Machine Learning - Lecture 5:

Cross-validation

Chris Thornton

October 18, 2011

Introduction

In general, ML involves deriving models from data, with the aim of
achieving some kind of desired behaviour, e.g., prediction or
classification.

But this generic task is broken down into a number of special
cases.

We also have a range of ways in which the performance of
methods is assessed and described.

This lecture will examine some of the concepts involved.

Class/output variables and values

In the majority of cases, ML methods model data with the aim of
predicting the value of one of the variables of the dataset.

The to-be-predicted variable is called the output variable.

Correct values of the output variable are called target output
values, or just targets.

If the output variable takes categorical values, it may be called the
class variable, in which case targets may be called target classes.

In some cases, there may be multiple output variables, but this is
quite unusual.

Attribute/input variables and values

The other variables are called input variables.
Their values are input values.

If they take categorical values, they may be called attributes or
features.

Their values are then attribute values or feature values.

A complete set of input values may be called a vector, attribute
vector or feature vector.

Confusingly, input vectors are also sometimes just called inputs.

Supervised v. unsupervised learning

Where the datapoints are examples associating particular output
value(s) with particular input vectors, the method is said to being
doing supervised learning.

Any other scenario is then some form of unsupervised learning.

However, the latter term is usually reserved for the case where a
model is built without any pre-classification of variables.

Classification v. regression

If the values of the output variable are names of categories,
supervised learning is also called classification.

If the values are real numbers, the task is called regression.
A simple but popular case of classification is concept learning.

This is where the aim is to predict whether an input vector is or is
not a member of a particular class.

Values of the output variable in this case are usually given as +/-,
1/0, or yes/no.

Seens v. Unseens

In any supervised learning experiment, the set of input/output
examples provided is called the training set.

We then usually have a second set of examples, called the testing
set, which is used solely for testing generalization performance,
i.e., ability of the model to produce correct output values for input
vectors that do not appear in the training set.

Cases in the training set may be called training examples.
Statisticians are more likely to call them seen cases, or just seens.

Cases in the testing set may be called testing examples, unseen
cases or just unseens.

Error v. Error rate

One of the advantages of supervised learning is that we can use
testing sets to get an objective measurement of learning
performance.

The inaccuracy of predicted output values is termed the error of
the method.

If target values are categorical, the error is expressed as an error
rate.

This is the proportion of cases where the prediction is wrong.

Off-training set error

Error-rate is normally measured on the testing set only. In this
case, it may also be called the off-training-set error-rate or OTS
error.

It may also be called the prediction error-rate, or generalization
error-rate.

If error is calculated on the training set, then it would be called the
training error-rate.

Error-rate example

Let's say a machine-learning method is provided with this training

set.
petrol hatchback FW-drive Ford
diesel saloon FW-drive Ford
petrol formula-1 FW-drive Ferrari
petrol convertible FW-drive Ford

The testing set has two cases:

petrol convertible RW-drive
diesel hardtop FW-drive

Using a 1-NN method, both inputs are classified as Fords.
However, it turns out that the first case is in fact a Ferrari.
The model gets 1 out of 2 classifications wrong.

The error rate is 50%.

[ID assumption

For error measurements to make any sense, it is vital we have no
overlap between training and testing examples.

On the other hand, we need to be sure that both sets of data
originate from the same source or domain.

If they don't, there's no reason to expect that a model built for
one will apply to the other.

In ML, we normally handle this by requiring the training and
testing data to be identically and independently distributed.

It is a requirement that the testing data show the same statistical
distribution as the training data.

But they must also be completely independent of the training data.

This is known as the 11D assumption.

Holdout sets

In addition to training and testing sets, we can also have holdout
sets.

A holdout set is a (usually) small set of input/output examples
held back for purposes of tuning the modeling.

The modeling process gets to see all the training data in the usual
way.

But it then gets tested on the cases held back and the performance
measurements obtained are used to control the modeling in some
way (e.g., set a parameter).

Note that this is completely separate from use of a testing set,
which is used for obtaining a final evaluation.

For example, we might hold back 10% of the training data and try
to find the optimal value of k in k-means clustering by seeing
which value gives the lowest error-rate on the holdout data.

Cross-validation

In the simplest case, holdout (or testing) sets are constructed just
by splitting some original dataset into more than one part.

But the evaluations obtained in this case tend to reflect the
particular way the data are divided up.

The solution is to use statistical sampling to get a more accurate
measurments.

This is called cross-validation.

