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Sample problem

X Y CLASS

(0-100) (0.0-9)

44 5.5 -> H

49 2.4 -> M

51 7.0 -> H

75 0.9 -> M

71 3.8 -> H

56 3.1 -> M

80 6.1 -> H

36 5.3 -> M
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Financial prediction example

In this domain, data are financial quantities, e.g., daily prices of
commodities.

The aim is to predict future prices.

The goal is (usually) to maximize trading profits.



FTSE-100 movement classifications

X is % increase in price of gold; Y is % increase in FTSE-100

Val=1: market rise sustained on the following day; Val=0: rise not
sustained



Linear separation of classes

Linear separation is the third of the simpler forms of patterning.

Normally only seen with numeric data, i.e., continuous variables.

From statistics, we have a simple and robust method for modeling
and predicting patterning of this form.

A little maths involved but the process can be visualised as
geometry.



Inner products

An easy way to define a linear boundary involves using inner

products.

Assuming datapoints are fully numeric, we can calculate the inner
product of any two by multiplying together their corresponding
values (and adding up the results).

So if x and y are two datapoints, their inner product is calculated
as
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Boundaries from thresholds

If we look at how datapoints compare with some fixed reference
point, we find a nice relationship between inner products and lines.

All datapoints for which the inner product with the fixed reference
point exceeds some given threshold turn out to be one side of a
line.

All other datapoints are on the other side.

This gives us an easy way of representing linear boundaries.

We can define them in terms of a fixed reference point and an
inner-product threshold.



Example
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1 5 -> 1
2 5 -> 1
4 1 -> 0
5 1 -> 0

Dataset:



Reference point
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Add a reference point at (6,3)



Inner products
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X 
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1x6 + 5x3 = 21 2x6 + 5x3 = 27 

4x6 + 1x3 = 27 5x6 + 1x3 = 33 

(Multiply values and summate.)

Calculate inner-products with reference point. 

Note how inner products increase in the

direction of the reference point.



An inner-product threshold defines a line
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Inner product increases in the direction of the 

reference point, so (2,5) and (4,1) have same value.

Specifying an 

inner-product threshold

(25 in this case) defines a 

linear boundary 

perpendicular to the 

reference direction



Finding the boundary by error correction

The position of the linear boundary is a function of the reference
point.

Moving the reference point closer to the origin moves the line in
the same direction.

Also vice versa.

This suggests an incremental method for getting the line into the
right position.
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Using error correction
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To obtain the reference-point using correction:

Choose a threshold (eg >25).

Wherever an inner-product is more/less than  desired value, 

move reference point to reduce difference.



Inner product too high
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If the inner-product is too great,  reduce the reference values  by 

a small proportion of the difference.

Reference direction changes and threshold line moves forward.

{

(8 over threshold)



Inner product too low
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If the inner-product is too small,  increase the reference values  by 

a small proportion of the difference.

Reference-direction changes and threshold line moves backwards.

{5



What happens in the end
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Eventually the boundary defined by the weight vector

produces correct classifications.

1x3 + 5x6 = 33 

33 > 25 
3x3 + 5x6 = 36 

36 > 25 

5x3 + 1x6 = 21 

21 < 25 

0 
(4,1) 

4x3 + 1x6 = 18 

18 < 25 



Using an explicit error value

Instead of working in terms of overshooting and undershooting, it
is easier to use an error measure.

The coordinates of the reference point are termed weights.

The reference point is called the weight vector.

The error for a datapoint is defined in terms of a target value for
that datapoint (e.g., 1 or 0).

ei = ti − pi

Here ti is the target value for the i’th datapoint, and pi is the inner
product for that datapoint.

Using this definition we can get correction simply by adding a
proportion of the error.

This takes care of both over and undershoots.



Delta rule

Assuming the error ei for datapoint i defined as above, the new
value for the i’th weight is

wi ,t+1 = wi ,t + eivi r

where vi is the i’th value from the datapoint and wt,i is the current
value of the i’th weight.

Here, we also have a scaling parameter r , known as the learning

rate.

This rule for finding a linear boundary is called the delta rule.
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Delta-rule error correction algorithm

(1) Set the weight vector to random values.

(2) Select the next datapoint and calculate its inner
product with the weight vector.

(3) Calculate the error.

(4) Derive new weights using the delta rule.
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low.



Demo

Demo using stockMarket data



The neural network connection

Error-correction is interesting partly due to the connection it makes
between machine learning and neural networks.

Reference weights can be viewed as modeling the synaptic weights
of neural cells in brains.

The algorithm becomes a way of simulating learning in neural
networks.

In fact, this was one of the main ideas lying behind innovation of
the method.



Perceptron Convergence Theorem

In the 1950s, Frank Rosenblatt demonstrated that a version of the
error-correction algorithm is guaranteed to succeed if a satisfactory
set of weights exist.

If there is a set of weights that correctly classify the
(linearly seperable) training datapoints, then the learning
algorithm will find one such weight set in a finite number
of iterations

The main proof was developed in

Rosenblatt, F. (1958). Two theorems of statistical
separability in the perceptron. Mechanisation of Thought
Processes: Proceedings of a Symposium held at the National
Physical Laboratory, 1. London: HM Stationary Office.



Mark 1 Perceptron

Rosenblatt built a machine called the Mark 1 Perceptron, which
was essentially an assembly of weight-vector representations for
linear discriminations.

Noting the machine’s ability to learn classification behaviours
(through error-correction), Rosenblatt went on to make ambitious
claims for the machine’s ‘true originality’.



Minsky and Papert

Some while later, Rosenblatt’s claims were strongly questioned by
Minsky and Papert, in their book ‘Perceptrons’.

Machines based on linear-discriminant representations were noted
to be incapable of learning boolean functions such as XOR.

1 1 -> 0

0 1 -> 1

1 0 -> 1

0 0 -> 0

This led to the so-called ‘winter of connectionism’.

Minsky, M. L. and Papert, S. A. (1988). Perceptrons: An
Introduction to Computational Geometry (expanded edn).
Cambridge, Mass: MIT Press.
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