
Three ways to link Merge with

hierarchical concept-combination

Chris Thornton

Centre for Research in Cognitive Science

University of Sussex

Brighton

BN1 9QJ

UK

c.thornton@sussex.ac.uk

April 8, 2016

Abstract

In the Minimalist Program, language competence is seen to stem from

a fundamental ability to construct hierarchical structure, an operation

dubbed ‘Merge’. A difficulty with this is the hierarchical combinability of

concepts. Hierarchical concept-combination is a function the conceptual

system possesses inherently. Does this mean the mind has two indepen-

dent systems for hierarchical construction? Or does it make more sense

to think in terms of a unified mechanism? This paper uses a formal no-

tation for hierarchical concept combination to investigate the issue. It

shows there are three ways linguistic Merge might be functionally related

to hierarchical concept-combination. It also examines the architectural

implications that arise in each case.

Keywords: Merge, Minimalist Program, hierarchical concept combi-

nation

1 Introduction

Hauser et al. (2002) note that underlying language there must be a faculty that
is ‘hierarchical, generative, recursive, and virtually limitless with respect to its
scope of expression’ (Hauser et al., 2002, p.1569). By implication, the language
system must have, at its heart, an operator which can relate multiple objects
to a single object in the formation of a hierarchical unit. Recursive application
of this operator must be what gives rise to structurally complex expressions.
The Minimalist Program dubs this fundamental operator ‘Merge’. Chomsky
deduces its existence as follows:

1

An elementary fact about the language faculty is that it is a system of
discrete infinity. Any such system is based on a primitive operation
that takes n objects already constructed, and constructs from them
a new object: in the simplest case, the set of these n objects. Call
that operation Merge. Either Merge or some equivalent is a minimal
requirement. With Merge available, we instantly have an unbounded
system of hierarchically structured expressions. (Chomsky, 2005, p.
11-12)

One problem with this is the hierarchical combinability of concepts. Hier-
archical concept-combination is a natural process of thought exercised by us all
on a regular basis (e.g., conceptualizing a residence as an entity encompassing a
house and garden). The conceptual system must have use of a Merge operator
of the type Chomsky describes. Does this imply that there are two such opera-
tors, one in the conceptual system and another in the language system? Or is
it more plausible to think in terms of a unified entity? Does linguistic Merge
give rise to hierarchical concept combination in some way, or is it the other way
around?

The present paper investigates this issue using a formal notation for hier-
archical concept-combination (HCC). The aim is to provide a precise account
of the ways in which linguistic Merge might be connected to HCC. The sec-
tion immediately to follow (Section 2) examines the hierarchical combinability
of concepts from the computational point of view, and introduces the notation
used throughout the rest of the paper. The kinds of conceptual representation
that can be built in this way are examined, and note is taken of the way they
remain semantically precise regardless of complexity. Section 3 then shows that
the relationship between Merge and HCC might take one of three forms. The
simplest possibility is a completely disjoint relationship, i.e., full independence.
But if we assume the mind avoids duplication of effort, a functional dependency
of some kind is more plausible. This might either take the form of a ‘syntax-first’
arrangement in which HCC stems from Merge, or a ‘semantics-first’ arrange-
ment in which Merge stems from HCC.

Some technical points need to be mentioned at the outset. Material dealing
with conceptualization follows the approach of Murphy (2002) in avoiding use
of special fonts in the naming of concepts. Where there is any ambiguity, the
phrase ‘the concept of X’ is used to indicate that X is a concept name. The dot
‘.’ is used as a connective in phrasal concept names. The concept of an old man
thus has the name ‘old.man.’ Some of the material dealing with language makes
use of interlinear glosses as a way of characterizing syntactic structure. All the
glosses presented can also be found in the online resource ‘The World Atlas of
Language Structures’ (Dryer and Haspelmath, 2011). References to the present
contents of this resource (as at December 2015) use the acronym ‘WALS’. The
internet location of the resource is http://wals.info.

2

2 Hierarchical concept combination

Evidence for the hierarchical combinability of concepts is directly available to us
all. Hierarchical concept-combination is a conceptual operation that mediates
much human thought.1 It is the process of treating one concept as encompassing
one or more others. For example: given the concept of a house, the concept
of a garden and the concept of a residence, a hierarchical combination can be
formed based on the latter. We can form the idea of a residence encompassing
a house and garden. Such constructions are readily given multiple levels of
organization. Given the concept of a lawn and the concept of a flower-bed,
we can form the idea of a garden encompassing a lawn and flower-bed. The
two constructions can then be put together to yield a hierarchical combination
of two levels. This expresses a still more specific concept—that of a residence
constituted of a house and a garden, in which the garden encompasses a lawn
and flower-bed. Hierarchical concept-combination is naturally recursive in this
way.

A kinship with linguistic Merge is then apparent. This is the recursive opera-
tor that is believed to form the functional heart of the language system. Merge is
assumed to be the means by which the system builds arbitrarily deep hierarchi-
cal structures expressing arbitrarily complex meanings (Chomsky, 1995, 2005).
Hierarchical concept-combination fulfils the same function for the conceptual
system. This is also a recursive operator, and also the means of building arbi-
trarily deep hierarchical structures with arbitrarily complex meanings. Should
we conclude that the mind deploys two such operators, one in the conceptual
system and one in the linguistic system? Or is it more reasonable to assume the
existence of an integrated mechanism?

For purposes of exploring the issue, a way of notating hierarchical concept-
combination is required. There is no standard formalism for this, and devising
one is not without difficulties. A construction of this type is formed by set-
ting one concept into the encompassing role with respect to one or more others.
The concept in question then fulfils the role of constructive operator; but the
arguments to which it applies are also concepts. All the constituents of a con-
struction are thus concepts. The usual approach of allocating different symbols
to denote distinct constructive operators (e.g. Sowa, 1984) is ruled out. The
notation has to allow any concept to be so designated. A second problem is the
fact that the encompassed concepts are undifferentiated in role, and arbitrarily
numerous.