Cross-validation strategies

The aim in cross-validation is to ensure that every example from
the original dataset has the same chance of appearing in the
training and testing set.

The basic protocols are

Cross-validation strategies

The aim in cross-validation is to ensure that every example from
the original dataset has the same chance of appearing in the
training and testing set.

The basic protocols are
» n-fold cross-validation: divide the data up into n chunks and

train n times, treating a different chunk as the holdout set
each time.

Cross-validation strategies

The aim in cross-validation is to ensure that every example from
the original dataset has the same chance of appearing in the
training and testing set.

The basic protocols are

» n-fold cross-validation: divide the data up into n chunks and
train n times, treating a different chunk as the holdout set
each time.

» leave-one-out validation: just like n-fold cross-validation
except that chunks contain a single datapoint.

Cross-validation strategies

The aim in cross-validation is to ensure that every example from
the original dataset has the same chance of appearing in the
training and testing set.

The basic protocols are

» n-fold cross-validation: divide the data up into n chunks and
train n times, treating a different chunk as the holdout set
each time.

» leave-one-out validation: just like n-fold cross-validation
except that chunks contain a single datapoint.

» Inputs, outputs, classes, attributes

» Inputs, outputs, classes, attributes

» Supervised v. unsupervised learning

» Inputs, outputs, classes, attributes
» Supervised v. unsupervised learning

» Training sets, testing sets, seens and unseens

» Inputs, outputs, classes, attributes

v

Supervised v. unsupervised learning

v

Training sets, testing sets, seens and unseens

v

Various types of error

» Inputs, outputs, classes, attributes

v

Supervised v. unsupervised learning

v

Training sets, testing sets, seens and unseens

v

Various types of error

v

IID assumption

» Inputs, outputs, classes, attributes

» Supervised v. unsupervised learning

» Training sets, testing sets, seens and unseens
» Various types of error

> |ID assumption

> Holdout sets

» Inputs, outputs, classes, attributes

v

Supervised v. unsupervised learning

v

Training sets, testing sets, seens and unseens

v

Various types of error

v

IID assumption

v

Holdout sets

v

Cross-validation protocols

» Inputs, outputs, classes, attributes

v

Supervised v. unsupervised learning

v

Training sets, testing sets, seens and unseens

v

Various types of error

v

IID assumption

v

Holdout sets

v

Cross-validation protocols

» How many input variables are allowed in a training example?

» How many input variables are allowed in a training example?

» In the context of a training problem, what is the difference
between an input and an input value?

» How many input variables are allowed in a training example?

» In the context of a training problem, what is the difference
between an input and an input value?

» What is the solution to the ‘problem’ specified by a set of
training data?

» How many input variables are allowed in a training example?

» In the context of a training problem, what is the difference
between an input and an input value?

» What is the solution to the ‘problem’ specified by a set of
training data?

> In the context of a training problem, what set of inputs should
the derived model be able to handle?

» How many input variables are allowed in a training example?

» In the context of a training problem, what is the difference
between an input and an input value?

» What is the solution to the ‘problem’ specified by a set of
training data?

> In the context of a training problem, what set of inputs should
the derived model be able to handle?

» What syntactic differences are there between training and
uunseen cases?

» How many input variables are allowed in a training example?

» In the context of a training problem, what is the difference
between an input and an input value?

» What is the solution to the ‘problem’ specified by a set of
training data?

> In the context of a training problem, what set of inputs should
the derived model be able to handle?

» What syntactic differences are there between training and
uunseen cases?

» How is the error rate affected if the model produced from
some training examples yields an incorrect output for a test
case?

» How many input variables are allowed in a training example?

» In the context of a training problem, what is the difference
between an input and an input value?

» What is the solution to the ‘problem’ specified by a set of
training data?

> In the context of a training problem, what set of inputs should
the derived model be able to handle?

» What syntactic differences are there between training and
uunseen cases?

» How is the error rate affected if the model produced from
some training examples yields an incorrect output for a test
case?

» What would the error-rate be in the Ford/Ferrari classification
task if both cases were classified correctly?

» How many input variables are allowed in a training example?

» In the context of a training problem, what is the difference
between an input and an input value?

» What is the solution to the ‘problem’ specified by a set of
training data?

> In the context of a training problem, what set of inputs should
the derived model be able to handle?

» What syntactic differences are there between training and
uunseen cases?

» How is the error rate affected if the model produced from
some training examples yields an incorrect output for a test
case?

» What would the error-rate be in the Ford/Ferrari classification
task if both cases were classified correctly?

