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Abstract

In what is called the predictive processing framework, the brain is
viewed as a multi-layered prediction engine, whose task is to anticipate
incoming flows of sensory information. Each layer of the engine is seen to
express a generative model, in an arrangement that involves higher layers
sending predictions to lower layers, and lower layers passing prediction
errors upward. Minimizing these errors is assumed to turn the structure
into a largely veridical model of the world. The scheme is advocated as a
way of explaining processing in the brain. But what is its status from the
computational point of view? What calculations are implied? Over what
data do they operate? What effects are achieved? This paper considers
predictive processing from a computational/engineering perspective, and
identifies a number of technical problems in the scheme. How these can
be eliminated is also considered.

1 Introduction

There is mounting enthusiasm for what Clark calls ‘the emerging unifying vision
of the brain as an organ of prediction using a hierarchy of generative models’
(Clark, 2013, p. 185). Part of a long tradition emphasizing the role of prediction
in perception (von Helmholtz, 1860/1962; James, 1890/1950; Tolman, 1948;
Lashley, 1951; Mackay, 1956), this approach is now advancing on a broad range
of fronts (Rao and Ballard, 1999; Lee and Mumford, 2003; Rao and Ballard,
2004; Knill and Pouget, 2004; Friston, 2005; Hohwy et al., 2008; Jehee and
Ballard, 2009; Friston, 2010; Huang and Rao, 2011; Brown et al., 2011; Clark,
2016; Williams, 2018; Yon et al., 2019). Given the principle that ‘the best ways
of interpreting incoming information via perception, are deeply the same as
the best ways of controlling outgoing information via motor action’ (Eliasmith,
2007, p. 7), the proposal can also be seen as a way of unifying interpretive
and behavioral functionality (Brown et al., 2011; Friston et al., 2009). The
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implication then becomes that ‘perceiving and acting are but two different ways
of doing the same thing’ (Hohwy, 2013, p. 76).

Clark’s proposal (Clark, 2013, 2016) characterizes function organized in this
way as predictive processing (PP). In his view, the brain is an inner engine of
probabilistic prediction that is ‘constantly trying to guess at the structure and
shape of the incoming sensory array’ (Clark, 2016, p. 3). Each layer of the engine
is seen to express a generative model, in an arrangement that involves higher
layers sending predictions to lower layers, and lower layers passing prediction
errors upward. Minimizing these errors, it is presumed, will turn the structure
into a largely veridical model of the world.

The proposal continues to gain support (Williams, 2018; Yon et al., 2019).
But there are questions about what is implied computationally. The operations
involved are not generally specified in precise detail, as Clark acknowledges.
He describes his own characterization of predictive processing (Clark, 2016) as
‘relatively abstract’ (p. 298), and no more than a ‘mid-level organizational
sketch’ (p. 2). But with the fine-details left open in this way, questions of
functionality inevitably arise. By means of what calculations do higher layers
send predictions downward? How are the prediction errors computed? What is
the mechanism for transmitting these upward through the hierarchy?

A key question relates to layer coordination. In Clark’s description of the
scheme, individual layers in the hierarchy are considered to be largely indepen-
dent. Each layer is seen to predict ‘... the response profiles at the layer below’
(Clark, 2016, p. 93), while also reducing any error reported back. Predictions
make up the downward flow of information within the hierarchy, while error
signals make up the upward flow. There is no other mechanism of communi-
cation or coordination between layers. As Clark emphasizes, it is a distinctive
characteristic of the proposal that ‘it depicts the forward flow of information as
solely conveying error, and the backward flow as solely conveying predictions’
(Clark, 2016, p. 38).

The difficulty is to see how this arrangement would have the effect of im-
proving prediction of sensory input overall. The onus on each layer is to reduce
its error in predicting the state of the layer below.1 But it is only the state at
the lowest layer of the hierarchy which represents sensory data. Without layers
being coordinated in some way, there is no reason why prediction at the sensory
layer should be improved by reducing error higher in the hierarchy. Represen-
tational coordination of layers would seem to be pre-requisite. In the case of
data compression by predictive coding, often cited as an inspiration for PP, co-
ordination of predictive sources is ensured by specification of the algorithm (e.g.
Kobayashi, 1974; Pensiri and Auwatanamongkol, 2012).