On the face of it, a predicate-style notation might seem to provide what is
needed. Consider the hierarchical combination in which concept X is specified
as encompassing concepts Y and Z. (The idea of a residence encompassing a
house and garden offers an illustration.) As a way of notating this, we might
consider an approach which treats X as a function or predicate, thus:

1Hierarchical concept combination is not to be confused with generic concept combination.
This is a more diverse process that has been modeled in a range of ways (e.g. Hampton, 1991;
Thagard, 1997; Rips, 1995; Wisniewski, 1997; Costello and Keane, 2001; Hampton, 1997,
2011).

3

X(Y, Z)

This is unsatisfactory for several reasons. One problem is that it makes the
construction indistinguishable from an expression in predicate logic. This would
have a different meaning—the value would be a boolean, rather than a special-
ization of X. Equally problematic is the way the arguments are presented. The
construction implies that Y and Z play distinct roles, which is not the case. The
approach is also less than ideal in the way it accommodates embedding. Where
constituents are constructions in their own right, it becomes difficult to decipher
the hierarchical structure. If one of the constituents of the above construction
is a Z encompassing a B and D, the notation becomes

X(Y, Z(B, D))

The imperfect alignment of the bracketing and the hierarchical structure then
poses a problem. Using this style of notation, constructions become more diffi-
cult to decipher as they increase in depth.

In view of these issues, a square-bracketed, prefix notation is adopted here. A
hierarchical combination is specified by placing all the combined concepts within
square brackets, with the encompassing concept placed first. The concept of an
X encompassing a Y and a Z is thus notated by

[X Y Z]

The encompassing concept appears as the first element; it is also set in bold for
emphasis. The encompassed concepts are the remaining, non-initial elements,
and these are not in any particular order. They form a set. In all cases, therefore,
it is true by definition that

[X Y Z] = [X Z Y]

Using Backus-Naur format (BNF),2 the syntax of a construction in this nota-
tions is defined as follows:

〈spec〉 ::= 〈concept-name〉

〈spec〉 ::= "[" 〈spec〉 〈spec〉+ "]"

The non-terminal 〈spec〉 denotes the specification of a concept. This is defined
to be either the name of a concept, or a square-bracketed construction contain-
ing two or more 〈spec〉. The meaning of a concept name is then the concept
that is named, but the meaning of a construction is defined in terms of the
‘encompasses’ relation. It is the first specified concept taken as encompassing
all the others.

Given this way of writing constructions, combinations of more than one level
are readily dealt with by embedding. The concept of an X constituted of a Y
and a Z, where the Z is itself constituted of a B and a D, has the specification

[X Y [Z B D]]

2A ‘+’ superscript is used to denote 1 or more occurrences of the item.

4

With the bracketing and hierarchical structure perfectly aligned, the latter be-
comes more evident.

In general character, this notation is a mix of a prefix system and a program-
ming language.3 The construction [X Y Z] is analogous to (+ 2 3), i.e., 2 + 3
with the plus moved to prefix position, and brackets appended. But whereas
the value of (+ 2 3) is a number, the value of [X Y Z] is a concept—the concept
of an X encompassing a Y and Z. Viewed as a kind of programming language,
the notation has a kinship with LISP, a functional programming language often
used in AI (McCarthy et al., 1985/1962). It can be seen as a version of LISP
in which objects resolve to concepts, and expressions evaluate to structured
concepts.

The notation allows a hierarchical combination of any depth to be expressed,
and deals with the encompassed elements in a way that emphasizes their identity
as a set. Using it, we can begin to explore the diverse constructions that can be
put together in this way. Imagine we are provided with a ‘kit’ of four concepts:
the concept of a flight, the concept of a drive, the concept of a journey and the
concept of a pilgrimage. The set of given concepts is then: flight, drive, journey,
pilgrimage.4 On this basis, a possible hierarchical combination is

[journey flight drive]

This places the journey concept into the encompassing role, with flight and
drive as encompassed elements. It realizes the idea of a journey encompassing a
flight and drive. The construction replicates the familiar form of a part/whole
specification. Another possibility is

[pilgrimage flight drive]

This expresses the subtly different concept of a pilgrimage encompassing a flight
and a drive. Although the same encompassed concepts are referenced, the con-
struction has a different encompassing concept. It realizes a different idea in
result—the idea of a particular type of pilgrimage.

Less obviously, there is the potential for hierarchical combinations which use
a single encompassed concept; e.g.,

[journey drive]

This constructs the idea of a journey constituted solely of a drive. Another
combination yields the idea of a journey constituted solely of a flight:

[journey flight]

Constructions like these are termed ‘singles’ and are naturally seen as classifi-
cations. The second, for example, can be seen to express the idea of a flight
that is, in addition, classified as a journey. It is also worth noting that singles
are inherently reversible. An X that is classified as a Y can also be seen as a Y
classified as an X. By definition, therefore

3It can also be described as a Polish notation.
4In all cases, named concepts are assumed to have the implied semantics; e.g., the drive

concept is assumed to have the usual meaning of ‘drive’.

5

[X Y] = [Y X]

Some hierarchical combinations seem nonsensical. Consider, for example,

[flight drive]

This expresses the concept of a flight encompassing a drive. In normal circum-
stances, this would be semantically incoherent. In a world with flying cars the
construction might make sense, however.

Given a relational encompassing concept, combinations with more than one
encompassed element can express relational schemata. An illustrative example
is

[understanding teacher lawyer]

This constructs the concept of an understanding encompassing a teacher and a
lawyer—an understanding between a teacher and a lawyer, in other words. The
encompassing concept is implicitly an imposed relation, and what is constructed
is a schema in result. But notice that no schema-making apparatus is involved.
The concept of understanding provides all that is required. Deployed in the en-
compassing role, it provides the ‘glue’ that holds the two constituents together.
The relational arrangement is captured purely by hierarchical combination—by
treating one concept as encompassing the other two.

Singles can be used to refine concepts of this type. For example, the following
two-level combination might be formed:

[understanding [agent teacher] [recipient lawyer]]

This assembles the concept of an understanding encompassing a teacher and a
lawyer, in which the teacher is classified as agent, and the lawyer is classified
as recipient. It builds the concept of a teacher understanding a lawyer, rather
than vice versa.

