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Abstract

Whether perceptual organization favors the simplest or most likely in-
terpretation of a distal stimulus has long been debated. An unbridgeable
gulf has seemed to separate these, the Gestalt and Helmholtzian view-
points. But in recent decades, the proposal that likelihood and simplicity
are two sides of the same coin has been gaining ground, to the extent
that their equivalence is now widely assumed. What then arises is a de-
sire to know whether the two principles can be reduced to one. Applying
Occam’s Razor in this way is particularly desirable given that, as things
stand, an account referencing one principle alone cannot be completely
satisfactory. The present paper argues that unification of the two prin-
ciples is possible, and that it can be achieved in terms of an incremental
notion of ‘information seeking’ (infotropism). Perceptual processing that
is infotropic can be shown to target both simplicity and likelihood. The
ability to see perceptual organization as governed by either objective can
then be explained in terms of it being an infotropic process. Infotropism
can be identified as the principle which underlies, and thus generalizes the
principles of likelihood and simplicity.

Keywords: perceptual organization, likelihood, simplicity, information
theory, Occam’s razor

1 Introduction

Processes of perceptual organization provide a fascinating insight into the in-
terpretive faculties of the human mind. While we generally have no conscious
awareness of any separation between cognitive and perceptual levels of inter-
pretation, visual stimuli can be devised that show this to exist. The two levels



can operate quite independently in some situations. The classic demonstration
is the Necker cube. This is a wire-frame image of a cube, drawn so as to elim-
inate the foreshortening that would normally suggest a particular orientation
(see Figure 1). On viewing this image, people usually recognize it to repre-
sent a 3-dimensional cube, but report a perception that flips slowly back and
forth between two orientations. This reveals the degree to which perceptual
organization can operate as an independent process of interpretation.

The Necker cube is far from unique in this respect. Hundreds of exam-
ples now exist of visual stimuli that prompt unstable, surprising, impossible,
unpredictable, humorous or erroneous interpretations. Such ‘visual illusions’
demonstrate the remarkable extent to which perceptual processes can march to
their own beat (see Figures 2 and 3). At the same time, they beg the question
of principles. The more we recognize the potential decoupling of perceptual
interpretation, the more we would like to know the principles that apply. If
perceptual organization proceeds according to specific rules, it is important to
know what these are.

Figure 1: The Necker cube.

The attempt to understand the principles of perceptual organization has
been underway for well over a century. In the early years of the 20th Century,
theorists of the Gestalt school tried to explain perceptual organization in terms
of some 114 laws, such as good continuation, symmetry and closure (Pomerantz
and Kubovy, 1986; Wagemans et al., 2012) From this set, Boring extracted 14
condensed laws, including naturalness of form and persistence of form (Boring,
1942, pp. 253-254). It is a key to the Gestalt approach, however, that such laws
grow out of the general principle of pragnanz. This asserts, roughly, that stimuli
are organized in the way that most simplifies their global structure. The Gestalt
approach has thus come to be associated with the proposition that simplicity is
the governing principle of perceptual organization, i.e., that it is the simplest
interpretation of a distal stimulus that is preferred (Hochberg and McAlister,
1953; Attneave, 1954).

Contrasting with this is the Helmholtzian view of perceptual organization.
Stemming from the work of von Helmholtz (1860/1962), this also has complex
and diverse origins. What is key for present purposes is the commitment made
to the likelihood principle (Gregory, 1974; Brunswick, 1956). This states that
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Figure 2: The pattern in (a) tends to be organized as two superimposed figures,
as in (b), rather than (c).

‘sensory elements will be organized into the most probable object or event (distal
stimulus) in the environment consistent with the sensory data (the proximal
stimulus)’ (Pomerantz and Kubovy, 1986, p. 36-9). The claim, in this case, is
that preference is given not to the simplest, but to the most likely interpretation
of the distal stimulus.

