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Introduction

A single weight vector can define a single, linear boundary.

This deals with data which show linearly separated classes.

But we often see more complex forms of patterning.

These seem to require a composition of linear discrimantions.

For example...



Gain/loss comparison for loan-takers

Plot of all combinations of graduation/age (X axis) and average
career income (Y axis).

Val=1 implies net loss during replayment period.
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More that one line needed?

One way of dealing with patterning of this sort is to use a
composition of linear boundaries to create a ‘frame’.

To achieve this effect, we can use techniques for constructing and
training multilevel neural networks.

Multilayer perceptrons (MLPs) are particularly of use here.



Multilevel perceptrons intro

In MLPs, we have a layer of weight vectors, each of which
represents a linear division.

Neural network terminology is applied, however.

The weight vectors are called hidden units; their inner products
are activations.

Applying error-correction to a hidden unit is described as training
the unit.

The value of each input variable is seen to be the activation of an
input unit.



Output units

There is then an additional weight vector at the top, whose input
units are the hidden units.

Datapoints for this output unit are the activations of the hidden
units.

Input units

Hidden units

Output unit



Training the network

Given a suitably modified error-correction procedure, it is then
possible to train the whole network to produce a desired
composition of linear boundaries.

Indeed, for reasons explained below, we can train the network to
produce a composition with a curved boundary.



Implementation issues

To make MLPs work the way we want, we have to solve certain
problems, however.

One issue relates to activation.

Calculating activations as inner products produces a linear effect,
which limits the representational power of the approach.

To get around this, we derive activation values as a non-linear
(sigmoidal) function of the inner product.



The sigmoid function

1.0 

0.0 

∞∞-

Also known as the ‘squashing’ function for obvious reasons.



Calculating a sigmoidal activation

If p is the original inner-product, the activation is then produced by

a =
1.0

1.0 + e−p

where e is the natural exponent (in Java e = Math.exp(1))



Error backpropagation

We also need a way of applying error-correction in a network of
connected units.

This problem is solved by using backpropagation of error.

The error of the output unit is derived as you’d expect, by
comparing the actual and target values in the usual way.

We then set the error of all hidden units in accordance with the
degree to which they contributed to the error of the output unit.

This takes into account the size and sign of the interconnecting
weight, and the activtion of the input unit.



Setting hidden-unit error

One way to set the error a hidden unit is like this.

ei = ej × wi ,j × ai

But it is actually more common to set the error using the
first-derivative of the activation.

This value is high for intermediate values of activation (around
0.5) and low for extreme values (close to 1.0 and 0.0).

The effect is to allocate more error to units which are less
committed to a particular activation state.

The error formula for hidden unit i is then

ei = ej × wi ,j × ai × (1.0 − ai)



Bias

Introduction of a sigmoidal activation function and the allocation
of error as noted makes it possible for units to take on different
roles, i.e. to ‘move’ to different parts of their weight space.

To get the full benefit of this, it is also common to introduce unit
bias.

Each unit is given an additional weight, which is imagined to
connect to an input unit which is always on (i.e., in the 1 state).

This weight gives units a bias towards high or low activation,
improving their ability to provide a distinct contribution.



Momentum

Implementations of the MLP also often use some kind of
momentum arrangement.

Each time we update the weights for a particular unit, the changes
are a mix of any changes made previously, and the changes
currently dictated by the weight-update formula.

Weighting previous changes relatively more highly has the effect of
increasingly the stability of training.
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Critical formulae

Basic activation (inner product) for unit j

pj =
∑

i

wi ,jai

Sigmoidal activation

aj =
1.0

1.0 + e−pj



Critical error formulae

Simple error for output unit i (given target activation ti)

ei = ti − ai

Simple error for hidden unit i

ei = ai
∑

j

wi ,jej

But we usually use first derivative of activation. So for output unit
i

ei = ai (1.0− ai )(ti − ai)

and for hidden unit i

ei = ai(1.0 − ai )
∑

j

wi ,jej



Full weight-update formula

The weight-update definition says how the change in the weight
in iteration t + 1 is related to the change in iteration t.

∆wi ,j(t + 1) = ejai r +m∆wi ,j(t)

where t is the iteration, r is the learning rate and m is the
momentum term (normally 0.9).

This says that the change in the weight between unit i and unit j
is equal to
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Demo - multi-layer weight correction

Demo using lossFromLoan data
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