The lack of specificity about critical computational details is also problem-
atic. The calculations that are assumed to convey the upward and downward
flows of information are not precisely specified and, as will be seen, it is not

1See Clark’s assertion that each layer must be ‘... capable of predicting the response profiles
at the layer below’ (Clark, 2016, p. 93); see also Williams’ observation that ‘the data for every
level of the hierarchy—with the exception of the first—consists of representations at the level
below’ (Williams, 2018, p. 151).
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always obvious what is implied. There is a need to develop a specification that
resolves these ambiguities. This is the initial aim of the present paper. The
intention is to establish what predictive processing involves at a detailed, com-
putational level of description.

The calculations that mediate upward and downward flows in predictive pro-
cessing are potentially defined in terms of the inferential operations of Bayesian
probability theory (Berger, 1985; Howson and Urbach, 1989; Jaynes, 2003). Use
of the framework of information theory (Shannon, 1948; Shannon and Weaver,
1949) is also a possibility. Which of these two approaches leads to a more co-
herent computational implementation will be carefully examined. The degree
to which adopting a specific implementation addresses the question of layer
coordination will also be assessed.

The paper is divided into four main sections. Sections 2 and 3 examine
contrasting implementations of predictive processing. Section 2 evaluates an
implementation based on use of Bayesian calculations; Section 3 examines an
implementation based on use of information-theoretic calculations. The de-
gree to which the approach addresses the requirement for layer coordination
is explored. Section 4 then presents a general discussion and some concluding
comments.

2 An inferential implementation

Although the calculations that mediate predictive processing are not generally
specified in detail, it is often assumed they must be Bayesian in nature (Hohwy,
2013). They are typically taken to be acts of probabilistic inference. This
acknowledges the degree to which the framework is founded in the Bayesian-
brain hypothesis, which proposes that ‘the brain codes and computes weighted
probabilities’ (Clark, 2016, p. 41), and the general assumption that neural
processing can be understood as a form of Bayesian inference (cf. Doya et al.,
2007; Pouget et al., 2013).

There are two ways in which an inferential implementation of PP can be
developed, however. A Bayesian probability linking two outcomes allows an
unconditional probability to be inferred for either the conditioning outcome,
or the conditioned outcome. There are two forms of inference available—one
forward, one backward—for mediating the flows of information, and two forms of
flow—upward and downward—to be implemented. A particular implementation
can be arrived at by mapping inferential forms to flows in a particular way,
therefore.

A convenient approach links the downward flow to forward inference. This
has the unfortunate consequence of creating a terminological clash, as the down-
ward flow is termed ‘backward’ neurologically. The advantage is that it has the
effect of placing conditioned outcomes (i.e., Bayesian evidence) below condi-
tioning outcomes (i.e., hypotheses) in the hierarchy. Outcomes representing
sensory evidence are also placed in the lowest layer. Mediation of the upward
flow is then by means of Bayes’ rule—i.e., by derivation of posterior probability.
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YP(Y|Z) = .3

P(X|Z) = .2

W

VP(V|X) = .6

P(W|X) = .4

TP(T|Y) = .3

UP(U|Y) = .7

X

Z

YP(Y|Z) = .3

P(X|Z) = .2

P(W) = .07

VP(V|X) = .6

P(W|X) = .4

TP(T|Y) = .3

UP(U|Y) = .7

P(X) = .18

P(Z) = .9

Figure 1: Downward flow through Bayesian inference.

This general scheme is recognized by Clark as one way of realizing predictive
processing in a specifically Bayesian way (Clark, 2016, pp. 172-175).

A simple illustration appears in the upper panel of Figure 1. This shows
a single Bayesian hierarchy involving the outcomes T, U, V,W,X, Y, Z. The hi-
erarchy is drawn on its side, with the root on the left. Each between-layer
connection is defined by a likelihood, as shown. This states the conditional
probability of an outcome in the layer below, given an outcome in the layer
above. For example, P (X |Z) = .2 defines the top-left connection. (Here and
elsewhere, probabilities are approximate.) Outcomes at the lowest layer are
considered to be sensory in nature. Outcomes W , V , U and T are sensory,
then, while outcomes X , Y and Z are internal.

The lower panel of Figure 1 illustrates processing involved in the downward
flow. The sequence is initiated by the assertion of an unconditional (i.e., prior)
probability for the root outcome Z. With P (Z) given the value .9, uncondi-
tional probabilities can then be inferred for outcomes at lower layers. P (X) =
P (X |Z)P (Z) ≈ .18 can be derived, followed by P (W ) = P (W |X)P (X) ≈ .07.
The probability given to Z eventually yields a probability for W in this way.