To some degree, the attempt to explain perceptual organization has come
to be framed as a debate between those who take perceptual organization to
be governed by simplicity, and those who take it to be governed by likelihood
(Hatfield and Epstein, 1985; Leeuwenberg and Boselie, 1988; van der Helm,
2000). But the possibility of these principles being intimately related is also
considered plausible. Brunswick argues that they might co-exist (Brunswick,
1956). Mach proposes that the visual sense operates in conformity with both
(Mach, 1906/1959). Attneave (1982) suggests they may be two sides of the same
coin. Chater (1996) argues they are undifferentiable. He makes the point that
a more probable perceptual representation can always use default assumptions
to a greater degree, thereby increasing apparent simplicity. He also sets out
a mathematical proof which demonstrates that simplicity and likelihood are



formally equivalent.!

(b) (©)

Figure 3: A perceptual preference relating to an occluded shape. The dark area
in (a) tends to be perceived as a shape occluding (b) rather than (c).

If simplicity and likelihood are two sides of the same coin, the disagreement
between the Gestalt and Helmholtzian positions looks set to dissolve. But there
then arises a strong desire to know if the two principles can be reduced to one.
Is a unification feasible? Applying Occam’s Razor in this way seems particularly
desirable given that, as things stand, an account that references one principle
alone cannot be completely satisfactory. If it invokes the simplicity principle
alone, it misses the point about likelihood. If it invokes the likelihood principle
alone, it misses the point about simplicity.

The present paper takes the position that the two principles can indeed be
reduced to one. The proposal, specifically, is that the equivalence of simplicity
and likelihood can be explained in terms of infotropism, which is the label the
present paper gives to information seeking. It is shown that processing which
behaves in this way acts in conformity with both principles. Any explanation in
terms of simplicity or likelihood can thus be reduced to an explanation in terms
of infotropic processing.

The argument is developed over four main sections. The section immedi-
ately to follow (Section 2) introduces inverse information measurement, which
is key for characterizing infotropic processing. Section 3 demonstrates the sense
in which infotropic processing of representations has the effect of targeting both
simplicity and likelihood. Section 4 discusses related work, and examines the

LChater uses Kolmogorov complexity theory (Chaitin, 1966; Kolmogorov, 1965; Li and
Vitanyi, 1997; Solomonoff, 1964) for this. The proof is not uncontroversial, however. In the
view of Feldman (2009, p. 885), Chater shows in a ‘a very general but also somewhat abstract
sense’ that the two principles are identical. But van der Helm argues the proof is invalid due to
mistaking ‘the Bayesian formulation of the Occamian simplicity principle for the Helmholtzian
likelihood principle’ (van der Helm, 2011, p. 340; see also van der Helm, 2000).



more general implications of the proposal. Information theory is the main refer-
ence throughout. But the information-theoretic concepts used are at the simpler
end of the mathematical spectrum, and they are all explained informally within
the text. A full understanding of Shannon information theory is not required.
Two technical points are also worth mentioning at the outset. Many of the
examples in the text cite information values. These are rounded to two decimal
places where necessary. Logarithmic values are calculated to base 2 in all cases.

2 Inverse information measurement

It is almost a century since R. L. Hartley first proposed the principle of loga-
rithmic measurement on which information theory is based. Hartley noted the
informational value of an outcome drawn from a choice of N is naturally mea-
sured using a logarithm of N (Hartley, 1928). Assuming logs are calculated to
an integer base, this is the number of digits (in that base) required to identify
or communicate the outcome. Given use of base 2, information values can then
be expressed in terms of binary digits or ‘bits’. The informational value of an
outcome drawn from a choice of N is said to be log, N bits. This is just the
number of binary digits required to communicate a 1-in- N outcome. The metric
can be applied to any situation that presents a well-defined choice of outcomes.
There is no requirement for a communications context. Consider, for example,
a party cracker that contains either a paper hat or a gift. Here, there are just
two outcomes. Given N = 2, the informational value of an outcome is log, 2 = 1
bit. The outcome obtained by pulling the cracker has an informational value of
1 bit.

