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Abstract

Increasingly, the brain is conceived to be an engine of prediction con-
solidated in a multilayer model that is probabilistic and generative. Ac-
cording to one recent proposal, the operational basis of all functionality
is then ‘predictive processing.” The question of the computational power
of this regime then becomes of interest. Does predictive processing sub-
serve computation in general? Does it provide the means of implementing
any function whose values can be computed by an algorithm? This paper
shows the existing specification is imprecise in some respects. But with
the ambiguities resolved in a plausible way, the regime can be shown to be
Turing complete. Its capacity to implement a universal Turing machine
implies an ability to replicate the behavior of any general-purpose com-
puter. The thesis that functionalities of the brain stem from predictive
processing need not imply a limited capacity to compute.

Keywords: predictive processing, predictive coding, hierarchical pre-
diction machine, Bayesian brain, information theory, cognitive informatics

1 Introduction

There is increasing enthusiasm for what Clark calls ‘the emerging unifying vision
of the brain as an organ of prediction using a hierarchy of generative models’
(Clark, 2013, p. 185). Part of a long tradition emphasizing the role of prediction
in perception (von Helmholtz, 1860/1962; James, 1890/1950; Tolman, 1948;
Lashley, 1951; Mackay, 1956), this approach is now advancing on a broad range
of fronts (Rao and Ballard, 1999; Lee and Mumford, 2003; Rao and Ballard,
2004; Knill and Pouget, 2004; Friston, 2005; Hohwy et al., 2008; Jehee and



Ballard, 2009; Friston, 2010; Huang and Rao, 2011; Brown et al., 2011; Clark,
2016). Given action can be viewed as prediction put into a behavioral form,
the proposal can be seen as unifying interpretive and behavioral functionality
(Brown et al., 2011; Friston et al., 2009).! Tt is also ideally positioned to use
information theory (Shannon, 1948; Shannon and Weaver, 1949) as a way of
explaining what is achieved. By improving performance in prediction, the agent
renders the world less surprising, effectively gaining information (Cover and
Thomas, 2006; Friston et al., 2012).

Clark’s proposal (e.g. Clark, 2013, 2016) characterizes function organized
in this way as ‘predictive processing.” According to Clark’s scheme, the brain
is ‘fundamentally an inner engine of probabilistic prediction’ (Clark, 2016, pp.
27-28) that is ‘constantly trying to guess at the structure and shape of the
incoming sensory array’ (Clark, 2016, p. 3). Predictions are seen to derive
from a ‘multilayer probabilistic generative model’ (Clark, 2016, p. 4). Behavior
reflects not only the way predictions are made, but the way prediction error
is reduced. Predictive processing stems from the way prediction-making and
error-reduction interact.

The question of computational power then becomes of interest. The capacity
of this form of processing to mediate computation needs clarification. Are there
computational tasks that cannot be accomplished in this way? If so, should
we assume the brain deals with these in some other way? Or can predictive
processing be seen as a fully sufficient medium of calculation? The latter is the
more economical option. But to place it on a firm footing, the functional power
of predictive processing needs to be pinned down precisely. Are there bounds
on what can be achieved in this way? Or does the regime provide the means
of implementing any function whose values can be computed by an algorithm?
To put the question more formally: Is predictive processing a Turing complete
model of computation?

To answer the question, we require an operational specification to work from.
We need to know what it would mean to build a predictive processing system,
and how the system would work. Unfortunately, a specification at this level
of detail is not yet available. Although the description provided by Clark and
others is detailed, it falls short of being operationally precise. Clark himself
classifies the scheme as a ‘relatively abstract theoretic model’ (Clark, 2016, p.
298), and a ‘mid-level organizational sketch’ (Clark, 2016, p. 2). This is a fair
assessment. Some aspects of what is envisaged are described with complete
precision. Others less so.

The fundamental posits of the approach are unambiguous, however. The
proposal incorporates the commitments of the Bayesian brain hypothesis, that
‘the brain codes and computes weighted probabilities’ (Clark, 2016, p. 41), and
that probabilistic inference plays an important role (cf. Pouget et al., 2013).
But, importantly, the proposal also claims that processing is mediated by a
‘multilayer probabilistic generative model’ (Clark, 2016, p. 4). This description

IThe assumption underlying this is that ‘the best ways of interpreting incoming information
via perception, are deeply the same as the best ways of controlling outgoing information via
motor action’ (Eliasmith, 2007, p. 7).



could be satisfied in a range of ways, some more complex that others. For
purposes of operationalizing the scheme, it is necessary to specify what would
minimally be entailed.

Arguably the simplest example of this kind of model that Clark cites is a hier-
archical Bayesian model (Clark, 2016, pp. 172-175). A minimal constitution for
the model can be established on this basis. Each layer in a hierarchical Bayesian
model comprises a set of probability-bearing states (e.g., variable states). The
between-layer structural connections are defined by conditional probabilities,
such that the conditionality is downward in all cases. Each conditional prob-
ability has its conditional state at one layer, and its conditioned state in the
layer below. Allowing that a state in one layer can conditionalize more than one
state in the layer below, the mapping from layer to layer is one-to-many. The
model is thus hierarchical.

A model in this form is clearly both probabilistic and multilayer. Is it also
generative? To satisfy the requirement for generativity, a model must embody
predictive functionality of a certain type. Clark describes what is needed as
follows:

An important feature of the internal models that power such [pre-
dictive processing] approaches is that they are generative in nature.
That is to say, the knowledge (model) encoded at an upper layer
must be such as to render activity in that layer capable of predict-
ing the response profiles at the layer below. (Clark, 2016, p. 93)

A hierarchical Bayesian model satisfies this by virtue of its ability to mediate
top-down inference. In this process, a conditional probability, and the proba-
bility of the state on which it depends, are combined to derive a conditioned
probability for a state at the level below. In Bayesian terms, this is a simple
form of inference, accomplished without use of Bayes’ rule. It is sometimes
called ‘forward inference’, a term which is confusing for the present context
as the flow of information would be classified neuroscientifically as ‘backward’.
Also problematic is the fact that this form of inference derives a prior from a
prior, a process which seems on first sight to be a contradiction in terms. To get
around these problems, some theorists characterize the process as the ‘pulling
down’ of priors (e.g. Hohwy, 2013, p. 33). Clark sticks to the idea that priors
are inferred. As he comments, one of the advantages of using a model in this
form

is that it allows the system to infer its own priors (the prior beliefs
essential to the guessing routines) as it goes along. It does this
by using its best current model—at one level—as the source of the
priors for the level below. (Clark, 2013, p. 3)

Since a hierarchical Bayesian model can accomplish prediction by forward
inference, it satisfies the stipulated requirements. It is a valid example of a
multilayer probabilistic generative model. This does not rule out that a model
of this kind might be much more complex. The role played by lateral (within



layer) connectivity is particularly emphasized in (Clark, 2016), for example.?
For present purposes, what is important is that the model used in predictive
processing might be of just this form.

Given this way of specifying the model itself, a particular form of processing
is then implied. It is at this point that questions begin to arise. One relates to
the upward flow of information (which is the ‘forward’ flow from the neurosci-
entific perspective). This is assumed to exploit the data-compression strategy
of predictive coding.® As Clark says,

What is most distinctive about the predictive processing proposal ...
is that it depicts the forward flow of information as solely conveying
error, and the backward flow as solely conveying predictions. (Clark,
2016, p. 38)

What flows down the hierarchy are predictions; what flows up is prediction
error. Clark sees this arrangement as reducing the amount of information that
needs to be signalled in the upward direction. As he says, the ‘information
that needs to be communicated “upward” under all these [predictive processing]
regimes is just the prediction error: the divergence from the expected signal’
(Clark, 2013, p. 183).

For implementation purposes, we need to determine how the error is calcu-
lated, and how it is communicated. Clark states that error is calculated in an
information-theoretic way. In (Clark, 2016), he writes?

