
Machine Learning - Lecture 15

Support Vector Machines

Chris Thornton

November 22, 2011



Introduction to max-margin classifiers

If there is a line (hyperplane) separating two sets of datapoints, we
can use error-correction to work out what it is (see previous
lecture).

Another approach involves maximizing the weight-vector’s ‘safety
margin’, i.e., its inner product with the most nearly mis-classified
datapoint.

This gives us the so-called maximum margin classifier.



Max-margin hyperplane (linear SVM)
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Non-linear SVMs

Unfortunately, we often have datasets that have no separating
hyperplane.

We need to move to a non-linear solution, as we did in moving
from delta-rule learning to MLPs.

Ideally, we’d like to map the data into a feature space in which we
can form a separating hyperplane.



Separating data in a higher-dimensional space



The kernel trick

But where do we get the features for the mapping?

We’d like them to be non-linear functions (curved boundaries are
needed).

But there are infinitely many of these.

One solution is to use the so-called kernel trick.

A kernel function maps pairs of datapoints onto their inner
products (i.e., they work like distance functions).

A feature space based on a kernel function has one dimension for
every pair of datapoints.

Mathematical minimization can then be used to find the
max-margin hyperplane in the feature-space.

The effect is to identify a non-linear (curved) boundary in the
original data space.



Illustration
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What’s really going on?

In using a kernel function, we are moving from the original data
space to a space that has one dimension for every pair of original
points.

Manipulating points in the feature space then has the effect of
‘stretching’ or ‘compressing’ areas of the data space.

This can be a way of ‘pulling’ differently classified datapoints
apart, or ‘pushing’ same-class points together.



Getting past the hype

SVMs using kernel functions have been getting a lot of attention.

But their practical value remains unclear at this stage.

Derivation of weights for a separating hyperplane may still be best
done using iterative error-correction.



Key problems with SVM/kernel method

A practical problem is the leap in complexity resulting from
mapping from a space of n points to one containg n × n points.

Another problem is the kernel function itself.

With primitive data (e.g., 2d data points), good kernels are easy to
come by.

With the forms of data we’re often interested in (web pages, MRI
scans etc.), finding a sensible kernel function may be much harder.

How would we go about defining a function that gives the distance
between two web pages?

As usual, success depends on getting the problem into the right
representation.
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