Under the depicted arrangement, priors at higher layers of the hierarchy are
seen to ‘cascade downwards’ by probabilistic expectation. A point in favour of
this scheme is that it echoes the way theorists have assumed the downward flow
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must operate. Both Clark (2013) and Hohwy (2013) describe the downward
flow in just these terms. Hohwy refers to the importance of what he calls the
‘pulling down’ of priors (Hohwy, 2013, p. 33). Clark sees downward flow as the
way in which a system can ‘... infer its own priors (the prior beliefs essential
to the guessing routines) as it goes along’ (Clark, 2013, p. 3). The proposed
implementation, in which the downward flow is exclusively in this form, may
go beyond what these theorists intend, however. The role played by lateral
(within layer) connectivity is also particularly emphasized in (Clark, 2016), for
example.2

Figure 2 illustrates the upward flow. The upper panel shows the (approx-
imate) posterior probabilities that can be inferred for X and Z, after W is
awarded an unconditional probability of .5. All outcomes are considered to
have a default prior of 1, and each inferential step represents an application of
Bayes’ rule. X ’s probability, for example, is the posterior

P (X |W ) =
P (W |X)P (X)

P (W )
≈ .8

The lower panel shows the upward flow after all the sensory outcomes are
awarded unconditional probabilities, and posteriors are combined appropriately.
As will be seen, X comes to acquire an (approximate) unconditional probability
of .6 rather than .8, due to the influence of P (V |X) = .6 and P (V ) = .8.

The results achieved by implementing the upward flow in this inferential
way are less satisfactory. What is then conveyed upward is posterior probability,
whereas what should be conveyed upward is prediction error. The two quantities
are related, so it is not unreasonable to ask whether one might represent the
other. It is certainly the case that the posterior probability of an outcome
increases with the degree to which it is predicted by the relevant likelihood and
conditional prior. Treating posterior probability as a an inverse measure of
prediction error might be considered an option on this basis.

In practice, this arrangement fails. It can be shown that posteriors cannot
represent prediction errors in certain cases. Imagine a situation in which the pre-
dicted probability of an outcome exceeds its observed probability. Rain might be
observed to have a probability of .5, say, but be predicted on theoretical grounds
to have a probability of .9. (This situation, in which the predicted probability of
an outcome exceeds its observed probability, is typical for a weather forecast.)
The prediction potentially gives rise to a prediction error. But an error of this
kind cannot be dealt with by derivation of posteriors, even in principle.

Given the predicted probability derives from a likelihood of .9 and a prior
of 1, the posterior probability of rain cannot be derived. The numerator in
the Bayesian calculation is then greater than the denominator, implying an
invalid posterior. Within the terms of Bayesian theory, the posterior has to be

2Clark notes that ‘in the standard implementation of PP higher level “representation units”
send predictive signals laterally (within level) and downwards (to the next level down) thus
providing priors on activity at the subordinate level’ (Clark, 2016, p. 143).
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YP(Y|Z) = .3

P(X|Z) = .2

P(W) = .5

VP(V|X) = .6

P(W|X) = .4
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P(U|Y) = .7

P(W) = .5

P(V) = .8

P(U) = .9

P(T) = .6

P(X) = .6

P(Y) = .4

P(Z) = .25

Figure 2: Upward flow by means of Bayesian inference.

considered undefined.3 Posteriors cannot represent prediction errors in general,
then. Implementing the upward flow in this way is ruled out.4

The general conclusion is that attempting to operationalize predictive pro-
cessing in a strictly Bayesian way, using inferential calculations to mediate infor-
mation flows, fails to produce a satisfactory result. Arguably, the effect is simply
to beg further questions. If the upward flow of posteriors cannot serve to convey
prediction error, how does it fit in to the processing otherwise performed? If
transfer of error involves information flow that progresses up the hierarchy in
some way, how does this interact with the upward flow that reflects ordinary
Bayesian inference? Do the two flows proceed in parallel? Are they integrated
in some way? The attempt to develop a strictly Bayesian implementation of

3Neutral predictions are problematic for the same reason. Imagine the predicted probability
of rain is .5. Given the observed probability of rain is also .5, this prediction is entirely neutral.
It is completely without value and, in that sense, maximally in error. The derived posterior,
on the other hand, is now maximized, implying minimal prediction error.