Does this construction have this exact meaning? It is natural to ask how a
notation with no conventional operators can give rise to expressions that are so
semantically precise. Why should we view this construction as anything more
than a bracketing of concept names? Key to the explanation is the way con-
cepts play different roles in hierarchical combination. Every given concept has
the potential to be deployed as the encompassing element in a construction. Ev-
ery given concept is a pre-defined operator in this sense. Given we have precise
meanings for all named concepts, we then have a precise meaning for any hierar-
chical construction formed out of them. This remains the case regardless of the
number of levels. The meaning is expressed by stating the hierarchical relations
in the specified order. In this case, the meaning is that of an understanding
encompassing a teacher and a lawyer, in which the teacher is classified as agent,
and the lawyer as recipient—a teacher understanding a lawyer, in other words.
A hierarchical combination of any depth is guaranteed to have a precise meaning
in this way.

Making further use of structural embedding, we can get closer to the kinds
of meaning normally expressed using language. Consider the following, for ex-

6

ample:

[seeing.action [subject John] [object [definite.thing book]]]

This constructs the idea of a seeing.action encompassing John classified as sub-
ject, and a book classified as object, in which the book is also classified as a
definite.thing. What is constructed is the idea of some individual John5 seeing
a definite book. This is something that we would express in English by saying
John sees the book.

A slightly more complex case is

[[past.behavior reading.action] [subject John] [definite.thing letter]]

This is a similar construction except that here the object is a letter, the action
is reading rather than seeing, and this is itself classified as past.behavior. This
has the effect of placing the reading action into the past realizing a meaning
that we would express in English by saying John read the letter. This illustrates
the way the meaning of a tense can be captured.

A still more elaborate example is

[yesterday.event

[giving.action

[subject [indefinite.thing man]]

[object bread]

[indirect.object John]]]

Key to the meaning of this is the first encompassed concept. Itself a structure,
this expresses the idea of a giving action encompassing an indefinite man (clas-
sified as subject), bread (classified as object) and John classified as an indirect
object. What this expresses is the idea of an event in which an indefinite man
gives bread to John. This event is then itself classified as a ‘yesterday.event’,
i.e., an event occurring yesterday. The final product is the idea of a man giv-
ing bread to John yesterday, a meaning we could express in English by saying
Yesterday, a man gave bread to John.

Some special forms of meaning, such as questions, can also be captured.
Consider this, for example:

[question

[[event drinking.action focal.thing]

[subject [definite.thing teacher]]

[object [definite.thing [substance water]]]]]

The central concept here is

[event drinking.action focal.thing]

This expresses the idea of an event encompassing a drinking.action and a fo-

5For present purposes, names of individuals are taken to name the concept of the individual
in question.

7

cal.thing. Encompassed by this are water and a teacher, with these being clas-
sified as subject and object respectively (and also as definite objects). This idea
is then itself classified as a question. The final result is thus (the idea of) a
question that asks whether a definite teacher is drinking some definite water.
This is something we would express in English by asking Is the teacher drinking
the water?

These latter examples give a sense of the semantic range that HCC has when
applied recursively. They show how the structured meanings we express using
language can sometimes by captured purely in this way. They also highlight
the operator’s unboundedness. In principle, there is no limit on the number
of recursive iterations that can be applied. Consequently, there is no limit on
the number of hierarchical levels that can be assembled. Hierarchical concept
combinations can be of unlimited depth, and can express meanings of unlimited
complexity.

3 Merge

The focus can now return to Merge, and the question of how this operator relates
to HCC. Signs of a close connection have already been noted. Merge is seen
to be the reason language is ‘hierarchical, generative, recursive, and virtually
limitless with respect to its scope of expression’ (cf. Hauser et al., 2002, p.1569).
Hierarchical concept combination endows conceptualization with exactly the
same properties. Yet the match is not quite perfect. Informally, Chomsky
characterizes the behavior of Merge as ‘Take two objects, make another object’
(Chomsky in: Boeckx, 2009, p. 52). More precisely, the operator ‘takes two
syntactic objects α and β and forms the new object γ = {α, β}.’ (Chomsky,
2001, p. 3).

Two issues then arise. In building a hierarchical unit, Merge applies a par-
ticular constructive operation. The hierarchical unit constructed from α and
β is defined to be {α, β}. It is the set comprising the two constituents. The
encompassing concept for the hierarchical construction is thus that of a set. On
this basis, the conceptual equivalent of the Merge construction γ = {α, β} is

γ = [set α β]

HCC can replicate Merge in this way. But the possibility of utilizing any con-
cept as the encompassing element means HCC satisfies the requirement for
unbounded generativity in more than one sense. HCC brings two or more con-
stituents together to produce a new object. Innovation of this completely new
concept then paves the way for further novel constructions in a potentially on-
going way. The process is inherently unbounded. With Merge the situation is
different. Here the result of a construction is a set of existing objects, rather
than an inherently new object. This is a point Boeckx (2009) particularly em-
phasizes. As he says, ‘once you combine two units, X and Y, the output is not
some new element Z, but either X or Y.’6 On the face of it, the effect is to limit

6This also recalls Hinzen’s (2009) point, that Merge is unable to bring about ‘categorial

8

the generative range of Merge to the powerset of the original elements.
This is where the distinction between internal and external Merge becomes

important. Internal Merge is the special case of the operator in which a merged
entity is re-merged with one of its constituents. By virtue of the fact that this
action can be repeated indefinitely, the requirement for unbounded generativity
is satisfied. Since HCC subsumes Merge, it also satisfies the requirement in this
way. HCC thus fulfils the requirement in two ways. Another minor difference
between the operators relates to the number of allowed constituents. In HCC
there can be any number of encompassed concepts, whereas Merge is normally
assumed to use only two. Again, the relationship is one in which HCC is seen
to generalize Merge.

With these points of comparison in mind, it is possible to move on to consider
how HCC and Merge may be computationally inter-related. It is important to
acknowledge straight away that there might be no functional relationship at all.
The language system might use Merge to build a syntactic structure expressing
a particular meaning, while the conceptual system uses HCC to build a repre-
sentation of meaning in a completely independent way. Complete independence
of the two operators is a viable option.

THOUGHT/

MEANING

SOUND/

GESTURE

(C-I) (S-M)

 (Syntax)

MERGE

Figure 1: The standard minimalist architecture.

