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Introduction

Nearest-neighbour methods are a simple way of using clump
structure for prediction.

They avoid the need to construct a model.

Unfortunately, they have a serious weakness.

As the number of data increases, the task of finding nearest
neighbours gets harder.

Eventually, the time (or storage costs) involved may be
unacceptable.

At this point, we have no choice but to revert to an approach
based on explicit modeling.



Clustering

The model we obtain in a particular case all depends on the
patterns we go looking for, and the way in which we then represent
those patterns.

Methods which aim to find and represent basic clumps in the data
are known as clustering methods.

An enormous number of these have been devised, many in the field
of statistics.

We will focus on just two of the best known methods.
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Example

Let’s say we have a dataset based on two variables: VL and TD.
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Visualisation

With low-dimensional data we have the great advantage of being
able to look at the data as a distribution of points.
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Hierarchy produced by agglomerative clustering
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Non-hierarchical clustering

While cluster hierarchies provide interesting information about
groupings at different levels of description, what we really want for
prediction is a method that divides the data into a single set of
groups.

This effect can be obtained using k-means clustering.

This is the most widely used, non-hierarchical clustering method.



k-means clustering algorithm

Let’s say the data distribute into k clumps, and we want to know
where these clumps are.

For this method, we use imaginary datapoints called means or
centroids to represent clump centres.

Having initialized exactly k centroids to random positions, we then
apply the following two steps:
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k-means clustering algorithm

Let’s say the data distribute into k clumps, and we want to know
where these clumps are.

For this method, we use imaginary datapoints called means or
centroids to represent clump centres.

Having initialized exactly k centroids to random positions, we then
apply the following two steps:

(1) Each datapoint is assigned to its closest centroid.

(2) The position of each centroid is set to be the average
of all the datapoints assigned to it.

These two steps are then repeated as long as we see any change in
the assignments.

The general effect is that the centroids ‘move’ rapidly to the k
most densely populated parts of the dataspace.



Using centroids for prediction

Models based on centroids can be used for prediction by applying
the nearest-neighbour approach.

For each centroid, we work out which classification is most
common among its captured datapoints.

That classification is then associated with the entroid.

Then we just apply the nearest-neighbour rule but using centroids
rather than datapoints.

Any new case is predicted to have the classification associated with
its nearest centroid.
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