4An additional problem with this implementation is that fails to respect the stipulated
architectural requirements. It is seen as a key part of the scheme that there should be a ‘...
functional separation between encodings of prediction and prediction error’ (Clark, 2016, p.
39).
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predictive processing begs a number of questions.

3 An informational implementation

The information flows in predictive processing can also be calculated using oper-
ations drawn from the framework of information theory (Shannon, 1948; Shan-
non and Weaver, 1949). Like the Bayesian framework, this deals with assign-
ments of probability. But whereas the Bayesian framework is concerned with
how probabilities can be updated from relevant priors and likelihoods, infor-
mation theory focuses on what happens when an outcome of given probability
occurs. A way of quantifying the information that is then generated is the
framework’s key contribution. Being focused on outcomes in this way, informa-
tion theory is well-suited to deal with prediction of outcomes, and hence with
predictive processing.

Key to information theory is the principle that an outcome has an informa-
tional value that is inversely related to its probability (Shannon, 1948; Shannon
and Weaver, 1949). Specifically, the informational value of some outcome W

is defined as − log2 P (W ) bits.5 If P (W ) = .5, for example, the informational
value of W is − log2 .5 = 1 bit. This quantity is termed the outcome’s surprisal
(Tribus, 1961). For present purposes, it is prediction of outcomes that is of
interest, and this is naturally modeled in terms of conditional probability. Con-
sider P (W |X). This denotes the conditional probability of outcome W given
outcome X . Equivalently, it can be seen to denote the probability of outcome
W that outcome X predicts. The assertion P (W |X) = .3 can be considered to
assert that outcome X predicts outcome W with probability .3, for example.

A relatively simple PP implementation can then be envisaged, which is essen-
tially a direct translation of the Bayesian implementation. In it, the conditional
probabilities which define the structure of the model are considered to express
predictions. Upward and downward flows are progressed by probabilistic expec-
tation as before, but with the values derived now being quantities of informa-
tion rather than probabilities. Figure 3 illustrates the processing then obtained.
The upper panel depicts the downward flow commencing from the assignment
P (Z) = .25. This yields a surprisal value—here denoted as inf(Z) — of 2 bits.
The lower panel depicts the upward flow commencing from the assignment by
P (W ) = .5. This yields an information value of .2 bits for outcome Z.

Unfortunately, this direct translation of the Bayesian implementation lacks
generality. It accommodates the various ways in which outcomes can be pre-
dicted, but not the possibility that they might not occur. This needs to be
taken into account. The informational value of an outcome is its surprisal, but
only if the outcome occurs. A predicted outcome has the potential not to occur.
The outcome may be mispredicted. Where there is prediction of an outcome
that fails to occur, how is the expected value of the predicting outcome to be
derived? To obtain a fully general specification for the upward flow, this issue
needs to be resolved.

5The quantity is expressed in bits just in case logs are taken to base 2.
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YP(Y|Z) = .3

P(X|Z) = .2
VP(V|X) = .6

P(W|X) = .4

TP(T|Y) = .3

UP(U|Y) = .7

YP(Y|Z) = .3

P(X|Z) = .2
P(W) = .5

VP(V|X) = 0

P(W|X) = 1

TP(T|Y) = .3

UP(U|Y) = .7

inf(X) = 1

inf(Z) = .2

P(Z) = .25

inf(Z) =  2 bits

inf(X) = .4

inf(W) = .16

inf(W) =  1 bit

Figure 3: Upward and downward flows using informational values.

Shannon’s framework (Shannon, 1948; Shannon and Weaver, 1949) does not
explicitly address the case of non-occurring outcomes. It can be deduced that
a prediction of a non-occurring outcome must always have a negative value
in this context, however. This is best demonstrated using a concrete example.
Imagine a weather forecast that gives a 100% chance of rain during the day. This
prediction can be modeled as the assertion P (W |X) = 1, where W is occurrence
of rain, and X represent whatever cue(s) the forecast derives from. Assuming
rain is observed to occur on 50% of all days, we have P (W ) = .5, and hence
inf(W ) = log

2
.5 = 1 bit. Given these assignments, what is the informational

value of the prediction of rain?
If the rain occurs, the evaluation is straightforwardly derived. The forecast

has the effect of bringing forward the outcome in question, supplying its infor-
mation content in advance. Acceptance of the forecast increases possession of
information by the value of the outcome predicted. The value of the forecast is
1 bit. If the rain does not occur, the forecast is then a misprediction and, as
we might expect, the evaluation turns negative. To see this, consider a forecast
that gives a 50% chance of rain. Implicitly, this also gives a 50% chance of no
rain — it gives the two possible outcomes equal probability. The forecast is
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completely neutral then and, given the observed probability of rain is itself .5,
entirely without value.

