ree
Categorial Grammars have more power than CCG’S. It is an open question whether
these Dutch coordination phenomena can be described using a grammar formalism
that has highly restricted generative power. The machinery that has been added
to CCG’s appears to give them the same weak generative power as IG’s. In Chap-
ter 5 we also considered various ways in which- CCG derivations can be represented.
For reasons that are explained in Chapter 5, it is difficult to emulate the approach
adopted to represent the derivation trees of a TAG. It was therefore not possible to
'show that CCG’s possessed the necessary restrictions for membership of the class of
LCFRS’s. Lambek Calculus as studied in [55] is a formalism that is closely related
to CCG’s, but whose generative capacity has not been related to CFG’s. It would
be interesting to investigate whether this system is a LCFRS.

In this dissertation we have compared several of grammar formalisms, in partic-
ular those that have been described as mildly context-sensitive. We have identified a
number of important common properties of some of these formalisms, as well as ways
in which they differ. Perhaps the three most notable findings arising from our work
are the following. (1) We found four formalisms (TAG’s, HG’s, CCG’s, and LIG’s)
whose weak generative power were identical. (2) We established the relationship
between this class of languages and CFL’s by identifying a natural progression from
regular languages to context-free languages to the TAL's (HL’s, CCL’s and LIL’s)
and beyond. (3) We found that a number of formalisms, having a range of weak
generative power could all be viewed has héving the same underlying context-free

derivation process.
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