In the probabilistic generalization that Shannon developed twenty years after
Hartley’s publication, the information measure is redefined as —log, p where p
is the probability of the outcome (Shannon, 1948; Shannon and Weaver, 1949).
This accommodates the case where the outcome is drawn from a choice of N,
since then p = % and —logp = log N. But Shannon’s formulation is more
general, since it makes no assumptions about how probabilities are derived.
Averaging is also facilitated. Given a distribution over outcomes, the average
informational value of an outcome is just a weighted sum:

> (-~ log, pi)ps
Noting that this formula also defines physical entropy, Shannon adopted the

term ‘entropy’ for average information, and put the formula into its usual ar-
rangement:

—> pilogspi

Average information is generally termed entropy as a result. However, where
—log, p is called the ‘surprisal’ the term ‘average surprisal’ is a valid alterna-



tive (Tribus, 1961). In this paper, ‘surprisal’ is used throughout. But average
information may be termed entropy or average surprisal depending on context.

The enormous impact that information theory has had on neuroscience and
psychology stems from this formula. The cognitive interpretation that arises
is seen as particularly significant. The amount of information that is expected
with regard to some set of possible outcomes can be seen as the level of uncer-
tainty that exists regarding those outcomes. Entropy can be seen as measuring
uncertainty in this way. The effect can be illustrated using the party cracker
example. Say initially we know that party crackers contain hats with probabil-
ity 0.7. The average value of an outcome is (—1og0.7 x 0.7) 4+ (—10g0.3 X 0.3) =
0.88 bits.? We have 0.88 bits of uncertainty about about whether a cracker
will contain a hat or a gift. Subsequently, we discover that crackers contain
hats with probability 0.9. The average value of an outcome then decreases to
(—10g0.9%0.9)+(—1og0.1x0.1) = 0.49 bits. Our level of uncertainty is reduced
to 0.49 bits. If crackers are eventually discovered to contain hats with probabil-
ity 1.0 (i.e., to never contain gifts), the entropy falls to zero bits, reflecting the
completely elimination of uncertainty from the scenario.

Entropy measures uncertainty in this way, and for theorists interested in
cognition, the relationship is of great interest. Especially of note are the impli-
cations for sensory processing. In general, the purposes of a sensory mechanism
are better served if sensory data have lower entropy, since where there is less
entropy, there must be less uncertainty about what is sensed. On this basis, the
objective of a sensory mechanism can be framed as the attempt to minimize the
entropy of sensory signals. This is the fundamental premise of the ‘efficient cod-
ing’ paradigm of neuroscience, advocates of which include Barlow (1959, 1985,
2001), Watanabe (1960, 1969), Atick (1992), Field (1994), Olshausen and Field
(1996), Gross (2002) and Quiroga (2005).3 But sensory processing is far from
the only functionality that can be modeled this way. Researchers have found
numerous ways in which knowledge construction, and cognitive function more
generally, can be modeled as entropy minimization (e.g. Pearce et al., 2008;
Pothos, 2010; Friston, 2010, 2013).

Entropy minimization is one type of ‘information seeking’. By reducing
uncertainty, we implicitly increase the information possessed in advance. But it
is not the type with which the present paper is concerned. The present goal is to
posit information seeking as the underlying principle of perceptual organization.
This is problematic if we equate information-seeking with entropy minimization.
In order to model functionality F' as entropy minimization, we need to know
the true probabilities of data used by F, and we need to be able to view F
as a single act of minimization. In the case of perceptual organization, both
requirements are difficult to satisfy. Nobody knows the true probabilities of
the sensory signals underlying human perception; and it is hard to see how

2Real values are rounded to two decimal places throughout.

3The roots of the tradition predate the establishment of information theory, however (e.g.
Craik, 1943). Theorists of the nineteenth Century, such as Mach (1896/1959), Pearson (1892)
and von Helmholtz (1860/1962), also emphasized the way efficient coding of experience may
underpin knowledge of the world.



perceptual organization could be accomplished by a single act of minimization.

Proceeding in this way is not an impossibility, however. Chater shows some-
thing along these lines as part of his proof that simplicity and likelihood are
equivalent (Chater, 1996). In the argument made from information theory,
Chater equates perceptual interpretations with optimal codes. This has the
effect of making simplicity and likelihood equivalent by definition. The connec-
tion follows directly from the fact that optimally short codes are also maximally
probable. But the probability distributions on which optimality is decided re-
main unspecified, and it is not obvious how a single entropy minimization could
mediate the organizational process.*

Modeling perceptual organization directly as entropy minimization faces sig-
nificant difficulties, then. But the situation for information seeking more gen-
erally is more complex. In the standard use of the Shannon paradigm, we
measure the informational value of data (e.g., signals) given an applicable prob-
ability distribution. It is possible to invert the measure, however, so as to derive
the informational value of a probability distribution given observed data. This
inversion of the standard metric is what the present paper terms inverse infor-
mation measurement. The method is of particular interest for present purposes
as it offers a way of seeking information that avoids the need for entropy mini-
mization.