On this basis, the evaluation of the original forecast in the case of the rain
failing to occur can be deduced. Assuming the value of a successful prediction
must be positive, it follows that the value of its unsuccessful counterpart must
be correspondingly negative. This is what the zero evaluation of the neutral
forecast entails. With correct and incorrect predictions given equal probability,
the forecast’s zero evaluation requires that the positive value of the correct
prediction is precisely offset by the negative value of the incorrect prediction.
The evaluations of the prediction and misprediction must be equal and opposite.

Combining this with the observation that the value of a correct prediction is
the surprisal of the outcome predicted, the value of a misprediction can then be
defined as the negative of the outcome’s surprisal. This has the effect of ensuring
that a misprediction is exactly as costly as its counterpart is beneficial. The
relationship can be stated formally as

IP (e) =







− log
2
P (e) if e = e′

log2 P (e) if e 6= e′
(1)

where P (e) is outcome e’s observed probability and e′ is the outcome that occurs.
IP (e) is then the informational value of predicting outcome e. (Notice that the
upper value is positive, and the lower negative).

As outcomes may be predicted with any probability in general, this should
be allowed for. The overall evaluation then becomes a weighted average of the
gains and losses produced by the individual parts of the forecast. It is the
expected informational revenue of the predicted distribution. Let Q(e) be the
probability with which outcome e is predicted.6 The informational value of the
predictions expressed by distribution Q is then the average IQ:P :

IQ:P =
∑

e

Q(e)IP (e) (2)

The measure can also be generalized for situations involving more than two
outcomes. This requires use of a normalization. With more than two outcomes,
we have more than one incorrect outcome, and consequently, more than one
negative value in the summation of Eq. 2. To ensure commensurability between
positive and negative contributions, the latter must be discounted by n−1, where
n is the number of outcomes. The modified equation then becomes

IP (e) =











− log2 P (e) if e = e′

log2 P (e)
n−1

if e 6= e′
(3)

Situations involving any number of outcomes can then be dealt with. The
informational value of a prediction, assessed in this way, is termed its predictive

6We might have Q(rain) = .3 and Q(no rain) = .7, for example.
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payoff (Thornton, 2017).7

P(Y|Z) = .3

P(X|Z) = .2
P(V|X) = .6

P(W|X) = .4

P(T|Y) = .3

P(U|Y) = .7

P(W) = .5

P(X) = .2

P(Y) = .4

P(Z) = .16

inf(W) = -1

P(V) = .5
inf(V) = 1

P(U) = .5
inf(U) = 1

P(T) = .5
inf(T) = -1

P(Y|Z) = .3

P(X|Z) = .2
P(V|X) = .6

P(W|X) = .4

P(T|Y) = .3

P(U|Y) = .7

P(W) = .5

P(X) = -.2

P(Y) =  -.4

P(Z) = -.16

inf(W) = 1

P(V) = .5
inf(V) = -1

P(U) = .5
inf(U) = -1

P(T) = .5
inf(T) = 1

Figure 4: Upward flow by information-theoretic calculation.

How the upward flow is to be implemented in the face of outcomes that
may or may not occur can then be resolved. The evaluation that any higher
outcome obtains should be its predictive payoff with respect to the outcomes
that it conditionally awards probability to. Upward flow should be progressed
by derivation of predictive payoff, in other words. The upper and lower panels
of Figure 4 illustrate the patterns of processing that are obtained on this basis.

The upward flow of information to X , and from X to Z, is depicted in two
different scenarios. The upper panel deals with the case where the sensory out-
comes predicted by X with greatest probability (i.e., V and U) both occur. The
lower panel deals with the case where they fail to occur. (Notice occurring out-
comes are set in bold.) The upward flow is mediated by derivations of predictive
payoff in all cases. Outcome X acquires a value of approximately .2 bits due to
its attribution of probability to W and V , and their informational values. The
payoff is

7The formulation presented in (Thornton, 2017) differs in the way it discounts disrewards
in the case of there being more than one non-occurring outcome.