Prediction error here reports the ‘surprise’ induced by a mismatch
between the sensory signals encountered and those predicted. More
formally—and to distinguish it from surprise in the normal, expe-
rientially loaded sense—this is known as surprisal (Clark, 2016, p.
25).

This pins down the measurement quite precisely. The problem is that it is
not clear how an error signal calculated in this way could play the envisaged
role. Except in trival scenarios, such as predicting a scalar value, a prediction
error in this form does not itself indicate how the error can be reduced. The
problem is easy to illustrate. Imagine telling someone that their translation
of a sentence is 30% in error. This gives little indication of how the error
can be reduced. The error signal in predictive processing, it seems, must give
an indication of how the error can be reduced. We have to assume that it
encapsulates some identification of ‘that which is not predicted.” Clark seems
to acknowledge this when he asserts (at a different point) that the ‘unpredicted

2Clark writes that ‘in the standard implementation of PP higher level ‘representation units’
send predictive signals laterally (within level) and downwards (to the next level down) thus
providing priors on activity at the subordinate level’ (Clark, 2016, p. 143).

3Clark defines predictive processing to be ‘the use of [predictive coding] in the very special
context of hierarchical (i.e., multilevel) systems deploying probabilistic generative models’
(Clark, 2016, pp. 25-26).

4Citing Tribus (1961).



parts of the input (errors) travel up the hierarchy, leading to the adjustment of
subsequent predictions’ (Clark, 2016, p. 30).

A second issue relates to the relationship between error-signalling and Bayesian
inference. Given we are assuming the model takes the form of a Bayesian hier-
archy, application of Bayes’ rule also produces an upward flow of information.
Derivation of posteriors is accomplished by inverting conditional probabilities.
The probability of a state at one layer, and a prior on a state at the level above,
are combined using Bayes’ rule to derive a posterior for the state in question. (If
downward inference is characterized as the ‘pulling down’ of priors, this comple-
mentary process involves their ‘pulling up’.) For operational purposes we then
have to decide whether error-signalling in predictive processing entirely replaces
upward Bayesian inference, or whether it is integrated with it in some way.

The main question regarding the upward flow of information is, however,
how it is implemented. Is some additional apparatus required? If so, what
form does this take? Clark remains fairly open on this issue; but he argues that
there has to be some functional separation between the apparatus that mediates
prediction-making, and the apparatus that mediates error-signalling:

However it may (or may not) be realized ... predictive processing
demands some form of functional separation between encodings of
prediction and of prediction error. (Clark, 2016, p. 39, original
emphasis)

A question remains, however. Given inference using Bayes’ rule produces an
upward flow of information, it is conceivable that this could be the medium in
which error is signalled. For present purposes, such an arrangement would be
doubly attractive, since it would give Bayesian inference a well-defined role in
the scheme while also eliminating the need for a separate signalling apparatus.
For purposes of deriving a well-defined implementation, this issue needs to be
settled in some way.

Another question relates to the use of precision weighting. It is assumed that
the reliability and salience of error signals is assessed, and that these assessments
‘determine the weighting (precision) given to different aspects of the prediction
error signal at different levels of processing’ (Clark, 2016, p. 146). The degree
to which the system strives to reduce a particular error is then understood to
be controlled by the weighting of the error. An attraction of this scheme is
its capacity to explain properties and pathologies of the mind.> But questions
are raised regarding the distinction between precision-weighting and ordinary
inference.

One problem is the threat of an infinite regress. Does it make sense to
posit weightings on error signals, unless we also posit weightings on weightings,
weightings on weightings on weightings, and so on? What justifies cutting off the
process at the first iteration? Clark argues that ‘Obviously, no system can afford

5Precisions appear to be a good way to explain attention, for example. Clark suggests
that ‘predictive processing depicts attention as increasing the gain on select prediction errors’
(Clark, 2016, p. 77).



to engage in endless spirals of ‘computational self-doubt’ in which it attempts
to estimate its confidence in its own assignments of confidence’ (Clark, 2016, p.
201). The difficulty is that, from the operational point of view, adopting this
particular cutoff seems arbitrary.

The question of whether any additional apparatus is needed also crops up
again. Assuming the system strives to reduce relatively greater error to a rela-
tively greater degree, the effect of using precision weighting might be achieved
by amplifying errors according to their imprecision. Imagine a prediction is
made for states in a particular layer, and that this produces an error with a
certain precision. Assume that certain states of this layer are used to represent
different precisions. To reproduce the effect of precision weighting, it would then
suffice to augment the original prediction with a designation of whatever states
represents zero precision. The error of the prediction will then scale with the
precision, and the degree to which it is reduced will be modulated accordingly.
On this argument, precisions might be implemented in terms of the multilayer
apparatus already assumed to exist.

Last but not least, there is the issue of how downward and upward flows of
information interact. According to Clark, predictive processing is able ‘flexibly
to combine top-down and bottom-up flows of information within the multilayer
cascade’ (Clark, 2016, pp. 25-26). What happens in the case of conflicts—where
downward and upward flows produce different probabilities for the same state—
is not stipulated in any detail. In Clark’s view, there are many possibilities. As
he says, there are many ‘possible ways of combining top-down predictions and
bottom-up sensory information’ (Clark, 2016, p. 298). Here, some assumption
has to be introduced about the way conflicts are resolved.

To derive an operational formulation of predictive processing, all these ques-
tions need to be answered in some way. The constitution of the error signal has
to be settled in light of the requirement that this must indicate how the error is to
be reduced. Whether signalling of error can be mediated by Bayesian inference
needs to be determined. A position has to be taken in regard to the implementa-
tion of precision weightings. And the way in which downward/upward conflicts
are resolved must be clarified. Even with all these issues settled, there remains
one fundamental obstacle. Within Bayesian theory, probabilistic inference—
even the simpler forward variety—is computationally intractable. Combination
of derived probabilities is accomplished by taking their product. This is a pro-
cess that, past a certain point of complexity, produces values too small to be
represented.

The intractability of Bayesian inference is a problem affecting all work in the
Bayesian-brain tradition. While ‘Most, if not all, of the computations performed
by the brain can be formalized as instances of probabilistic inference’ (Pouget et
al., 2013, p. 1176), the intractability of the process means that ‘unconstrained
Bayesian inference is not a viable solution for computation in the brain’ (Knill
and Pouget, 2004, p. 718). Clark fully acknowledges the problem, nothing
that ‘Complex real-world problems demand the use of approximations to truly
optimal forms of probabilistic inference (Clark, 2016, p. 298). Any operational
formulation of predictive processing must address this issue in some way. It must



introduce an approximation of optimal inference that satisfies the requirement
to be computationally tractable.

The proposal set out below uses an information-theoretic approach to derive
a scheme that satisfies all the requirements that arise. Bayesian theory is often
seen to be the most natural way of modeling probabilistic prediction. But
information theory can also provide an effective formalization. It is possible
to define a metric which measures the informational value of a prediction of a
known outcome, given the outcome and its informational value are both known
(Thornton, Forthcoming). Using this metric, Bayesian inference can be recast
as information maximization. This way of implementing probabilistic inference
ensures the process ‘respects Bayesian principles’ (Clark, 2016, p. 39) — the
inference that is implemented is approximately optimal. But there is no loss of
tractability. The approach also leads to practical answers for the questions raised
above. It mandates a particular way of dealing with the operational ambiguities
affecting bottom-up inference. It resolves the issue of whether error-signalling
can be subsumed within (upward) Bayesian inference. And it leads to a way of
implementing precision weighting without introducing a separate apparatus.

With predictive processing operationalized in this way, it becomes possible
to examine the formal properties of the regime. Its computational power can be
put to the test. What is demonstrated below is that, in this implementation, the
regime is capable of implementing a universal Turing machine. This establishes
that predictive processing is Turing complete: the regime has the ability to
replicate the behavior of a general-purpose computer. Accordingly, the claim
that functionalities of the brain stem from predictive processing has no negative
implications for the question of how brains compute. Rather, the approach
becomes a way of explaining how computation is accomplished.