Consider the cracker scenario again. Imagine a cracker that has a label spec-
ifying the chance of getting a gift versus the chance of getting a hat, e.g., ‘30%
chance of a gift, 70% chance of a hat’. The real probabilities are unknown, but
when the cracker is pulled, what emerges is a hat. What is the informational
value of the suggested distribution in light of this outcome? To calculate the an-
swer, we need to determine the informational value of the suggested distribution
given the observed outcome.

The immediate obstacle for this form of measurement is that it cannot use
the suggested distribution as a basis for calculating informational value. Being
only ‘suggested’, the distribution does not define true probabilities. What can be
used instead is the principle of maximum entropy (Jaynes, 1957).% This asserts
that where there is no knowledge of a particular set of outcomes, a distribution
of maximum entropy should be assumed. Bringing this principle into play, it is
possible to calculate the expected informational value of a suggested distribution
in the light of a particular outcome.

In the case of the envisaged cracker, the label says ‘30% chance of a hat, 70%
chance of a gift’. The label divides probability between the observed outcome (a
hat) and the unobserved outcome (a gift). Probability assigned to the observed
outcome can also be seen as the probability of gaining the value of this outcome
by correctly predicting it. The complementary probability can be seen as the
probability of losing the value of the observed outcome by failing to predict it.
Averaging these gains and losses then establishes the informational value of the

4Chater himself describes the proof from information theory as ‘unsatisfactory in two ways’
(Chater, 1996, p. 572). However, this is on the basis of a different analysis of the problems
arising.

5This is sometimes called the principle of ‘not being over-confident’.



distribution as a prediction of the observed outcome.

Given there are only two outcomes, the maximum entropy in this scenario is
log, 2 = 1 bit. The informational value of the suggested distribution (P), given
the observed outcome () is thus

1 ify=ux
I(Px) =" P(y) (1)

yeD —1 otherwise

This defines the informational value of distribution P as a prediction of outcome
x, given two possible outcomes. On this basis, the maximum evaluation is just
the full value of an outcome (i.e., the maximum entropy). This is achieved if all
probability is assigned to the correct outcome. The minimum evaluation is the
negative of the maximum. This is achieved if no probability is assigned to the
correct outcome. With IV outcomes, it is then the case that

logo N > I(P,z) > —logy N

Using this way of dealing with the two-outcome scenario, it is possible to com-
pare evaluations of Eq. 1 against intuitive judgements. Let the assumption
continue to be that pulling the cracker produces a hat. This is a situation in
which a label giving more probability to hats is most informative. But the de-
gree of emphasis is relevant too. Given the outcome is a hat, a label specifying a
90% chance of a hat seems more informative than one specifying a 75% chance
of a hat, which seems more informative than one specifying a 60% chance, and
so on. A label giving a 50/50 chance of either outcome would seem to have no
informational value whatsoever. But what of a label that gives a 75% chance
of a gift? Given the outcome is a hat, this seems even less informative than the
50/50 label. It is positively misinformative. How can this be, if the value of the
50/50 label is itself zero?

Close examination of Eq. 1 resolves the puzzle. The formula faithfully
tracks our informal judgements. Given the outcome is a hat, the ‘90% chance
of a hat, 10% chance of a gift’ label has a value of 0.9 — 0.1 = 0.8 bits®, whereas
the ‘75% chance of a hat, 25% chance of a gift’ label has the lower value of
0.75 — 0.25 = 0.5 bits. The 50/50 label has a value of zero bits, as expected.
The ‘25% chance of a hat, 75% chance of a gift’ label, on the other hand, has a
value of 0.25 — 0.75 = —0.5 bits. Here, the value is less than zero due to being
negative. Negative evaluations are obtained whenever probability is distributed
away from the observed outcome. The expected loss then exceeds the expected
gain, producing a net loss. If probability is distributed towards the observed
outcome, the expected gain exceeds the expected loss, producing a net gain.
The label’s informational value can be either positive or negative in this way.
In the two-outcome scenario, it increases linearly (from -1 to 1 bit) with the
probability assigned to the correct outcome, as in the graph of Figure 4.