10



−1× .4 + 1× .6 ≈ .2 bits

An important feature of the upward flow, when implemented in this way, is
the degree to which it both expresses prediction error, and brings about its
reduction. This effect can be explained in terms of Figure 4. In the situation
depicted in the upper panel, there are no mispredictions. All predictions are
correct in the sense that occurring outcomes are given greater probability. (For
example, P (V |X) > P (W |X).) Predictive payoff to both X and Y (and hence
Z) is positive. In the situation depicted by the lower panel, the occurring
outcome is T rather than U . This is now mispredicted. U is given greater
probability than T , and the derived value of Y changes its sign in result. The
prediction error leads to Y having a negative value.

The prediction error, in this case, leads to Y having a negative evaluation,
and this then comes to serve as a kind of error signal. No particular significance
attaches to the evaluation’s sign. Its capacity to serve as a prediction error
depends purely on its relational properties. The strength with which a model in
this form expresses a particular prediction depends on the informational value
of the outcome from which it derives. The effect produced by the upward flow is
to concentrate predictive strength at outcomes that better predict. Information
flows towards sources of prediction, then, and in proportion to their predictive
efficacy. Information congregates as prediction originates. On this basis, better
predictions are then naturally forthcoming. Prediction error that is implicitly
conveyed upward is also implicitly reduced. The system predicts, and reduces
error at the same time, without requiring any extraneous mechanism of error-
reduction.

Unlike its predecessor, this informational implementation meets all require-
ments of the predictive processing scheme, then. Both information flows are
handled appropriately. Error is conveyed upward in a way that ensures it is
reduced at each layer. Predictions are conveyed downward in a way that meets
the requirement for the model to be ‘generative in nature’ (cf. Clark, 2016,
p. 93). An additional attraction is that the implementation respects Clark’s
description of error derivation. This requires the upward flow to originate in
measurements of surprisal, specifically.8 Upward flow in the proposed imple-
mentation originates in exactly this way. One drawback of the implementation,
however, is that it fails to separate encodings of prediction and prediction er-
ror in the way that Clark (2016, p. 39) emphasizes is important. Under the
proposed implementation, they are fully integrated.

8Clark states that prediction error should reflect ‘... the ‘surprise’ induced by a mismatch
between the sensory signals encountered and those predicted. More formally—and to distin-
guish it from surprise in the normal, experientially loaded sense—this is known as surprisal’
(Clark, 2016, p. 25).
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4 Discussion

Regardless of how useful the predictive processing framework may be for ex-
plaining functionalities of the brain, there is a need to determine whether it
makes sense computationally—whether it hangs together as a system of calcu-
lation. This is the main aim of the present paper. The result of the study is
largely positive. It has been shown that a computationally precise interpreta-
tion of the scheme can be assembled. There are various reservations to be noted,
however.

Layer coordination is a prominent concern. The original scheme envisages
a hierarchical structure in which higher layers send predictions to lower layers,
and lower layers pass prediction errors upward. On the proviso that each layer
predicts the state at the layer below (and the lowest layer predicts sensory
input),9 it is assumed that minimizing error at any layer will have the effect
of improving prediction of sensory input overall. This is problematic. If it is
assumed that the task of each layer is to predict the state at the layer below,
there is no reason why this effect should occur. Improving prediction of a state
that itself predicts badly cannot be a way to make it predict better. The effect
might easily be the reverse.

Designing the hierarchy in a way that allows each layer to predict sensory
input directly would appear to resolve this difficulty. Any error passed upward
is then the residual of a single quantity. It is what remains after lower-layer pre-
dictions have been taken into account. Minimizing errors of this kind can only
improve prediction of sensory input overall. Unfortunately, an arrangement of
this kind only solves the problem in a degenerate way. If the error reported by
every layer of the hierarchy is a residual in this way, all layers are then func-
tionally linked together, and the attribution of hierarchical structure is called
into question. Viewing the structure as a single, non-hierarchical model would
seem equally justified.