The remainder of the paper sets out the proposal in detail. Section 2 in-
troduces the metric of predictive payoff, and examines its relationship to other
measures from the Shannon framework. Section 3 shows how the metric leads
to a tractable way of implementing predictive processing. Some illustrative ex-
amples are presented. Section 4 then tackles the task of demonstrating the
computational power of the regime. Its capacity to simulate a Turing machine
is demonstrated, and an example simulation is presented. Finally, Section 5
discusses the degree to which the predictive processing proposal answers the
long-standing question of how brains compute. An appendix is also added which
presents a more complex example of Turing-machine computation simulated by
predictive processing.

2 Informational modeling of prediction

For purposes of modeling probabilistic prediction, it is normally Bayesian the-
ory we turn to. But Shannon information theory (Shannon, 1948; Shannon and
Weaver, 1949) can also provide an effective treatment (Thornton, 2014, Forth-
coming). The basic form of this is easily illustrated. Imagine someone produces
a weather prediction (i.e., a forecast) in the form of a distribution that gives a



20% chance of rain (probability 0.2), and an 80% chance of no rain (probability
0.8). Given knowledge of the outcome and its informational value, what is the
informational value of the predictive distribution? How should we calculate the
informational value of the forecast once we know the outcome?

The way the value is calculated informally is clear enough, at least where the
outcomes occur with equal probability. If the outcome is rain, the prediction
is considered fairly bad (i.e., misinformative). Otherwise, it is considered fairly
good (i.e., informative). Such assessments are implicitly graded, and there are
well-defined extreme cases. If the predictive distribution gives a 50/50 chance
of either outcome, it is judged entirely uninformative regardless of the outcome.
Otherwise, the perceived informativeness of the prediction is seen to either in-
crease or decrease, depending on the probability given to the correct outcome.
If the balance of probability favours the correct outcome, the more it does so,
the more informative the prediction is considered to be. Conversely, if the bal-
ance of probability favours the wrong outcome, the more it does so, the more
misinformative the prediction is seen to be. The perceived informativeness of a
predictive distribution can be positive, negative or non-existent in this way.

The weather-forecasting scenario can be used as an illustration. Predicting
a 20% chance of rain (i.e., awarding a probability of 0.2) is considered rather
misinformative if the outcome turns out to be rain, but not as misinformative as
predicting a 10% chance. If the forecast gave a 40% chance of rain, it would be
considered less misinformative, but more so than one specifying a 45% chance.
If, on the other hand, the forecast places the balance of probability on the
correct outcome, the judgements then scale in the opposite way. Forecasting a
60% chance of rain is considered informative, but not so much as forecasting
a 80% chance. There is also a well-defined extreme at both ends of the scale.
Given it rains, forecasting a 100% chance of rain is maximally informative, while
forecasting a 0% chance is maximally misinformative.

This informal method of evaluation is clearly rather precise. Can it be
placed on a mathematical footing? Is there an information-theoretic version
of the calculation? It is tempting to assume the evaluation can be performed
simply by deriving the entropy (uncertainty) of the predictive distribution.®
This conforms to the general principle that entropy is the means of determining
informational value. But the approach clearly fails. For one thing, an entropy
measurement applied to the distribution takes no account of the informational
value of the outcome itself. For another, it fails to distinguish between the
best and worst cases. A predictive distribution that places all probability on
the correct outcome has exactly the same entropy (namely zero) as one which
places all probability on the wrong outcome.

To get closer to what we need, it is necessary to proceed in a deductive way.
Let z be an outcome taken from a choice of any size”, with z1 being the outcome
that occurs, and zg being an outcome that does not occur. (Allowing the choice

6The following section deals with utilization of KL divergence, and scoring functions from
decision theory such as the Brier score.

"For present purposes, a choice is defined to be a set of outcomes from which precisely one
occurs.



to be of any size means there may be more than one non-occurring outcome.) Let
Q(z) be the predicted probability of outcome x, or more precisely the probability
of predicting outcome z. Finally, let I,(x) denote the informational value of the
prediction of outcome x.

According to these definitions, the average informational value of @ as a
source of prediction is a weighted sum:

Q) =) Q@)() (1)

Using @Q,, to name a distribution which gives all outcomes the same probability,
it can be asserted that

I(Qu) =0 (2)

The uniform distribution @),, cannot have any informational value as a prediction
since it simply asserts what is anyway known, that there is a choice of outcomes.

On the grounds that predicting the correct outcome is informationally equiv-
alent to observing it, a constraint can also be added which links the informa-
tional value of the correct outcome to the informational value of correctly pre-
dicting it:

Iy(xr) = I(z7) = —log, P(z) (3)

Here, P(xT) is the objective probability of T occurring. On this basis, the in-
formational value of the occurring outcome becomes — log, P(xT) bits, as does
the informational value of predicting it correctly. By deduction from (1), (2) and
(3), it then follows that the informational value of predicting the occurring out-
come must balance the summed informational value of predicting non-occurring
outcomes. This is necessary to satisfy the constraint that the informational
value of the uniform distribution @), is zero. It must be the case that

I(er) = =Y I(er). (4)

Combining (3) and (4), the informational value of predicting any outcome can
then be defined thus:

—log, P(x) if x = ap
Iy(x) = (5)
1};@('&2) log, P(z) otherwise

Given we know the outcome that occurs, this definition can be used to find the
informational value of predicting any outcome within the choice. It allows I,(x)
to be calculted for any x. The quantity defined by Eq. 1 is then well-defined.
It is the average value of distribution @ for predicting the outcome, taking into
account the outcome that occurs, and the informational values that arise. This
average is termed the predictive payoff of the distribution.



It will be seen that predictive payoff behaves exactly as expected on intuitive
grounds. Its value is positive, negative or zero in precisely the cases where a
prediction is judged to be informative, misinformative, or uninformative. Recall
the original example, where @) gives probability 0.8 to no rain, but the outcome
turns out to be rain. This predictive distribution is judged rather misinforma-
tive. The mathematical evaluation corroborates the judgement. Given the two
outcomes have equal objective probability, each has an informational value of
—log, % =1 bit. The predictive payoff of the distribution is then

0.2x140.8x —1=—0.6 bits

The average informational value is negative, reflecting the judgement that the
distribution is misinformative.

Examining alternative scenarios confirms that predictive payoff always re-
flects informativeness in the way we would expect. If the forecast gives a 70%
chance of rain and there is rain, the judgement is ‘fairly informative’ and the
payoff is a 0.4 bit gain. If there is rain following a forecast giving only a 10%
chance, the judgement is ‘highly misinformative’ and the payoff is a 0.8 bit loss.
If the forecast gives a 50% chance of rain, the judgement is ‘completely uninfor-
mative’ and the payoff is neither gain nor loss. Evaluations range from positive
— zero — negative in a perfect mirror-image of the way judgements range from
‘informative’ — ‘uninformative’ — ‘misinformative.’

Predictive payoff can be measured in arbitrarily complex situations involv-
ing any number of outcomes. Consider, for example, a doctor who gives a 75%
chance of a certain test producing a negative result, a 15% chance of it producing
a positive result, and a 10% chance of it producing no result. Here, the predictive
probabilities are 0.75, 0.15 and 0.1 respectively. Assuming objective probabili-
ties are uniform, the informational value of an outcome is —log, 3 ~ 1.58 bits.
If the outcome is a positive result, the predictive payoff of the doctor’s forecast
is then

0.75 0.1

Given the doctor’s strong prediction of a negative result, the outcome of a
positive result would lead us to judge the prediction as fairly misinformative.
The evaluation corroborates the judgement. The prediction is found to produce
a loss of around 0.43 bits in relation to the outcome.