6Calculations in this simplified form are possible whenever the maximum entropy value is
1.
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Figure 4: Inverse information measurement with two outcomes.

An obviously unsatisfactory feature of Eq. 1 is its assumption of there being
two possible outcomes. In general, there may be any number. If there are more
than two, the maximum entropy is greater than 1 bit, and the number of possible
outcomes not arising in each case is also greater than 1. The definition needs
to be restated to link the informational value of a choice to the appropriate
entropy. We also need to ensure commensurability between gains and losses by
normalizing the latter with respect to the total number of unobserved outcomes.
These requirements are met in the following generalization:

log, |D| ifz=y
I(P.x) = Ply) (2)

_ logy ‘D‘ s
yED D=1 otherwise

This defines the informational value of distribution P as a prediction of outcome
x, where D is the set of possible outcomes. Notice that set D may be of any
size, allowing for application to a choice with arbitrarily many outcomes. If D
contains two elements, the formula reduces to Eq. 1. The informational value
is log, 2 as before, and the normalization is just a redundant division by 1. If
D contains more than two elements, the loss is then normalized with respect to
the number of false outcomes, as required.

Eq. 2 is a completely general way of measuring the informational value
of a distribution as a prediction of a particular outcome. It can be used to
evaluate any distribution with respect to an observed outcome to which the
distribution applies.” It is important to keep a clear distinction between entropy

"Consider the following illustrations: (1) A doctor gives a 75% chance of a test producing
a negative result, a 15% chance of it producing a positive result, and a 10% chance of it
producing a non-result. If the outcome is a positive result, the suggested distribution has the
negative value of -0.435 bits, and the doctor’s analysis is found to be positively misinformative;
(2) A weather forecaster gives a 20% chance of sun, a 20% chance of rain, and a 60% chance



measurement and inverse information measurement, however. The former is
the standard metric defined by Shannon (1948; Shannon and Weaver, 1949).
This is the appropriate measure for any conventional setting, i.e., whenever
interest focuses on the informational value of data. The latter is an inversion
of the standard metric, of use in the special case where interest relates to the
informational value of predictions.

The case where we have multiple observed outcomes can also be dealt with.
In this situation, the measurement of informational value is arrived at by av-
eraging. The simplest situation is where we know the true probabilities with
which outcomes arise. We might know the true probabilities with which par-
ticular objects are put into crackers, for example. We can then calculate the
average over all outcomes as an expectation:

I(P,, Py) =Y Pr(x)I(Ps, ) (3)
zeD

Here, P; is the suggested distribution, and P, is the real distribution. The value
of I(Ps, P,.) is the average informational value of the distribution for predicting
outcomes defined by P,.. The more likely scenario is where the true probabilities
are unknown, but we have access to a set of observations. In this case, the mean
value is obtained in the usual way, by averaging across observations.

3 Infotropism, simplicity and likelihood

Having taken the inverse method of information measurement into account, it is
possible to look again at the issue of ‘information seeking’. As noted, this pro-
cess is conventionally identified with entropy reduction (e.g. Watanabe, 1969;
Barlow, 1959; Friston, 2013). Entropy models have been developed in a broad
range of areas (e.g. Pearce et al., 2008; Pothos, 2010; Friston, 2010). In light
of the potential for inverse information measurement, a shift of perspective can
be made. Instead of equating information seeking with entropy minimization,
we can equate it with model selection. Adoption of a probabilistic model can
be considered to gain information just in case its (inversely measured) infor-
mational value with regard to relevant data is greater than otherwise achieved.
This is also ‘information seeking’; but a single act of entropy minimization is no
longer assumed.