Implementations of predictive processing would seem to face an inherent
dilemma, then. Without coordination of layers, there is no reason why error
reduction at higher layers should improve prediction of sensory input. With co-
ordination of layers, the model’s hierarchical structure is cast into doubt. The
hierarchical structure identified seems to be essentially a projection. How this
predicament can be resolved is not obvious. Working computational incarna-
tions of predictive processing do exist, however. The predictive coding model of
Rao and Ballard (1999) is often cited as a demonstration. If the scheme faces
an irresolvable dilemma, how do we explain systems such as this, which seem
to demonstrate its feasibility?

It is worth looking at the system described by Rao and Ballard in more
detail. It is key to the design of this that predictions apply to sensory input
directly. Layers are then representationally coordinated in the desired way. An
error passed upward is always a residual error, on which basis reducing error
at any layer of the hierarchy improves prediction of sensory data. In principle,

9In Williams’s (2018) description, ‘the data for every level of the hierarchy—with the
exception of the first—consists of representations at the level below’ (Williams, 2018, p. 151).
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this arrangement calls into question the hierarchical structure of the model, as
noted. But in the Rao and Ballard system, the model’s hierarchical structure
has a validity that is seen to exist independently.

PE

PE

PE
I
2

I
1

I
Local image  

Patches  

Figure 5: Detail from part C of Fig. 1, Rao and Ballard (1999) showing an
initial stage in the hierarchical organization of sensory data. The ‘PE’ units
are predictive estimators. Higher level predictive estimators reference recep-
tive fields that are hierarchically composed from fields referenced by lower level
estimators.

It is part of the system’s design that the presentation of sensory input is
itself hierarchically organized. Sensory data derives from the responses of visual
receptive fields, as seen in Figure 5. Higher layers make reference to receptive
fields that are hierarchically composed out of those referenced by lower layers.
An error passed upward is then a residual error in a spatial sense. It refers to
effects that extend beyond the limits of receptive fields for the current layer,
but which remain within the composite fields referenced by the higher layer.
Reducing error at any layer of the hierarchy then has the effect of tuning the
model to the hierarchical structure of the input stream. The system is then
seen to ‘learn a hierarchical internal model of its natural image inputs’ (Rao
and Ballard, 1999, p. 80).

The Rao and Ballard system is of great interest, but there is a risk of over-
interpreting it. The temptation is to assume that its derivation of a specifically
hierarchical model is a consequence of the predictive processing it carries out.
This potentially leads to predictive processing being viewed as a general, data-
driven method for learning hierarchically structured models.10 A computational
assessment of the situation suggests the method’s capabilities fall short of this,
and that it can be applied only to models whose hierarchical structure is pre-
given and in some way externally validated.

10Consider, for example, Lupyan and Clark (2015) who suggest that a ‘...remarkable con-
sequence of this [predictive processing] arrangement is that seeking to reduce the overall
prediction error produces representations at multiple levels of abstraction, flexibly incorpo-
rating whatever sources of knowledge help to reduce the overall prediction error’ (Lupyan and
Clark, 2015, p. 279).
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At a more fine-grained level of detail, it is questions of calculation that
become the main concern. What kinds of calculation should be used to progress
the upward and downward flows that PP requires? Given the scheme’s links to
the Bayesian brain hypothesis, the expectation is that inferential calculations
will suffice. As seen above, this is not what is found. A purely Bayesian way of
implementing the downward flow can be identified—this is simply the process
of ‘pulling down’ priors which theorists such as Hohwy (2013) and Clark (2013)
have long viewed as integral to the scheme. Implementation of the upward flow
is more problematic, however.

The PP scheme envisages an upward flow in the form of prediction errors
that are passed from layer to layer. The problem is that a hierarchical Bayesian
model naturally gives rise to an upward flow in a different form. Derivations
of posterior probability (i.e., applications of Bayes’ rule) are also constitutive
of an upward flow. The computational relationship between the two flows is
then difficult to reconcile. The assumption that they proceed in parallel faces
difficulties, as does the assumption that they are integrated. One possibility
is to assume the inferential flow mediates the transmission of prediction error.
The difficulty then faced is that there are meaningful predictive scenarios in
which posterior probabilities cannot be derived.

Attempting to implement predictive processing in a Bayesian/inferential way
faces serious obstacles, then. Arguably, this is due to the incapacity of the
Bayesian framework to deal satisfactorily with the phenomenon of prediction.
Cases of prediction that cannot be conceptualized in Bayesian terms are easily
identified. Any outcome may be predicted to have a probability that exceeds
its observed probability. In some contexts, this is the norm. Rain that is ob-
served to have a probability of .4 may be predicted—on evidential or theoretical
grounds—to occur with probability .7. A car observed to break down with
probability .2 may be predicted to break down with probability .8. A student
observed to attend seminars with probability .6 may be predicted to attend one
with probability .9, and so on. These predictions are in no way abnormal; all
may turn out to yield errors in the usual way. From the Bayesian point of view,
however, they are all intractable.