Evaluation in the face of a four-way choice can also be illustrated. Imagine
a housing agent who gives a 60% chance of selling a property for more than
the asking price, a 10% chance of selling for the asking price, a 20% chance
of selling for less than the asking price, and a 10% chance of not selling at
all. The implied probabilities are then 0.6, 0.1, 0.2 and 0.1 respectively. Given
the objective probabilities are uniform, the informational value of each outcome
is —1og2i = 2 bits. In the case of a sale above the asking price, we would
judge the forecast to be fairly informative—this is the outcome most strongly
predicted. Again, mathematical evaluation corroborates the judgement. Since

10
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The predictive payoff is found to be a gain of approximately 0.93 bits.

Situation with two outcomes of varying probability

T T T
Prob of true outcome 0.001 -~
8 Prob of true outcome 601 —>— -
Prob of true etitcome 0.1 —*—
6 Prob-of true outcome 0.5«—4 .
= Prob of true oxtcdme 0.9 —m—
£ 4 Probroftrue outcome 0.99 —e— 7}
bt Prob of true gutcome 0:099
£ 2t i
§ 0 —4”‘” ]
v i
=
S 21 .
©
¢ 4t g
(a W
_6 - -
_8 - -
| | | |
0 0.2 0.4 0.6 0.8 1

Probability of predicting true outcome

Figure 1: Predictive payoff under varying conditions.

All these examples take outcomes to be objectively equiprobable. This as-
sumption simplifies the calculation. But it is important to remember that pre-
dictive payoff is also affected by the informational values of the predicted out-
comes. It is a function of the predictive distribution, the outcome, and the
probabilities with which outcomes occur. Other things being equal, correctly
predicting an outcome of higher informational value produces a greater predic-
tive payoff. The graph of Figure 1 shows how predictive payoff varies across a
range of situations. The situation in which the two outcomes are equiprobable
is represented by the central line (‘Prob of true outcome 0.5”).

2.1 Relation to KL-divergence and other metrics

How does predictive payoff fit into the Shannon framework more generally?
The metric has not been previously defined, but there are several within the
framework with which it is potentially compared. Predictive payoff depends
largely on the relationship between two distributions: the objective distribution
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which defines the probability (and thus informational value) of each outcome,
and the subjective distribution which defines the probability of predicting each
outcome. Predictive payoff can be compared against other ways of quantifying
the informational relationship between two distributions, then.

Mutual information is a metric of this type. This quantifies the informational
relationship between two random variables, taking into account their individual
distributions (Cover and Thomas, 2006). The measure quantifies how much
one distribution tells us about the other. Unfortunately, it also references the
joint distribution, which plays no part in the calculation of predictive payoff.
In calculating predictive payoff, the joint distribution is assumed not to be
known. Mutual information and predictive payoff are incommensurable for this
reason. The same applies to conditional entropy and cross-entropy. The former
is defined in terms of a conditional distribution, and the latter in terms of a set
of observations. Neither figure in the calculation of predictive payoff.

One measure that can be compared is Kullback-Leibler (KL) divergence.
This quantifies the relationship between two distributions without referring to
any additional data. Given probability distributions P and @, the KL divergence
of P from @ is the information lost when @ is used to approximate P (Kullback
and Leibler, 1951).%8 The KL divergence of distributions P and Q is

_ P(z)) .
PP Q)= 3 i) PO
Distributions that are identical have a KL divergence of zero, and the value
rises to infinity as they diverge. A relationship with predictive payoff can then
be discerned. Taking the objective distribution to be uniform, and the best
predicting distribution to be one which places all probability on the occurring
outcome, it will be seen that predictive payoff always decreases as the predicted
and best predicting distributions diverge. KL divergence varies in the opposite
direction, decreasing as predictive quality increases.

Predictive payoff has as its maximum the informational value of the occur-
ring event, and as its minimum the corresponding negative. A value of zero also
identifies the special case of a neutral (uninformative) prediction. KL divergence
maps this range into zero to infinity, and inverts it. For purposes of measuring
predictive payoff, it has several drawbacks therefore. It cannot deal with vari-
ation in objective probability. The qualitative distinction between good, bad
and neutral predictions is not made. Critically, the quantity identified is not
the informational payoff attained. A relationship exists, but there are signifi-
cant differences. The graph of Figure 2 shows how values of KL divergence and
predictive payoff compare in the two-outcome scenario.

Beyond the Shannon framework, predictive payoff can be related to scoring
functions in decision theory. These are also a way of evaluating probabilistic
forecasts, and they behave much like KL divergence. Consider the situation

8The measure has an intimate relationship with log loss. The log loss sustained by mis-
predicting a binary outcome is also the KL divergence of the suggested distribution from a
distribution which gives all probability to the realized outcome (Mackay, 2003).
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Situation with two equiprobable outcomes
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Figure 2: Comparison of predictive payoff, KL divergence and Brier score.

where a weather forecaster gives an 80% chance of rain, but there is no rain.
Since predictive payoff reflects the probability given to the true outcome, its
value in this case would be negative. We can also apply a scoring rule to
evaluate the forecast with respect to this outcome. We might use the Brier rule
(Brier, 1950) for example. This is defined by

1 N
— E 2
BS = N 74:1(]715 — Ot)

where N is the number of forecasts made, p; is the probability forecast at time
t, and o; is 1 if the forecasted outcome occurs and 0 otherwise. It will be seen
that, in the case of a single forecast, the Brier score also varies monotonically
with the probability given to the true outcome, with a score of 0 being awarded
in the best case (all probability allocated to the outcome that occurs) and a
score of 1 in the worst case (all probability given to the outcome that does
not occur). Again, the effect is to map predictive payoff onto a non-negative,
inversely varying quantity. Figure 2 shows how the this measure compares to
predictive payoff and KL divergence in the case of two equiprobable outcomes.”

9In practice, scoring functions are used to evaluate a series of forecasts with respect to
an observed probability distribution over events. A scoring rule is termed ‘proper’ if it is
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3 Predictive processing

Bayesian theory is often used to model probabilistic prediction. But, as has
been seen, Shannon information theory offers a useful alternative. For present
purposes, the Shannon approach has several advantages. Using the metric of
predictive payoff, we can calculate the informational value of any probabilistic
prediction, subject to knowing the outcome and its informational value. Prob-
abilistic inference (by means of Bayes’ rule) can then be recast as maximization
of information. To illustrate: imagine we have some hypotheses, each of which
awards probability to potential items of data. Using Bayes’ rule, we can deter-
mine the posterior probability of each hypothesis with respect to some observed
data. Generally speaking, the optimal hypothesis is the one that best predicts
these data. This is the process of maximum a posteriori (MAP) inference. In
the information theoretic counterpart, we find the hypothesis whose summed
predictive payoff with respect to the observed data is maximized. On the as-
sumption that this is also the hypothesis that best predicts the data, the two
methods produce the same result.

There are mathematical differences that need to be recognized, however.
Both calculations reference the probability each hypothesis awards to each item
of data. But whereas the Bayesian calculation also attends to prior probabili-
ties for both hypotheses and data, the informational calculation references only
informational values. If all priors and informational values are set to 1 (i.e.,
probability 1 in the case of a prior, and 1 bit in the case of an information
value) posterior probability and predictive payoff are then numerically identical
for each item of data. The payoff is the probability awarded, counted as a quan-
tity of information. The posterior is the same value treated as a probability.
The difference comes in the way the evaluations are combined. A hypothesis
that awards probability to multiple observed data has multiple posteriors and
payoffs. The overall posterior is then calculated as the product of the individual
posteriors. The overall payoff, on the other hand, is their sum.

In many situations, the result will be the same. The hypothesis with max-
imum posterior probability is likely to be the one with maximum payoff. But
divergence cannot be ruled out. Say we have 100 observed data, all of which
have prior probability 1, and an information value of 1 bit. Imagine a hypoth-
esis that awards maximum probability to 99 of the observed data, but zero
probability to the 100th. This hypothesis predicts the observed data extremely
well, and the summed payoff will be close to the maximum accordingly. But
due to the ‘single mistake’, the posterior probability falls to zero. Under the
Bayesian calculation, this near perfect hypothesis is found to have a value no
better than that of the worst hypothesis of all: one that gives all observed data
zero probability.