One attraction of the ‘complete independence’ interpretation is that it read-
ily conforms to the minimalist architecture, as schematized in Figure 1 (after
Hinzen, 2009, p. 126). The language system is here seen to have Syntax (medi-
ated by Merge) at its core, with two outward-facing interfaces attached. These
are represented by the two curved lines. One interface connects Syntax to C-
I, the conceptual-intentional system dealing with thought and meaning. The
other connects Syntax to S-M, the sensory-motor system dealing with articula-
tion and externalization. Under this configuration, representations of meaning
constructed in C-I might not use Merge in any way. It is consistent with HCC
and Merge being entirely independent.

The assumption of independence has problematic implications for cognition

change’ (p. 137).

9

more generally, however. A hierarchical syntactic structure expressing a certain
meaning is essentially the same object as a hierarchical conceptual structure
which expresses it. In both cases, leaf nodes reference primitive meanings,
while internal nodes reference imposed meanings. In the syntactic structure,
the nodes are content words and grammatical categories respectively, whereas
in the conceptual structure, they are just concept names. Setting that difference
aside, the two structures are essentially the same.

Mapping one to the other is straightforward in result. Say we have a noun
phrase in the syntactic structure, comprised of a noun and definite article (e.g.,
the book). The root node of the hierarchical unit will then be labeled ART.DEF
or something of the kind, while the constituent is specified as the content word
book. The definite article is understood to impose a grammatical meaning on
the referenced entity—the meaning of being a definite thing. The equivalent
conceptual structure then has the concept of a definite thing as its encompassing
element, and the concept of a book as the encompassed element. The notation
(ART.DEF book) thus translates into [definite.thing book].

The complication on this relates to the ordering of branches. In syntactic
structure, branches are ordered according to the grammar of the language, and
different orderings may be used to convey different meanings. For example, in
John sees the book, John is classified as subject of the action solely by its place-
ment. Hierarchical conceptual structures, on the other hand, have unordered
branches.7 When translating syntactic to conceptual structure, we have to make
sure any semantic information established by ordering is made explicit. Going
the other way, we have to make sure any semantic information that can be dealt
with by ordering is processed in this way, while the grammar of the language is
also upheld. Going from syntactic to conceptual structure, we have to ensure
orderings are put in correctly. Going the other way, we have to ensure they are
extracted correctly.

Consider, for example, the syntactic structure of John sees the book:

(VP sees (N John) (NP (DET the) (N book)))

Say we would like to convert this to the equivalent conceptual structure. Since
subject and object are both established by use of SVO ordering, the conceptual
structure must classify subject and object explicitly. It must include at least
the classification

[subject John].

Since the referenced book is classified as a definite thing (by use of the definite
article the), we also need

[definite.thing book].

This itself must be subject to classification as object of the phrase:

7Ordering of constituents is generally assumed not to play a role in conceptual structure
(cf. Reinhart, 1976).

10

[object [definite.thing book]]

Given the seeing action referenced by sees encompasses both subject and object,
the corresponding conceptual structure is then found to be

[seeing.action [subject John] [object [definite.thing book]]]

This builds the idea of John seeing a particular book, which is also the meaning
of John sees the book.

For purposes of putting the conversion on an algorithmic footing, it is con-
venient to focus on the inverse translation. The mapping from conceptual to
syntactic structure is more easily formalized. In this case, the orderings that
need to be introduced are defined by the head-placement preferences of the lan-
guage (e.g., preference for SVO ordering), as they apply to the utterance in
question. Given a suitable way of expressing these as rules, the conversion can
then be fully automated. Indeed, we can directly convert a conceptual structure
into a syntactically well-formed utterance expressing the same meaning.

How does this work in practice? Consider again the conceptual structure
above. As noted, this builds the idea of John seeing a particular book. For
purposes of converting this into John sees the book, two things are required.
First, we need a lexicon mapping concept names to words of corresponding
meaning. Assume the following is given:

book ← book

the ← definite.thing

John ← John

sees ← seeing.action

Each rule here has a concept specification on the right, and an English symbol
(i.e., word) with the corresponding meaning on the left. The symbol for the
concept of a book is defined to be book, for example.

Also required are rules to specify correct orderings. As noted, these must
deal with implicit classifications, while also enforcing relevant grammatical pref-
erences. To correctly derive this utterance, we need to enforce (1) the preference
for SVO ordering, (2) implicit classification of subject and object, and (3) the
preference for head-initial organization in simple phrases. The following three
rules have the required effect.

2 1 3
a

←− [= subject object]

2
b

←− [subject/object =]

1 2
c

←− [= =]

Like the lexical rules, these are notated on a right-to-left basis but with la-
bels placed over the arrows for easy reference. The first rule (labeled

a

←−)

enforces the preference for SVO organization; the second (labeled
b

←−) enforces
the preference to express subject and object classifications by ordering, while
the third (labeled

c

←−) enforces the preference for head-initial organization in
simple phrases.

11

The notation works in the following way. Rule
a

←− applies to any conceptual
structure of the form

[= subject object]

The structure can have anything as its encompassing element (this is what the
‘=’ means) but the encompassed elements must comprise subject and object
concepts.8 A subject concept is specified either by name (i.e., as ‘subject’) or
as a construct for which ‘subject’ is encompassing either explicitly or implicitly.
This means [subject John] is a subject concept, as is [definite.thing [subject
John]].

The numbers on the left of a rule specify the way symbols should be ordered.
Each number indexes an element of the specification on the right, while its
position says where symbols arising for that element should be placed. Rule

a

←−
has ‘2 1 3’ on the left. This means symbols arising for whatever matches the
2nd element should be placed first, followed by symbols for whatever matches
the 1st element, followed by symbols for whatever matches the 3rd element.
Given the structures it can match to, this rule has the effect of enforcing SVO
ordering.