It is not that the Bayesian apparatus cannot be applied. A predicted prob-
ability can be expressed as the product of a likelihood and a hypothesis prior in
the usual way. An observed probability can be expressed as the corresponding
evidential prior. The difficulty is that the posterior probability of the hypothesis
is then compromised. If the numerator in Bayes’ rule exceeds the denomina-
tor, as it does in the cases above, what is obtained is a value greater than one.
This cannot be a probability. An inferential approach to situations such as those
above always fails in this way. It is arguable that the Bayesian framework is fun-
damentally ill-suited to deal with the phenomenon of prediction for this reason.
The difficulty of obtaining a Bayesian implementation of predictive processing
may well be a reflection of this.

The main finding of the present inquiry is that information theory is of more
use for clarifying the computational details of predictive processing. In this re-
spect, the analysis follows in the footsteps of Friston and colleagues (Friston,
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2005, 2010; Friston et al., 2012; Friston, 2013; Friston et al., 2017) and the
informational conception of prediction that they advocate. This emphasizes the
degree to which prediction and prediction error are intimately related to un-
certainty and information. Successful prediction must reduce uncertainty, and
reduction of uncertainty accomplishes information gain (Mackay, 2003). Opti-
mizing prediction of sensory input is equivalent to maximizing information gain
in this sense. The objective of predictive processing can then be viewed as the
task of minimizing the average surprisal (informational uncertainty) of sensory
data. The conceptual perspective that this leads to is well summarized by Fris-
ton’s dictum that ‘Predictive coding is a consequence of surprise minimization’
(Friston, 2013, p. 32).11

With predictive processing reconceptualized in this way, the proposal’s sci-
entific implications change to some degree. The idea that emerges is less that
of a Bayesian brain and more that of an infotropic brain. Bayes’ rule is seen
to be replaced by information gain, as the underlying principle that guides pro-
cessing (cf. Thornton, 2014, 2017).12 For present purposes, however, it is the
practical benefits of the informational approach that are mainly of interest. The
framework of information theory is found to provide all that is required for a
computationally precise interpretation of predictive processing.

A key attraction of this is its capacity to address the problem of layer co-
ordination. Improving prediction of a state that itself predicts badly will not
generally have the effect of improving the state’s own predictive performance.
A critical element of the predictive processing scheme is thus the requirement
for representational coordination of layers. The problem, as noted above, is that
this cannot be met without effectively eliminating the all-important hierarchical
structure of the referenced model.

Under the informational implementation, this catch-22 is dealt with to some
degree. What is conveyed upward in this arrangement is not prediction error as
such. It is informational quantities that are derived from those which define the
sensory data. The upward flow consists of a series of abstractions of (derivations
from) the sensory data in this sense. Predictions at higher layers then do refer
to the sensory data, but at differing removes. There is then no reason to doubt
the efficacy of the processing scheme. Reducing error higher in the hierarchy
can have the effect of reducing it at the lowest layer as well. Equally, there is
no reason to doubt the hierarchical structure of the model.

11Friston’s position is that surprisal must be minimized indirectly, via a bound termed free
energy; the ground proposition is termed the free energy principle accordingly. The identified
connection with surprisal remains unaffected, however. As Wiese and Metzinger note, ‘... free
energy constitutes a tight bound on the surprisal of sensory signals. Hence, minimizing free
energy by changing sensory signals will, implicitly, minimize surprisal’ (Wiese and Metzinger,
2017, p. 12). Furthermore, free energy ‘... on most PP accounts would amount to the
long-term average of prediction error’ (Wiese and Metzinger, 2017, p. 18).

12It also suggests neural signals convey information encoded in a positive or negative (i.e.,
bidirectional) form. Potentially relevant to this is the observation that neural signals in the
dopaminergic system can be modulated in a bidirectional way (Keller and Mrsic-Flogel, 2018,
p. 425). Spratling (2017), however, takes the view that positive and negative firing rates are
‘biologically implausible’ (Spratling, 2017, p. 94).
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