The information-theoretic version of probabilistic inference is an approxi-
mation of Bayesian inference, then. But as such it has two attractions. It is
mandated by the principles of information theory; and it is computationally

maximized when forecasted probabilities are equal to true probabilities, and ‘locally proper’
if this maximum is unique.
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tractable. Because it combines evaluations by summation rather than multi-
plication, the problem of disappearingly small evaluations is avoided. Informa-
tional modeling of probabilistic prediction solves the main problem presently
faced, then. It gives probabilistic inference a computationally tractable form.
Operationalization can proceed on this basis.

The informational approach also yields up specific answers to the questions
raised in the introduction. The ‘multilayer probabilistic generative model’ that
predictive processing uses can take the minimal form previously envisaged—
a hierarchical structure defined by Bayesian (conditional) probabililties. But
the probability-bearing states on which the conditionals are defined are now
replaced by information-bearing outcomes, and the way these are organized into
choices becomes relevant. The generative functionality of the model still derives
from application of conditional probabilities. What is generated, however, are
distributions of information rather than probability.

A C A 16 " -08 C A 16 " -08 C
B B-08 l‘ B-08 “

0.8[0.0]0.1
0.1[03]0.9

0.1]10.6]0.0
0.0]0.1]0.0 ‘ P
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G D G D 13 00 G

E 02 02 F

(1) (2) (3)

Figure 3: Top-down information flow.

As an illustration, consider Figure 3. Panel (1) shows a simple, two-layer,
hierachical Bayesian model. The rounded rectangles represent two discrete vari-
ables, and the enclosed circles represent their possible states. The adjacent
conditional probability table (CPT) lists the conditional probabilities that link
states of the upper variable (4, B and C) to states of the lower variable (D, F, F
and G). In this table, conditioned states are arranged in rows, and conditioning
states in columns. The conditional probability of D given C'is 0.1 for example.
This is a conventional hierarchical Bayesian model that could be used to derive
probabilistic inferences in the usual way.

For purposes of turning the model into an operational predictive processing
system, the state of each variable is considered to predict the corresponding
outcome of a choice; e.g., state A is considered to predict (with probability
1) outcome A from the choice A/B/C. Given occurrence of such an outcome
and knowledge of its informational value, the predictive payoff of any predict-
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ing states can then be calculated. By the same token, we can represent the
occurrence of such an outcome by setting informational values to the payoffs
in question. The situation of panel (2) shows the configuration representing
occurrence of the outcome predicted by A. The numbers adjacent to the states
A, B and C are the informational values acquired in the case of this outcome oc-
curring. Notice the most highly valued state—the one predicting the occurring
outcome—is also filled for emphasis. (This graphical convention is used in all
cases below.) An outcome that acquires greater (positive) informational value
than any of its alternatives is said to be ‘cued’, and its representing circle is
filled. The enclosing rectangle representing the choice is also shaded to a degree
that signifies the recency of the cueing.

With the model configured to represent occurrence of A, there is the potential
to update the informational values of states in the lower layer according to
predictions emanating from the upper layer. For each state of the lower variable
we can determine the informational value it is predicted to have in light of the
informational values of the upper states, and the conditional probabilities they
impose. On this basis, each state x in the lower choice acquires a value of I;(x),
where

- |—[1]| " Plaly) (),

yeU

Ta(z)

given U is the set of predicting outcomes. Probabilistic predictions can give rise
to downward flows of information in this way. Panel (3) of Figure 3 shows the sit-
uation that results. To keep the terminology as simple as possible, it is assumed
henceforth that informational values are updated automatically, whenever pos-
sible, and the distinction between states and predicted outcomes is dispensed
with. From here on, the states of a variable will be referred to directly as the
outcomes of a choice.

A ..T‘. c A-04 07 C

B 09

D -07 -0.7 G D -0.7 -0.7 G
E-07 20 F E-0.7 20 F
(1) (2)

Figure 4: Bottom-up information flow.
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If the model is set to represent occurrence of an outcome from the lower
choice, a flow of information in the opposite direction arises. The informational
values of outcomes in the upper layer are updated according to their predictive
payoff for outcomes of the lower layer. Information flows upward from lower to
upper outcomes. Figure 4 shows the effect of the occurrence of F. The outcome

from the upper layer which best predicts F acquires the greatest value (0.9 bits
).10

approximately
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Figure 5: Four-layer probabilistic model.

A more complex setup is depicted in Figure 5. This shows a hierarchical
model of four layers, using the same conventions as before. With more structure
in the model, more complex flows can arise. Figure 6 illustrates the downward
flow that results from cueing B. In view of the assigned value of B (2.0 bits) and
the probability it awards to D and E, the latter two outcomes acquire (by Eq.
6) values of 0.6 and 1.4 bits respectively. With these established, values at the
layer below are then updated. Outcomes H and [ acquire values of 1.3 and 0.1
bits respectively, while J, K and L acquire 0.4, 0.9 and 0.1 bits respectively. The
downward flow continues down this and all other branches, eventually awarding
values to all outcomes of all choices.

This model can also exhibit a mixture of downward and upward flows. An

10As it identifies the best predicting outcome from the upper layer, this behavior approxi-
mately (but tractably) replicates identification of the best predicting hypothesis by Bayesian
MAP inference.
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Figure 6: Generative information flow in the four-layer model.

upward flow gives rise to a downward flow as a knock-on effect, if it resets values
in a choice that has descendants elsewhere. Figure 7 illustrates an example.
Cueing V produces an upward flow that rises first to J/K/L, then to D/E and
finally to A/ B/ C. The awarding of new values to outcomes in these three choices
then produces three different downward flows, with the eventual effect of giving
values to all outcomes in the model.

A hierarchical Bayesian model can be turned into an operational predictive
processing system, then, simply by assuming that informational values are up-
dated whenever possible. This way of operationalizing the scheme also resolves
some of the ambiguities noted in the introduction. One problem, recall, relates
to communication of prediction error. According to Clark, the upward flow of
information in predictive processing should involve no more than the commni-
cation of an error signal. In (Clark, 2013), he states that the ‘information that
needs to be communicated “upward” under all [predictive processing] regimes is
just the prediction error: the divergence from the expected signal’ (Clark, 2013,
p. 183). The operational difficulties that stem from this have already been
noted. Given the model’s structure is defined by conditional probabilities that
have their conditioning state at the level above the conditioned state—the ar-
rangement presently assumed—Bayesian inference is itself a bottom-up process.
Using Bayes’ rule to derive a posterior gives probability to a state at one level,
dependent on the probabilities of states at the level below. Bayesian inference
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Figure 7: Mixed information flow in the four-layer model.

mediates the ‘pulling up’ of priors in this way. If the upward flow is mediated
by error-signalling alone, Bayesian inference has no role.

A second problem is that an error-signal in the form of a surprisal value—the
arrangement Clark envisages—could not play the anticipated role. Setting aside
trivial predictions, such as predicting a scalar value, a prediction error does not
itself indicate how the error can be reduced. An error signal will generally be
ambiguous for this purpose. For the sake of operational viability we have to
take as definitive, then, Clark’s more general (and more recent) statement that
‘unpredicted parts of the input (errors) travel up the hierarchy, leading to the
adjustment of subsequent predictions’ (Clark, 2016, p. 30). It has to be assumed
that what flows in the upward direction is some specification of what is not yet
predicted.