The second rule uses ‘/’ to express alternatives. The specification in this
case is considered to match any structure in which the first element is either a
subject or object concept. Given the structures it can match to, this rule en-
forces the preference for expressing subject and object classifications implicitly.
The designation on the left in this case is just ‘2’, meaning only the encom-
passed element is symbolized. The final rule deals with any single (i.e., any
concept with a single encompassed element). It specifies that symbol(s) for the
encompassing element should be placed before symbol(s) for the encompassed
element. Given its coverage, this rule enforces head-initial organization in sim-
ple phrases. Earlier rules also take precedence, meaning

a

←− has priority over
b

←−, which has priority over
c

←−.
Applying these rules to the conceptual structure, we then obtain the follow-

ing processing:

→ [seeing.action [subject John] [object [definite.thing book]]]

→ [subject John]

← John (John)
b

←− John

← sees (seeing.action)

→ [object [definite.thing book]]

→ [definite.thing book]

← the (definite.thing)

← book (book)
c

←− the book
b

←− the book

8As this is a concept specification, encompassed elements are unordered.

12

a

←− John sees the book

This listing shows the recursive computation that is obtained. The general
effect is to break the conceptual structure down into its terminal elements.
(Indentation is used to represent embedding.) At the limit of each recursive
decomposition, a concept name is translated to its corresponding symbol. Then,
as the recursion unwinds, the relevant ordering rule is applied at each stage.
The effect off this is to incrementally assemble a sequence of symbols whose
grammatical structure encodes the original conceptual structure, subject to the
specified grammatical preferences. Hence, John sees the book is obtained as the
final output.

Notice that for each application of a lexical rule, there is a line which ter-
minates with the relevant concept name. For example, mapping of the concept
name ‘book’ to the symbol book is denoted by the line

← book (book)

For each application of an ordering rule, there is a line showing the concept
that is processed and, at the same level of indentation lower down, a second line

showing the symbol sequence assembled. Use of rule
b

←− to turn [definite.thing
book] into the book thus has an upper line of the form

→ [definite.thing book]

and a lower line of the form
b

←− the book

The example illustrates conversion of conceptual to syntactic structure in a
simple case. More complex examples are easily generated, however. In fact, all
the later examples of the previous section can be put to use in this way. We can
also vary the language in which the output comes to be expressed. Consider
again the utterance John read the letter. Translated into Japanese, this becomes

Johnga tegamio yonda.

The utterance is then a verb phrase incorporating two role-marked nouns: John
marked as subject (SUBJ), and tegami marked as object (OBJ). In more detail,
the grammatical structure is shown by Kuno (1973, p. 10; WALS, Ch. 82, Ex.
2) to be as follows:

John-ga tegami-o yon-da
John-SUBJ letter-OBJ read-PST
‘John read the letter’

Derivation of this Japanese sentence by conversion of conceptual structure
can then be demonstrated. As previously noted, a conceptual construction with
the meaning of ‘John read the book’ is

[[past.behavior reading.action] [subject John] [definite.thing letter]]

13

To perform the conversion, we need the following lexicon mapping utilized con-
cepts to suitable Japanese symbols:

John ← John

tegami ← letter

yon ← reading.action

da ← past.behavior

ga ← subject

o ← definite.thing

Each concept is mapped to the word or morpheme which has the concept as
its meaning. (Strictly speaking, the rules form a morpho-lexicon.) We also
need the following two ordering rules to capture the grammatical preferences of
Japanese which influence this utterance.

2 3 1
a

←− [= subject definite.thing]

2 1
b

←− [= =]

Given the concepts it can match to, use of ‘2 3 1’ in rule
a

←− enforces SOV

organization, while rule
b

←− enforces head-final organization in simple phrases.
Conversion of the conceptual structure by application of the rules then pro-

ceeds as follows:

→ [[past.behavior reading.action] [subject John] [definite.thing letter]]

→ [subject John]

← John (John)

← ga (subject)
b

←− John ga

→ [definite.thing letter]

← tegami (letter)

← o (definite.thing)
b

←− tegami o

→ [past.behavior reading.action]

← yon (reading.action)

← da (past.behavior)
b

←− yon da
a

←− John ga tegami o yon da

With conventional word-breaks imposed, the output is then Johnga tegamio
yonda. This is the desired Japanese sentence—it is a Japanese expression of the
original meaning.

Another example taken from the previous section is

[yesterday.event

[giving.action

[subject [indefinite.thing man]]

14

[object bread]

[indirect.object John]]]

This builds the idea of an indefinite man giving bread to an individual, John,
at a particular point in time, namely yesterday. The meaning is what we would
express in English by saying something like Yesterday, a man gave bread to
John. A sentence from the Suriname language of Arawak with a not dissimilar
meaning is

Miaka aba wadili sika khali damyn.

This translates as ‘Yesterday a man gave cassava bread to me.’ The grammatical
structure is analyzed by Pet (1987; see also WALS, Ch. 84, Ex. 4) as follows.

Miaka aba wadili sika khali da-myn
yesterday INDEF man give cassava.bread 1SG-to
‘Yesterday a man gave cassava.bread to me’

To capture the meaning of this Arawak sentence, the conceptual structure
above needs to be modified in two ways. The recipient of the action needs to be
specified as ‘me’ rather than ‘John’, and the object should be ‘cassava.bread’
rather than ‘bread’. This yields

[yesterday.event

[giving.action

[subject [indefinite.thing man]]

[object cassava.bread]

[indirect.object me]]]

Generation of the Arawak sentence by conversion of conceptual structure
can then be demonstrated. A morpho-lexicon mapping the utilized concepts to
suitable Arawak symbols is as follows:

khali ← cassava.bread

sika ← giving.action

aba ← indefinite.thing

myn ← indirect.object

wadili ← man

da ← me

miaka ← yesterday.event

We also need the following four ordering rules to capture the grammatical prefer-
ences which influence this utterance. The first captures the preference for SVO
organization; the second, the preference for dealing with subject and object
classifications by ordering; the third, the preference for head-final organization
in simple phrases denoting an indirect object; and the last, the preference for
head-final organization otherwise.

15

2 1 3 4
a

←− [= subject object indirect.object]

2
b

←− [subject/object =]

2 1
c

←− [indirect.object =]

1 2
d

←− [= =]

Applying these rules to the conceptual structure then produces the following
processing. (Some lines are truncated.)

→ [yesterday.event [giving.action [subject [indefinite.thing man]] ...

← miaka (yesterday.event)

→ [giving.action [subject [indefinite.thing man]] [object ...