What is relevant for present purposes is the scope this offers for new forms
of explanation. There is the opportunity to classify a perceptual system in a
novel way. Any perceptual system which updates representational choices in
accordance with a preference for informational value can be said to be seeking

of snow. Given the outcome is snow, the value of the suggested distribution is 0.633 bits;
the forecast is found to be moderately informative; (3) An estate agent gives a 60% chance
of selling a property for more than the asking price, a 10% chance of selling for the asking
price, a 20% chance of selling for less than the asking price, and a 10% chance of not selling
at all. Given the outcome is a sale at less than the asking price, the value of the distribution
is -0.133 bits; the agent’s analysis is found to be misinformative.

10



information in this way. Entropy minimization is neither assumed nor implied.
The present paper introduces infotropism as a label for information seeking of
this sort. By extension, seeking information by means of inverse information
measurement is termed infotropic. A perceptual system which updates repre-
sentational choices in accordance with a preference for informational value is
said to exhibit infotropic behavior.

Implications for perceptual organization can then be examined. It has been
seen that processes of perceptual organization can be explained in terms of
adherence to the simplicity principle or, equivalently, adherence to the likeli-
hood principle. What can now be shown is that perceptual processing that is
infotropic must subserve both principles. Where observed data are given rela-
tively more probability, the informational value of the distribution in question is
increased. Resolving a representational choice infotropically thus ensures that
observed data acquire greater probability. Infotropic processing of an inter-
pretation ensures observed data acquire the highest probability given available
representational choices. This is the sense in which infotropic processing upholds
the likelihood principle.

At the same time, the simplicity principle is accommodated. Under inverse
information measurement, the value of a distribution in a particular situation
depends on the degree to which probability is concentrated on the observed
outcome(s). Infotropic processing of interpretive representations ensures that
extremal distributions (i.e., ones with lower entropy) are preferred. Proba-
bilistic representations accommodating relatively fewer outcomes are a natural
consequence of infotropic processing.® This is the sense in which infotropic pro-
cessing upholds the simplicity principle. A perceptual system that is infotropic
in character will appear to choose representational states in accordance with a
preference for both simplicity and likelihood.

This has the effect of unifying the two principles of perceptual organization,
and explaining why they are equivalent. But it also leads to a new way of char-
acterizing the experience of perceptual organization. Instead of seeing it as a
process in which we unconsciously seek out the simplest (or most likely) inter-
pretation, we can characterize it as one in which we seek an interpretation that
is maximally informative of sensory data, given representational choices. What
we are seeking, on this account, is an interpretation which makes existing rep-
resentations maximally informative with respect to sensory data. By definition,
this interpretation is both maximally simple and maximally likely.

A potential criticism of the account relates to its subjectivist interpretation
of the likelihood principle. As in (Chater, 1996), the proposal assumes that the
most likely interpretation of the distal scene must be one that is represented
by the perceptual agent as most probable. It is sometimes argued that this
is invalid. In particular, van der Helm argues ‘the Helmholtzian likelihood
principle is about unconscious inference and holds that the visual system chooses
the interpretation which objectively is most likely to be true, that is, not that

8 A distribution that accommodates relatively fewer outcomes is one which places negligible
probability on relatively more.
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it chooses the one which persons subjectively believe is most likely to be true’
(van der Helm, 2011, p. 338). The present approach proceeds on the basis that,
in the absence of magical powers of perception, a genuinely objective choice of
this sort is a logical impossibility. A subjective interpretation of the likelihood
principle is taken to be inevitable.”

4 Discussion

Given the degree to which the likelihood and simplicity principles have been pit-
ted against each other in explanations of perceptual organization, their putative
equivalence places theorists in an odd position. What were once seen as com-
peting accounts must now be seen as explanations that are, strictly speaking,
both false. More positively, we might say both are true up to a point. Either
way, the situation calls for remedial action. There is a need to discover if the
two principles can be reduced to one. Given the assumption of equivalence, it
is natural to assume there must be some underlying principle out of which both
principles grow. The critical question from the scientific point of view is: What
is this principle?