On this basis, the informational formulation can be seen to kill two birds with
one stone. Notice, first, the sense in which the upward flow implicitly conveys
an error signal. An outcome that mispredicts a state of affairs at the layer
below acquires a negative information value, whose size reflects the degree of
misprediction. What is communicated upward in this case is, in effect, an error
signal. Taking ‘what is not predicted’ to be that which is potentially predicted
by other outcomes of the same choice, their acquisition of less negative values
also implicitly ‘corrects’ the error. In this sense, the upward flow of signed
information both communicates and corrects prediction error. At the same
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time, the upward flow realizes approximate but tractable Bayesian inference.
The informational formulation satisfies several requirements, then. The upward
flow conveys an error signal and gives rise to implicit error correction, while also
mediating tractable Bayesian inference.

The problem of conflicts is also naturally resolved in the informational ap-
proach. Given information can flow either upward or downward within the
model, it is possible for the two processes to come into conflict. There may be
two ways to update the value of the same outcome, one deriving from predic-
tions made in the layer above, and the other deriving from predictions made for
the layer below. But given the competing values are quantities of information,
a conflict of this kind can be resolved by adopting whichever value is greater.
Given two ways of deriving the informational value of an outcome, it is natural
to choose the maximum.

In one way or another, then, the problems encountered in operationalizing
predictive processing are all overcome by adopting the informational model of
probabilistic prediction. A multilayer probabilistic generative model that is (1)
structurally defined by conditional probabilities, (2) has information-bearing
outcomes as its basic states, and is (3) mandated to update information val-
ues whenever possible, yields the combination of prediction and error-correction
that predictive processing requires. Formulating the regime in this way also over-
comes the computational problems associated with Bayesian inference. Proba-
bilistic prediction modeled as a Bayesian process is intractable. Modeled as an
informational process, it is not.

3.1 Computational power

Using the informational model of probabilistic prediction, devices can be con-
structed that perform predictive processing in a tractable way. With this way
of implementing the scheme set out, it is possible to move on to the second
objective, which is to assess its computational power. Some of the ways the
informational approach facilitates this may already be apparent. A predictive
processing system of this type processes information rather than probability.
The medium is that of conventional computation. The way we view what is
accomplished is also more convenient. The awarding of informational value to
outcomes can be considered a form of output. Cueing of outcomes by external
action can be viewed as a form of input. A system of this type can thus be seen
as an information-processing machine which maps input to output in the usual
way.

A simple illustration of computation by predictive processing!! is provided
by Figure 7. On the left of the figure, a short computer program is listed. This
comprises a conditional instruction which sets variable FE true if both A and B
are true; otherwise, F is set true if both B and G are true. The right side of
the figure shows a predictive processing system which simulates this process by
propagation of information. Key to the layout is the correspondence between

" Henceforth, ‘predictive processing’ refers to the informational implementation set out.
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outcomes and program variables. The program uses the variables A, B, F, F and
G. For each of these, there is a corresponding outcome in a two-way choice of
the predictive processing system. All conditional probabilities are shown in the
central table. The top-right cell, for example, shows the predicted probability
of outcome A conditional on outcome D.

c|D

A loo]10

B [1.0]00

) G [10]00

if Aand H then H loo]1.0

set E E [00]1.0

elseif B and G then F 110100
set F

1.0 H

(1) (2)

Figure 8: (1) A computer program and (2) a functionally equivalent predictive
processing system.

Taking true variables to equate to positively valued outcomes, the predic-
tive processing system perfectly replicates the conditional branch. The figure
illustrates the case where A and H are both set true. On this basis, each of the
corresponding outcomes acquires a value of 1 bit'2. The response is an upward
information flow that awards C a value of 2.0 bits, and D a value of -2.0 bits.
Subsequent to this, information flows downward to F and F, giving the former
but not the latter a positive value. This conforms to the way the program
sets variable E true, but not F. Predictive processing perfectly replicates the
computation specified by the program.

Implementing conditional branching by means of predictive processing is
quite straightforward, then. What is required is a choice that includes, for each
conditional case, an outcome that predicts the relevant conditions. Given the
most highly-valued outcome will then be the one that best predicts conditions
arising, the updating of its value has the effect of ‘applying’ the test. Ongoing
information flows can then be the means of performing the desired ‘actions’.
Functionality of this type can also be generalized. The approach of Figure 8,
in which the true/false distinction is captured purely by the positive/negative
distinction, is simplest. But statistical conditional branches are no more difficult
to implement. Given each outcome of the conditionalizing choice predicts the

120utcomes are assumed to be objectively equiprobable unless otherwise specified. Repre-
senting the occurrance of an outcome from a two-way choice then entails giving it a value of
—log, % = 1 bit, and the non-occurring counterpart a value of -1 bit.
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relevant conditions, the outcome of highest value will indicate the case that is
best supported statistically. Ongoing information flows can then be the means
of accomplishing the most justified action. Predictive processing offers two ways
of branching conditionally, then, one implicitly digital, and the other inherently
statistical.

A0 | A1 Bo | B1 co| c1 DO| D1
W0|07]03 Wo0|07]03 W0|07]03 W010.7]03
Ww1]03]0.7 Ww1l03]0.7 w1]03]0.7 Ww1l03]07
A l07]07 A ]01]01 A 0101 A 0101
B lo01]o0.1 B lo07]07 B l01]0.1 B |01 (0.1
C [01]01 C [0.1]01 Cc [07]07 C [01]01
D ]01]0.1 D ]01]0.1 D ]01]0.1 D 0707

Figure 9: A four-cell predictive-processing memory for binary values.

Exploitation of conditional branches plays a fundamental role in any com-
putation. But equally criticial is use of addressable memory. To replicate this,
predictive processing has to be deployed in a more complex way. Figure 9 il-
lustrates a simple case. The model here is a two-layer hierarchy, in which each
of the four top-layer choices is considered to represent a memory cell capable
of storing a binary value. Outcome A0 represents binary 0 stored in cell A,
outcome C7 represents binary 1 stored in cell C, and so on. In the lower layer,
outcomes W0 and W1 represent the binary value to be stored (where W0 de-
notes a zero to be stored, and W1 a 1). Outcomes A, B, C and D denote the
cell in which the value is to be stored.

Notice the conditional probabilities ensure the outcomes for each memory
cell predict the corresponding address and value. Outcome A0 predicts address
A and binary digit 0, for example. Cueing a particular address and binary
value ensures the outcome which predicts this combination acquires greatest
informational value. But as all predictions are made relatively weakly, it is only
the outcomes of the correct choice which achieve positive values. Updating the
outcomes of a choice in a way that gives negative value to them all is counter-
productive by definition: the system can be assumed not to do this. The effect
of presenting an address and a digit to be stored is thus to cue a particular
outcome of a particular choice, namely the outcome representing storage of the
digit in the correct cell. Panel (1) of Figure 10 illustrates storing a 0 in cell B;
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Panel (2) illustrates storing a 1 in cell C.

16 C1 D0 -0.8 00 D1

Figure 10: Storage of binary values into named memory cells.

Another critical ingredient of computation is sequencing. Application of an
algorithm is achieved by carrying out actions in a particular order. Predictive
processing has no central clock around which functionality of this sort can be
synchronized. But it does provide ways in which sequencing can be achieved.
The regime is defined to update informational values whenever possible. One
way of getting actions applied in a given sequence is thus to configure their
predictive relationships so as to ensure the desired executation sequence is the
sequence in which updates are made. This is essentially the strategy used in
the system of Figure 10.

A second approach involves distinguishing between propagational possibili-
ties and conditional probabilities. Up to now, it has been assumed that every
conditional probability can be the medium of either upward or downward prop-
agation. It is within the general mandate of predictive processing to be more
specific, however. A particular conditional probability can be defined to mediate
one form of propagation only. By constraining all the probabilities in a system
to mediate upward propagation, for example, we obtain a system in which the
sequence of hierarchical levels determines the sequence in which actions are
performed.

The general outlook for simulating generic computation by predictive pro-
cessing is not unpromising, then. The means of implementing sequential execu-
tion, addressable memory and conditional branches are all ready to hand. Some
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fundamental aspects of computation can be reproduced. But is this endowment
sufficient for computation in general? Can we conclude that the regime has the
capacity to implement any algorithm? The answer, it turns out, is that it can.
Given the present way of operationalizing the regime, predictive processing can
be shown to be capable of simulating a Turing machine of any complexity. On
this basis, it can be identified as Turing complete.