→ [subject [indefinite.thing man]]

→ [indefinite.thing man]

← aba (indefinite.thing)

← wadili (man)
d

←− aba wadili
b

←− aba wadili

← sika (giving.action)

→ [object cassava.bread]

← khali (cassava.bread)
b

←− khali

→ [indirect.object me]

← da (me)

← myn (indirect.object)
c

←− da myn
a

←− aba wadili sika khali da myn
d

←− miaka aba wadili sika khali da myn

With standard word-breaks imposed, the final output is Miaka aba wadili
sika khali damyn. This is the Arawak sentence expressing the original meaning.

To complete this series of examples, it is also useful to look at

[question

[[drinking.action focal.thing]

[subject [definite.thing teacher]]

[object [definite.thing [substance water]]]]]

Recall that this builds an idea that would be expressed in English by asking the
question ‘Is the teacher drinking the water?’ Imagine we would like to derive
this utterance in German by conversion of conceptual structure. A suitable
morpho-lexicon for the task is

lehrer ← teacher

wasser ← water

16

trink ← drinking.action

das ← [definite.thing substance]

der ← definite.thing

t ← focal.thing

Note the use of a structured specification in the case of das, to capture the
restricted range of this determiner. The following four ordering rules are also
needed to capture relevant grammatical preferences of German. The first cap-
tures the preference to deal with subject and object classifications by ordering
alone; the second, the preference for VSO structure given a meaning classified
as a question; the third, the preference for SVO organization otherwise, and the
last, the preference for head-initial organization in simple phrases.

2
a

←− [subject/object =]

2 3 4
b

←− [question [= subject object]]

2 1 3
c

←− [= subject object]

1 2
e

←− [= =]

The processing obtained is then as follows:

→ [question [[drinking.action focal.thing] [subject ...

→ [drinking.action focal.thing]

← trink (drinking.action)

← t (focal.thing)
e

←− trink t

→ [subject [definite.thing teacher]]

→ [definite.thing teacher]

← der (definite.thing)

← lehrer (teacher)
e

←− der lehrer
a

←− der lehrer

→ [object [definite.thing [substance water]]]

← das ([definite.thing substance])

← wasser (water)
a

←− das wasser
b

←− trink t der lehrer das wasser

With standard word-breaks imposed, the output is Trinkt der lehrer das wasser.
This is the desired German utterance. It is the question ‘Is the teacher drinking
the water?’ expressed in German.

If the intended meaning is not classified as a question, only the inner con-
ceptual structure remains:

[[drinking.action focal.thing]

[subject [definite.thing teacher]]

[object [definite.thing [substance water]]]]

17

This builds a meaning we would express in English by saying ‘the teacher is
drinking the water.’ Applying the rules to this reduced structure then invokes
the default SVO ordering, as follows:

→ [[drinking.action focal.thing] [subject ...

→ [subject [definite.thing teacher]]

→ [definite.thing teacher]

← der (definite.thing)

← lehrer (teacher)
e

←− der lehrer
a

←− der lehrer

→ [drinking.action focal.thing]

← trink (drinking.action)

← t (focal.thing)
e

←− trink t

→ [object [definite.thing [substance water]]]

← das ([definite.thing substance])

← wasser (water)
a

←− das wasser
c

←− der lehrer trink t das wasser

With standard word-breaks imposed, the output is then found to be der lehrer
trinkt das wasser. This is ‘the teacher is drinking the water’ in German.

The outlook for conversion of conceptual structure is not unpromising then.
If these cases are any guide, syntactically well-formed utterances can be derived
directly from conceptual structure, given suitable lexical and ordering rules.
Since the conversion can be made in either direction, it follows that conceptual
and syntactic structure are computationally interchangeable. Syntactic struc-
ture can be used as a substitute for conceptual structure, and vice versa.

Is it credible the mind would fail to take advantage of this? If the products
of HCC can be derived from the products of Merge (and vice versa), what would
be achieved by having independent operators? If the language system provides
Merge, it seems likely the conceptual system would use this for purposes of HCC,
thus avoiding duplication of effort. Likewise, if the conceptual system provides
HCC, it seems likely the language system would use this for purposes of Merge.
Two general arrangements then suggest themselves: a ‘syntax-first’ arrangement
based on Merge, and a ‘semantics-first’ arrangement based on HCC. Up to a
point, each is just an inversion of the other; but the architectural implications
differ significantly. Under the syntax-first arrangement, there is no requirement
for an implementation of HCC. Under the semantics-first arrangement, there
is no requirement for syntactic rules. Rules covering grammatical preferences
suffice.

With regard to the minimalist architecture, the two variants of Figure 2 then
suggest themselves. The interface between Syntax and C-I might run either
left-to-right or right-to-left, with the latter applying in the case of syntax-first

18

 (Symbolization)

THOUGHT/

MEANING

SOUND/

GESTURE

(C-I) (S-M)

THOUGHT/

MEANING

SOUND/

GESTURE

(C-I) (S-M)

 (Syntax)

Merge

(A) (B)

Ordering

Figure 2: (A) Syntax-first processing; (B) Semantics-first processing.

processing, and the former in the case of semantics-first processing. Under the
syntax-first configuration, the conceptual system gets hierarchical construction
done ‘for free.’ HCC is resourced by means of linguistic Merge, and the con-
ceptual system is simplified accordingly. Under semantics-first, it is the other
way around: Syntax gets constructive services for free. Syntax is seen to fulfil
the purposes of Merge by means of HCC. The two arrangements also give rise
to different forms of internal communication. In version (A), we have the stan-
dard setup, in which Syntax sends structures to both C-I and S-M. In version
(B) we have the semantics-first alternative, in which C-I sends structures to an
intervening symbolization module, which then uses ordering rules to produce
syntactically well-formed outputs. Examples such as the ones set out above
suggest both arrangements are viable.

4 Discussion

Concepts can be assembled hierarchically by means of language, and for this
purpose, language appears perfectly designed. This much is generally agreed
(Pinker, 1994; Jackendoff, 2002; Chomsky, 2007a). Does it make any difference
if concepts are inherently hierarchically combinable? The possibility then arises
that the hierarchical structures of language might be expressing the inherently
hierarchical structures of conceptualization. But is it credible the language sys-
tem is organized in this way? To some degree, this is just a new way of raising
the issue of how thought and language are related. It brings us back to the
fundamental question about which process is in charge (cf. Chater and Chris-
tiansen, 2010). Is language the shaping influence over thought, or does thought
shape language? Is language a means of accomplishing conceptualization, or
merely a way of accommodating it?