The present paper has argued that the underlying principle is infotropism,
where this is defined as information-seeking using inverse information measure-
ment. On this account, perceptual organization seeks neither the simplest nor
the most likely interpretation of the distal scene. Rather, it targets an inter-
pretation that is maximally informative of sensory data, given representational
choices. The effect is identical since this interpretation is both maximally simple
and maximally likely. The proposal can be seen as reflecting the observation
that simpler representations must award higher probability to represented data
(e.g. Mackay, 2003). This is sometimes called the ‘Bayesian Occam factor’
(Duda et al., 2001; Tenenbaum and Griffiths, 2001; Feldman, 2009). In the
closely related minimum-description-length (MDL) approach, Rissanen argues
that under broad assumptions the least complex hypothesis has the highest
Bayesian posterior (Rissanen, 1978).

The proposal is within the general category of theories that deploy a notion
of information preference. A large number of these exist in a broad range of
areas. But the notion used here is not the usual one. The present account
relies on the idea of inverse information measurement, whereas models of this
type generally invoke the entropy calculation. (They are often termed ‘entropy
models’ as a result, e.g. Pothos, 2010). Under the standard assumption, in-
formation is seen to be sought by a single act of entropy reduction. On the
proposed view, it is sought incrementally, by acts of representation change. As
an illustration of the difference, consider Linsker’s infomaz principle (Linsker,
1988). This also uses a notion of information preference. The principle states

9The main objection that van der Helm raises against Chater’s (1996) equivalence proof
also revolves around this point. He argues that the proof is invalid due to mistaking ‘the
Bayesian formulation of the Occamian simplicity principle for the Helmholtzian likelihood
principle’ (van der Helm, 2011, p. 340; see also van der Helm, 2000).

12



that a function which maps a set of input values to a set of output values should
be configured so as to maximize the mutual information between the two sets
(Linsker, 1989). This is on the basis of entropy minimization using non-inverse
information measurement, however. Infotropism and infomax differ in this way.

The present proposal also has connections with coding theory (Hochberg
and McAlister, 1953; Restle, 1979; Simon, 1972), and with the approach of
structural information theory which stems from it (Leeuwenberg, 1968, 1971;
Buffart and Leeuwenberg, 1981; Leeuwenberg and Boselie, 1988; van der Helm
and Leeuwenberg, 1996). These are brought to light by examining infotropic
processing from the efficient-coding perspective. In this view, the objective of
the process is to seek out the simplest probabilistic model (of observed data)
that can be constructed in terms of representational choices. Since an outcome
can be the way another choice is resolved, a representation of this form can have
arbitrarily many levels of structure. The general effect is then not unlike what is
envisaged in structural information theory, in which the objective is the simplest
structural representation that can be assembled in terms of perceptually realistic
codes. !0

In coding theory, however, the driving force is the intrinsic desirability of
representational simplicity rather than infotropism. As Buffart et al. put it,
‘The law of simplicity, within coding theory, is this: The perceptual system ...
will arrive at the interpretation having the lowest information load. This, in a
natural sense, is the interpretation having the simplest code and can therefore
be thought of as the simplest interpretation.” (Buffart et al., 1981, p. 250-
251). Convergence towards the most likely perceptual interpretation is then
explained as a side-effect: van der Helm (2000) uses the precisal concept for
this. The precisal of a stimulus is characterized as its minimum description
length C converted into artificial probability p = 27¢. On this basis, simpler
interpretations are more likely by definition. This then explains ‘where the
perceptual system gets its probabilities from’ (van der Helm, 2000, p. 772).

Also of interest are connections with Feldman’s maximum-depth framework
(Feldman, 2009, 1997, 2003). Feldman focuses on representations in the form
of category hierarchies. More specifically, he envisages ‘a set of mutually em-
bedded model classes of various levels of complexity, including simpler (lower
dimensional) classes that are special cases of more complex ones’ (Feldman,
2009, p. 875). Feldman notes that where perceptual organization is mediated
by representations of this type, the best interpretation is obtained by a kind
of simplicity rule: ‘Among all interpretations qualitatively consistent with the
image, draw the one that is lowest in the partial order, called the maximum-
depth interpretation’ (Feldman, 2009, p. 875). Under reasonable assumptions,

107t is argued that structural information theory faces a considerable challenge in deciding
what these are (Wagemans, 1999; Wagemans et al., 2012). Chater comments that one of the
problems dogging approaches based on coding theory is that ‘the predictions of the theory
depend on the description language chosen, and [the fact] that there is no (direct) empirical
means of deciding between putative languages’ (Chater, 1999, p. 571). In a similar vein,
Olivers et al. note that the ‘fundamental issue in building any coding language is which
regularities to include and which not to include’ (2004, p. 244).
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this choice is the one that maximizes likelihood. Utilization of classes with the
lowest position in hierarchical structure is then found to be a way of maximizing
both likelihood and simplicity.