3.2 Turing machine simulation

A Turing machine is a device that combines an addressable memory with a state-
transition table. Very simple in its construction, it is assumed, by means of the
Church-Turing thesis, to have the power to compute any function which can
be computed (Turing, 1950; Abelson and Sussman, 1985). Although the device
has no practical use, it is useful in the present context as a theoretical reference
point. Showing that predictive processing can simulate a Turing machine of
any complexity demonstrates the regime is as powerful computationally as any
general-purpose computer.

A Turing machine uses a ‘tape’ as a storage device. This is divided into cells,
each of which can store a symbol. The tape passes through a read/write-head,
with the symbol immediately under the head being accessible by the machine
at any one time. The machine also has a state variable, and a set of transition
rules. Each rule has a condition specifying a required state and symbol. Coupled
to this is an action which specifies a new state, a new symbol, and a left or right
move of the tape. If the symbol required by a rule is the symbol currently
read from the tape, and the required state exists, the corresponding action is
executed. This produces a new state, a new symbol in the current cell of the
tape, and the specified movement of the tape. The behavior of the machine
is the sequence of operations that ensues given some initial state, tape and
transition table.

The potential to simulate a Turing machine by predictive processing can
then be demonstrated. Notice the machine depends entirely on the three func-
tionalities identified in the previous section: conditional branching, addressable
memory, and sequencing. To convert a Turing machine into a predictive process-
ing system, we turn the transition rules into a choice implementing a conditional
branch, and the tape into an addressable memory. Effects of sequential execu-
tion can then be realized by any one of the strategies outlined above.

Consider, for example, a Turing machine that computes the exclusive-or re-
lation (XOR). This machine turns a tape representing a combination of boolean
values into a tape representing their exclusive-or. Each cell of the tape can con-
tain either a ‘I’ representing true, a ‘F’ representing false, or a ‘#’ representing
a space. A tape of the form ‘T F’ then represents the combination true and
false, while one of the form ‘T T’ represents the combination true and true.
Computing the exclusive-or of the values on the tape can then be defined as the
task of replacing the first value on the tape with a space, and the final value
with an ‘F’ if the original values are the same, and ‘T’ if they are different.

Figure 11 represents a Turing machine that operates in this way. The upper
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Defined transitions

ID | State label | Symbol | New state | New symbol | Tape move
TO X F Y # L
T1 X T Z # L
T2 Y F H F R
T3 Y T H T R
T4 7 F H T R
T5 7 T H F R

Execution sequence

start X F
T1 Z #

T4 H [#]T

Figure 11: The XOR Turing Machine.

table lists the machine’s transition rules. The lower table shows a complete
execution. Each row in the lower table shows the state and tape at a particular
point of processing. The first row shows the starting configuration; each subse-
quent row shows the configuration reached as a result of the transition named
in the first column. The machine begins in the state labeled X, and terminates
on reaching the state labeled H, which is the halt state.

The processing runs as follows. Initially, the machine is in state labeled X,
with the read/write-head placed over the first cell of the tape. This is the start
configuration, seen in the first row of the lower table. If the symbol at this
position is seen to to be T, transition T1 is performed, causing the symbol to
be replaced by a #, and making Y the new state label. The tape is moved one
cell to the left, effectively shifting the head one cell to the right. If, in state
labeled Y, the current symbol is seen to be F, T4 is performed, replacing the
symbol with T, and entering the H (halt) state. The final tape is then ‘# T,
which correctly identifies the XOR, value for the combination ‘T F’. The other
three combinations are dealt with in a similar way. The machine computes
XOR correctly for all inputs. (A video demonstrating all four computations is
available at ”www.sussex.ac.uk/Users/cjt/demos/PP-TMs.mp4”.)

A predictive-processing version of this Turing machine is set out in Figure
12. All conditional probabilities are defined to carry upward propagation only;
information flows from bottom to top. The large choice in the center (labelled
Test) implements the transition table. Each outcome in this choice represents
a particular transition. For example, outcome XF-Y#L represents the rule that
in state X reading an F, the machine should transition to state Y, writing a #,
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Figure 12: Emulation of the XOR Turing machine.

and moving the tape left. The rightmost choice in the bottom layer represents
the address of the current cell of the tape, where A is the address of the first
cell, B the address of the second. The two central choices in this layer represent
the cells themselves. The outcomes A#, AF and AT represent there being
(respectively) a #, F or T in cell A. The outcomes B#, BF and BT serve the
same roles for cell B. The four outcomes of the leftmost choice (X, Y, Z and H)
represent the possible state labels, with H labeling the halt state.

The remaining constituents of the system implement the read/write func-
tionality. Predictions are configured so that the current symbol is ‘stored’ into
either A’ or B’, then ‘read’ into R. Given the highest valued outcome of Test
denotes the appropriate transition, ongoing information flow then has the effect
of setting the next state (outcome of S’) and next address (outcome of I') in the
appropriate way. At the same time, the symbol to be written is ‘placed’ in W,
and then ‘stored’ into the addressed cell of the memory comprised of A” and
B”. Since each outcome in the bottom layer predicts the corresponding outcome
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in the top layer, the hierarchy is circular. Ongoing upward flow of information
has the effect of copying outcomes from the top layer to their counterparts in
the bottom layer. The cycle then repeats.

X -0.7 -07 H 2 _ 11 | N 1
A#” 16 08 AT” B#"-08 11 BT Aiq0 O_' 10 B
Y 20 -07 Z2 AF’-08 BF”-1.1 X

XF-Y#L 2.6
XT-Z#L -0.5

YF-HFR-0.5

R# -0.8

AF 16

X 20 07 H  A#-08 B# -0.8
Y -0.7 07 Z AF 1.6 BF 16

Figure 13: The system at the end of the first cycle in the XOR simulation.

Figure 13 shows the state of the system at the end of the first cycle, and
Figure 14 its state at the end of the second. Propagation from this point imme-
diately ‘copies’ symbol T into cell B, and ‘selects’ state H. Since this is the halt
state, processing terminates. The final tape is then ‘# T’, denoting true. This
is the correct result for the input ‘T’ F’ (true and false).

The way this system updates the memory address exploits the fact that the
tape has only two cells. After a left move of the tape, the new address can
only be B, while after a right move, it can only be A. Hence, the new address
can be set directly (by upward propagation) from the present outcome of the
Test choice. In general, this shortcut cannot be used. Where a given move of
the tape can produce more than one new address, it is necessary to introduce
a conditional test to establish what the new address should be. This must
take into account the required move and the present address (outcome of I).
Appendix A sets out a more complex simulation which illustrates use of this
modification.
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Figure 14: The system immediately preceding termination.

The more elaborate example of Appendix A also helps to illustrate the gener-
ality of the scheme. The general design of Figures 12-14 can be used to simulate
a Turing machine of any complexity. There is no limit on the size of the transi-
tion table that can be accommodated. A set of N transition rules can always be
represented as a choice with N outcomes. There is also no limit on the length
of the tape. A tape containing N cells can be represented as a memory based
on N choices. (The counterpart of a machine assumed to have an infinitely long
tape is a system assumed to have infinitely many memory cells.) Regardless
of its complexity, then, any Turing machine can be represented in this way.
This includes the universal Turing machine, which simulates any other machine
given its initial configuration. Accordingly, predictive processing can be said
to be Turing complete. Its computational power is equal to that of any known
computational device.