Hinzen puts the question like this:

is syntax the dress or the skeleton of thought? Is syntactic com-
plexity a contingent way of dressing up human thought, viewed as

19

something independent from language, in a linguistic guise? Or is
syntax what literally constructs a thought and gives it its essential
shape? (Hinzen, 2009, p. 128)

The observation that concepts are hierarchically combinable falls short of
providing an answer. It does, however, provide a novel way of addressing the
question. Given a suitable notation, it is possible to examine hierarchical con-
ceptualization in a formal way, abstracting away the role of language altogether.
What becomes apparent is that this is an inherently recursive, unboundedly
generative operation in its own right. Its products remain semantically precise
regardless of their structural complexity. They also exhibit a semantic variety
that seems no less broad than what is observed in language. A mechanistic
relationship between hierarchical construction in the conceptual system and hi-
erarchical construction in the language system is then on the cards. HCC might
be resourced by Merge, or it could be the other way around.

Unfortunately, even with the computational aspects of this alternation taken
into account, the question about whether syntax is the dress or skeleton of
thought remains hard to answer. Both the syntax-first arrangement (syntax as
‘skeleton’) and the semantics-first arrangement (syntax as ‘dress’) seem to be
computationally viable. We cannot choose between them purely on the basis
of tractability. Is there some other way of doing so? Can the literature be
brought to bear in any way? Theorists working in the minimalist tradition
often assume an intimate relationship between Merge and thought, and this
may be described in terms that cast thought as the prior process. Hauser, for
example, argues that we should see language as a ‘mind-internal computational
system designed for thought and often externalized in communication’ (Hauser,
2009, p 74). This seems consistent with a semantics-first arrangement, and
might be viewed as a vote in favour. But that would be a misreading. The
semantics-first arrangement eliminates syntactic rules altogether, which is more
than Hauser intends. What Hauser is emphasizing is not the degree to which
conceptualization can be a hierarchically constructive process in its own right,
but the degree to which syntax can be its medium.

Another theorist who emphasizes the priority of thought, while stopping
short of the semantics-first interpretation, is Hinzen (2009). Hinzen goes so far
as to argue that thought must have a generative system that powers it, and that
this must obey the same functional principles as Merge. But, again, this is not
taken to imply that conceptual construction might take the place of syntax. As
Hinzen says,

thought is as generative and discretely infinite as language is ... such
productivity is only possible if there is a generative system behind
thought that powers it. Could that system really employ radically
different generative principles than the ones we now think the com-
putational system of language (syntax) exhibits? ... If Merge, which
is thought to be the basic computational operation of human syntax,
is what is minimally needed to get a system with the basic proper-
ties of language, could it fail to exist in another system, the system

20

of “thought,” that exhibits these very properties as well?’ (Hinzen,
2009, p. 128)

Again, this might be read as support for the semantics-first architecture.
But, as with Hauser, what Hinzen is suggesting is that the generative system
of thought and the generative system of language are essentially one and the
same. In Hinzen’s view, ‘the generative system of language underlies and is actu-
ally indistinguishable from the generative system that powers abstract thought’
(Hinzen, 2009, p. 125).

Like Hauser and Hinzen, Chomsky also argues that ‘language evolved, and is
designed primarily as an instrument of thought’ (Chomsky, 2009, p. 29), Again,
this is not taken as tending towards a semantics-first account. On the other
hand, Chomsky does come closer to this in the position he takes on the evolution
of Merge.9 In Chomsky’s view, the first human to acquire this capability was

instantly endowed with intellectual capacities far superior to those
of others, transmitted to offspring and coming to predominate, per-
haps linked as a secondary process to the [sensory-motor] system
for externalization and interaction, including communication as a
special case. (Chomsky, 2005, p. 12)

This at least admits the possibility of a purely conceptual version of Merge,
driving thought alone. The existence of such a mechanism, in the form of HCC,
is key to the semantics-first account. But there is no suggestion from Chomsky
that structured conceptualization might stand in for Merge. Elimination of
syntax is not part of the proposal. Like Hauser and Hinzen, Chomsky sees
syntax and the generative process of thought as essentially the same thing,
while acknowledging the latter might have existed independently at some point
in human evolution (cf. Chomsky, 2009, 2007b, 2012). Chomsky generally
rejects the possibility of there being any hierarchically generative system other
that Merge, commenting in one case that ‘To date, I am not aware of any real
examples of unbounded Merge apart from language’ (Chomsky, 2007a, p. 20).

The view that Chomsky, Hauser and Hinzen take on this issue is not unrep-
resentative of the minimalist literature more generally. While thought is taken
as prior in some sense, it is also seen to be satisfactorily mediated by syntax, and
thus by Merge. No theorist advocates wholesale elimination of syntax within
the explanation of language. The weight of evidence from the literature strongly
favours the syntax-first account, then.

Nevertheless, this account is not without problems. One issue is the as-
sumption of there being no examples of unbounded Merge other than language.
In light of the hierarchical combinability of concepts, this is incorrect: HCC
is just such an example. Another problem is the assumption of syntax being
a satisfactory medium of thought. This implies that different linguistic con-
structions should realize different thoughts, which seems open to question. The

9The assumption that ‘Merge or some equivalent is a minimal requirement [for language]’
(Chomsky, 2005, p. 11-12) is also relevant here, HCC being just such an equivalent.

21

same thought can often be expressed in different ways. A third issue relates to
what Chomsky calls ‘the curious but ubiquitous phenomenon of displacement
in natural language’ (Chomsky, 2009, p. 31). If syntax is a medium of thought,
there seems no reason why purely linguistic phenomena like this should exist.

The semantics-first account is at an advantage in such cases. It acknowl-
edges the existence of HCC as an equivalent of Merge, and is consistent with
conceptual constructions having multiple linguistic expressions. It also natu-
rally accommodates phenomena of displacement and agreement. In the latter,
we have multiple symbols encoding a single meaning. This can be explained
as exploitation of redundancy, a strategy with significant benefits in any en-
coding task. The former involves syntactic entities being displaced away from
the position they seem to require on grounds of grammatical structure. In the
semantics-first argument, the assumption that symbols take their place accord-
ing to grammatical structure alone is eliminated.