The present proposal can be related to Feldman’s framework in the follow-
ing way. Feldman shows that an underlying simplicity objective can lead to
the emergence of representations that favor likelihood. The implication is the
familiar one—simplicity and likelihood are equivalent. But, here, simplicity and
likelihood are connected via a notion of processing specifically. The relationship
with the present proposal is made a little closer. For a perfect fit, we would
need to see Feldman’s maximum-depth procedure as infotropic processing. Is
this possible? One way to conceive a hierarchy of model classes is as a struc-
ture of choices in which outcomes represent classes, and distributions define
subsumption relations. In such a hierarchical structure, we would expect infor-
mational values to decrease as choices are resolved (infotropically) bottom-up,
following presentation of primitive data. On this basis, the lowest outcomes in
the hierarchy that subsume all relevant data will tend to have the highest infor-
mational values. Given the way we are viewing the hierarchy, this set is also the
maximum-depth interpretation. The maximum-depth procedure can be seen
as implicitly infotropic in this way, and the relationship with Feldman’s frame-
work is thus quite close. But the present proposal differs in having a specifically
information-theoretic constitution, and in reducing simplicity and likelihood to
a single principle.

The other main area of related work has already been mentioned. Neu-
roscientific work in the efficient coding paradigm holds information seeking to
be fundamental (e.g. Barlow, 1959; Watanabe, 1960; Atick, 1992; Field, 1994;
Gross, 2002; Quiroga et al., 2005). The objective in this paradigm is to explain
sensory processing in terms of use (or development) of informationally efficient
codes. This is not unlike the present objective. But again, there are differences.
Theorists in the efficient-coding tradition base their work on surprisal evaluation
exclusively. Inverse information measurement, and the possibilities of infotropic
processing play no part. Perceptual organization also tends to be a peripheral
concern.

More generally, the over-arching relevance of Occam’s Razor should be ac-
knowledged. This principle states that simpler models are preferable in general.
A widely adopted heuristic of science, the principle has been intensively debated
in the modern era (e.g. Thorburn, 1918; Blumer et al., 1987). Much of what
has been written on the topic bears on the present proposal in some way, and
an exhaustive review is out of the question. But what is envisaged here is not
inconsistent with the general spirit of the principle. Acquiring knowledge of phe-
nomena is assumed to entail developing simpler models. Targeting simplicity in
modeling should have the effect of enhancing knowledge as a result. The present
proposal casts this idea into an information-theoretic form. Targeting simpler
models is understood to be the process of finding a more informative represen-
tation of data, given representational choices. The present proposal can be seen
as giving Occam’s Razor an information-theoretic foundation in this way.
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5 Concluding comment

Viewing any complex scene, we effortlessly arrive at an interpretation which
resolves ambiguities in a particular way. There are then two questions to be
answered: (1) Why is this particular interpretation chosen in this particular
case? (2) By what mechanism is the interpretation obtained? A natural way
of proceeding is to look for an account that explains the effect in perceptual
terms. Taking the Helmholtzian path, we say that we arrive at a particular
interpretation because we perceive it to be the simplest. Taking the Gestalt
path, we say that we arrive at the interpretation because we perceive it to be
the most likely. The drawback with both explanations is that they answer one
question while begging the other. One perceptual result is explained in terms
of another, but without light being shed on the mechanisms involved.

The present proposal pursues a lower-level approach. It offers an account of
perceptual organization that is expressed in terms that are informational rather
than perceptual. The perceptual disposition towards simpler /more likely inter-
pretations is seen to result from infotropic processing of representations. This
leads to a new way of characterizing the experience of perceptual organization.
The interpretation we adopt in a particular case is recognized to be, neither the
simplest that can be obtained, nor the most likely. Rather it is the interpretation
that is most informative of sensory data, given representational choices.
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