4 Discussion

It is important to be clear about what is and is not demonstrated above. Plau-
sibly operationalized, predictive processing can simulate any Turing machine,
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and thus any computer. The claim that this is the form of processing used by
the brain does not beg the question of how computation is achieved, therefore.
It offers an answer. This does not imply that the brain computes by simulating
a Turing machine, of course. That would be an absurd claim. A predictive
processing system that computed in such a way would be failing to exploit
the propababilistic dimension of the regime altogether. A high-cost probabilis-
tic medium would be used for purposes of implementing low-cost deterministic
calculations. That computation in the brain is accomplished in such a profli-
gate way is not what is proposed. Rather, predictive processing is noted to be a
medium in which tasks of a general, computational nature can be accomplished.

To what extent does this lead to a new way of looking at brain functionality?
The question of how computation is achieved in neural hardware has long been
a subject of debate (Gazzaniga, 2010). On the assumption that the brain is
capable of producing results which require computation, a capacity to derive
these results is obviously implied. But the idea of this functionality growing out
of any conventional implementation is implausible. The functional apparatus
provided by the brain seems entirely inappropriate. Digital computation, as we
know it, requires a precise distinction to be maintained between process and
data. It requires conditional branching to be carried out according to reliably
representated discrete states. For these tasks, the noisy hardware of the brain
seems profoundly ill-suited (Hasson et al., 2015). As one of the innovators
of computational technology, von Neumann, once observed, computation in the
brain seems to be a logical impossibility. In von Neumann’s opinion, any process
of computation implemented in neural hardware would inevitably be ‘swept
away’ by statistical noise (von Neumann, 1958).

More formally, von Neumann identified the obstacle as the problem of pre-
cision. As he saw it, the nervous system is simply incapable of achieving the
numeric precision needed to support reliable calculation.

[T]he nervous system transmits numerical data ... by periodic or
nearly periodic trains of pulses ... [Ulnder these conditions ... only
precision levels of 2-3 decimals are possible ... no known computing
machine can operate reliably and significantly on such low precision
level’ (von Neumann, 1958, pp. 76-77).

Reasoning in this way, von Neuman concluded that the brain must be us-
ing a language, arithmetic and logic ‘radically different from those invented by
humans’ (Piccinini, 2003, p. 331).13

The desire to shed light on how the brain computes is not a key objec-
tive of the predictive processing proposal. Yet, on the present view, Clark’s

13 This is not the only reason for thinking computation in the brain must involve something
radically unlike conventional digital processing. Another argument derives from the observa-
tion that ‘too many entities turn out to be computers’ (Copeland, 1996, p. 335). Since any
physical system can be seen as computing an input/output function, all manner of things can
be viewed as computers. A bucket of water, or even a rock, can be viewed as such (Shagrir,
2006). For this reason as well, the theory that the brain is able to compute by virtue of being
a conventional computer is open to question (Putnam, 1988; Searle, 1992).
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scheme does pave the way for a new account. With the informational formu-
lation adopted, predictive processing is found to have the power of a Turing
machine, and thus of any digital computer.'* Accordingly, the proposal can be
a way of explaining how the brain computes. But a side-effect of this is to gen-
eralize considerably the notion of what computation is. Predictive processing,
as conceived above, differs radically from the processing of a von Neumann or
Turing machine. There is an important commonality, however. Conventional
computation uses the distinction between truth values as a way of differentiat-
ing flows of execution. The dichotomy exploited is between boolean true and
false. In informational predictive processing, it is the distinction between posi-
tive and negative information which plays this role. A fundamental dichotomy
is exploited, but the informational arrangement has the advantage of accommo-
dating an inherently noisy medium of calculation. The underlying functionality
of a predictive processing system is probabilistic and statistical. But with the
distinction between positive and negative information superimposed, it becomes
inherently digital. How the brain computes without being swept away by noise
is potentially explained in this way.

This way of looking at computation also has the effect of naturalizing the
process to some degree. That it is an isolated case no longer seems so obvious.
Instead of seeing computation as a specialzed form of mathematics that hap-
pens to have a remarkable range of applications, we can see it as part of a family
of mechanisms, that includes probabilistic prediction and statistical inference.
The relationship between computational processing and basic information hus-
bandry then becomes more evident. Both can be seen as ways of exploiting
the operational possibilities that stem from a capacity to quantify information.
Computation and exploiting information are naturally seen as end-points of a
single continuum.

14The demonstration that a medium of inference can also be a model of computation offers a
new perspective on Littman et al.’s (2001) result that computational complexity of a problem
is not reduced when formulating it as an inference problem.
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A Emulation of an incrementing machine

Defined transitions
ID | State | Symbol | New state | New symbol | Tape move
TO X # Y 1 L
T1 X 0 Y 1 L
T2 X 1 X 0 R
T3 Y # H # R
T4 Y 0 Y 0 L
TS Y 1 Y 1 L
Execution sequence
start | X ##1[1]#
T2 | X ##[1]o#
T2 | X #[#] 0o #
TO | Y #1[0]o#
T4 Y #10[0]#
T4 | Y #100[#]
T3S | H #10[0]#

Figure 15: The incrementing Turing Machine.

The design of Figure 12 allows a minimal Turing machine—one using only
two tape cells—to be represented as a predictive processing system. To simulate
a machine with a longer tape, it is necessary to augment the architecture. With
more tape cells in play, the new address in each cycle depends not only on
the desired tape move, but also on the current address. A conditionalizing
choice, whose outcomes predict particular move+address combinations, is thus
required. With this introduced, the new address can be derived by information
propagation in the usual way.

Consider the Turing machine of Figure 15. This accomplishes the task of
incrementing a binary number. The machine is represented using the same
conventions as before. The defining transitions appear in the upper table, while
the lower table shows a complete execution sequence. On the tape, a binary
number is represented using 1s and Os, with # representing an unused cell.
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Figure 16: Simulation of the incrementing Turing machine.

Initially, the machine is in state X, with the tape ‘# # 1 1 #’ representing binary
11 (decimal 3). The execution sequence that ensues contains six transitions in
all, with four of the defined transitions being used. The final tape obtained
is ‘4 1 0 0 #’, representing binary 4. This is the correct output: binary 3
incremented by one. (The video at ”www.sussex.ac.uk/Users/cjt/demos/PP-
TMs.mp4” shows several other execution sequences.)

Represented as a predictive processing system, the machine takes the form
shown in Figure 16. The general design of this simulation remains the same as
before. Each cell of the tape is represented by a choice in the bottom layer.
These are labelled A, B, C, D and E. The remainder of the architecture is
identical to that used for the XOR simulation, except for the outcomes of the
condionalizing choice, and the introduction of the Move choice. Each outcome
of this predicts a particular move+address combination. Predictions made by
the outcomes of I’ then ensure upward propagation ‘sets’ the correct address
for the next cycle.

Figure 17 shows the evaluations that arise at the end of the first cycle. The
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Figure 17: End of first cycle in the incrementing simulation.

symbol in the fourth cell (D) has been ‘stored’ to D’, and then ‘copied’ to
R. The appropriate transition has been identified as X1-X0R (i.e., in state X
reading a 1, transition to state X writing a 0, and moving the tape right). The
ongoing result is that W is set to represent the symbol to be written, and Move
to represent the address-specific transition DC (i.e., transition from address D
to C). Finally, the new address (outcome of I'), the new symbol for cell D,
and the new state (X) are all set. Since the hierarchy is circular—bottom-layer
outcomes predict top-layer outcomes—upward propagation from this point on
immediately resets choices in the bottom layer to the correct outcomes for the
start of the next cycle.

Figure 18 portrays the system at the end of the second cycle, and Figure
19 at termination, which occurs immediately after the end of cycle 6. The sys-
tem successfully increments any binary number that can be represented using
the available memory cells. It increments any 1, 2, or 3 digit binary num-
ber. The static illustrations of Figures 17-19 are not an ideal way of describing
the processing performed. A better approach is to show the system in ac-
tion. The computational behavior is then more easily appreciated. A video
demonstrating the behavior of this and the XOR simulation is available at
"www.sussex.ac.uk/Users/cjt/demos/PP-TMs.mp4”.
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Figure 18: End of first cycle in the incrementing simulation.
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