There are explanatory pros and cons on both sides, then. It has to be ac-
knowledged that there is insufficient evidence to justify any final conclusion
about the relationship between Merge and HCC. The possibility of there being
no functional connection at all cannot be ruled out. It might be that the con-
ceptual system pursues hierarchical construction using more or less the same
operator as the language system, but in a completely independent way. This
presupposes significant duplication of effort in the mind, however.

If complete independence is ruled out, what remains is either the syntax-first
or semantics-first forms of organization. In favour of the former is the fact that
it is more consistent with prevailing views on how thought and language are
woven together. In favour of the latter is the fact that it resolves some prob-
lems with the syntax-first account. It is also potentially more parsimonious.
Syntactic rules treat hierarchical construction and symbol ordering as a single
process. A syntactic account thus has to treat every way of conjoining hierarchi-
cal construction and ordering as a special case. The semantics-first alternative
separates the two factors, and makes one the responsibility of the conceptual
system. Within this divide-and-conquer approach, the explanation of language
is potentially simplified. Clearly, more research is required to bring more clarity
to the situation. It is hoped that future work will make further progress towards
that goal.

References

Boeckx, C. (2009). The Nature of Merge: Consequences for Language, Mind,
and Biology. In Piattelli-Palmarini, Uriagereka and Salaburu (Eds.), Of
Minds and Language: A dialogue with Noam Chomsky in the Basque Coun-
try (pp. 44-57), Oxford University Press.

Chater, N. and Christiansen, M. H. (2010). Language Acquisition Meets Lan-
guage Evolution. Cognitive Science, 34, No. 7 (pp. 1131-1157).

Chomsky, N. (1995). The Minimalist Program, The MIT Press.

22

Chomsky, N. (2001). Derivation by Phase. Ken Hale: A Life in Language (pp.
1-52), The MIT Press.

Chomsky, N. (2005). Three Factors in Language Design. Linguistic Inquiry, 36
(pp. 1-22).

Chomsky, N. (2007a). Of Minds and Language. Biolinguistics, 1 (pp. 9-27).

Chomsky, N. (2007b). Biolinguistic Explorations: Design, Development, Evo-
lution. International Journal of Philosophical Studies, 15 (pp. 1-16).

Chomsky, N. (2009). Opening Remarks. In Piattelli-Palmarini, Uriagereka and
Salaburu (Eds.), Of Minds and Language: A dialogue with Noam Chomsky
in the Basque Country (pp. 13-43), Oxford University Press.

Chomsky, N. (2012). The Science of Language: Interviews with James McGilvray,
Cambridge: Cambridge University Press.

Costello, F. J. and Keane, M. T. (2001). Testing Two Theories of Conceptual
Combination: Alignment versus Diagnosticity in the Comprehension and
Production of Combined Concepts. Journal of Experimental Psychology:
Learning, Memory and Cognition, 27, No. 1 (pp. 255-271).

Dryer, M. S. and Haspelmath, M. (eds.) (2011). The World Atlas of Language
Structures Online, Munich: Max Planck Digital Library. Package online at
http://wals.info/ Accessed on 2013-04-06.

Hampton, J. A. (1991). The Combination of Prototype Concepts. In Schwa-
nenflugel (Ed.), The Psychology of Word Meanings, Hillsdale, N.J: Lawrence
Erlbaum Associates.

Hampton, J. (1997). Conceptual Combination: Conjunction and Negation of
Natural Concepts. Memory and Cognition, 25 (pp. 888-909).

Hampton, J. (2011). Conceptual Combination and Fuzzy Logic. In Bĕlohlavek
and Klir (Eds.), Concepts and Fuzzy Logic (pp. 209-232), MIT Press.

Hauser, M. D., Chomsky, N. and Fitch, W. T. (2002). The faculty of language:
what is it, who has it, and how did it evolve? Science, 198 (pp. 15691579).

Hauser, M. D. (2009). Evolingo: The Nature of the Language Faculty. In
Piattelli-Palmarini, Uriagereka and Salaburu (Eds.), Of Minds and Lan-
guage: A dialogue with Noam Chomsky in the Basque Country (pp. 74-84),
Oxford University Press.

Hinzen, W. (2009). Hierarchy, Merge, and Truth. In Piattelli-Palmarini, Uriagereka
and Salaburu (Eds.), Of Minds and Language: A dialogue with Noam Chom-
sky in the Basque Country (pp. 124-141), Oxford University Press.

Jackendoff, R. (2002). Foundations of Language: Brain, Meaning, Grammar,
Evolution, Oxford University Press.

23

Kuno, S. (1973). The Structure of the Japanese Language, Cambridge, Mass:
MIT Press.

McCarthy, J., Abrahams, P. W., Edwards, D. J., Hart, T. P. and Levin, M. I.
(1985/1962). LISP 1.5 Programmer’s Manual (2nd ed.), Cambridge, Mass:
MIT Press.

Murphy, G. L. (2002). The Big Book of Concepts, London, England: The MIT
Press.

Pet, W. A. P. (1987). Lokono Dian, the Arawak Language of Surniname: A
Sketch of its Grammatical Structure and Lexicon, Cornell University Doc-
toral Thesis.

Pinker, S. (1994). The Language Instinct: The new Science of Language and
Mind, The Penguin Press.

Reinhart, T. (1976). The Syntactic Domain of Anaphora, Doctoral dissertation,
Cambridge, Massachusets: MIT.

Rips, L. J. (1995). The Current Status of Research on Concept Combination.
Mind and Language, 10 (pp. 72-104).

Sowa, J. F. (1984). Conceptual Structures: Information in Mind and Machine,
Reading, Mass: Addison-Wesley.

Thagard, P. (1997). Coherent and Creative Conceptual Combination. In Ward,
Smith and Viad (Eds.), Creative Thought: an Investigation of Conceptual
Structures and Processes, Washington, DC: American Psychological Associ-
ation.

Wisniewski, E. J. (1997). When Concepts Combine. Psychonomic Bulletin and
Review, 4 (pp. 167-183).

24

