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Bayes rule again

Given evidence E and some conclusion C, it’s always the case that

P(C |E ) = P(C)P(E |C)
P(E)

We can plug any values we like into this formula to infer the
probability of the conclusion given the evidence.



Lecture attendance example

So, from

P(attendLectures|passExam) = 0.8
P(passExam) = 0.6

P(attendLectures) = 0.5

we can use Bayes rule to calculate probability of passing the exam:

P(passExam|attendLectures) = = 0.8×0.6
0.5 = 0.96

The probability of passing the exam given you attend lectures is
0.96.



Complex Bayesian reasoning

Bayes’ rule provides a single step of probabilistic backwards
reasoning.

This works for simple scenarios, e.g., where we have a lot
probabilities relating diseases to symptoms, and want a rule that
produces a diagnosis from the symptoms shown.

But in more complex cases, we may have a networks or chain of
probabilistic relationships to deal with.

For example,

cheapMoney =&gt; consumerBorrowing =&gt; highDemand =&gt; inflation

How do we represent and perform inference with complex chains of
this sort?

Answer: Bayesian networks
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Let’s say we want to work out if it’s going to be humid tomorrow.

We have a tangle of relationships to take into account. Sunshine
increases the humidity but so does rain and temperature, both of
which are themselves affected by sunshine.
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Apply the laws of probability

To find out if it’s going to be humid, start with some variables that
we know the value of and work forwards, establishing the
probability distribution on one variable by taking into account all
its conditional probabilities and all the (distributions on) all the
variables which those probabilities depend on.

This is also known as forwards propagation.



Bayesian network

Draw out the network of conditional relationships and annotate
nodes with the CPTs (conditional probability tables).
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Reasoning as propagation
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Terminology and assumptions

In Bayesian networks, any variable Y which has a direct influence
on variable X is said to be X ’s parent.

An arrow points from parent Y to X

Variable X is then said to be Y ’s child, while X and all X ’s
children are Y ’s descendants.

When reasoning is done using probability propagation, the
assumption is made that two variables are conditionally
independent of all non-descendants given their parents.

This is another way of saying that variables are only influenced by
their parents.



Top-down/forwards propagation

To find the probability of the ith value of variable X , use

P(Xi) =
∏

Y∈CPT (X )

P(Xi |Y )
∏

j

P(Yj)

This defines the distribution on X recursively. Each value is
obtained by iterating over the combinations of parental values
taking the product of the combination’s probability and the
probability of the value which is conditional on the combination.



Termination

Termination is achieved by providing a non-conditional distribution
for some root variable.

P(Xi) = P(Ri) if X = R

Note that distributions must sum to 1 (so normalization may be
required).



How well does it work?

Reasoning using Bayesian nets works perfectly in the sense that
probabililies are consistently propagated.

But depending on how variables are related, we can easily end up
with very uncertain conclusions.

The key factor which affects performance is the level of uncertainty
we have about conditioned variables.

This is the termed equivocation.



Equivocation formula

To calculate the equivocation of a conditioned variable relative to
a conditioning variable, derive the weighted average of the
uncertainties (entropies) of conditional distributions.

∑

j

Pj ×−
∑

i

Pi log2 Pi

Pi is the conditioned probability of the ith value of the conditioned
variable, and Pj is the probability of the conditioning value.



Equivocation as a weighted uncertainty sum

Equivocation is really just a weighted sum of the uncertainties of
the conditional distributions.

Other things being equal, higher equivocation will mean less
successful Bayesian reasoning, i.e., less certain conclusions.

.



Summary



Summary

◮ Bayes rule again



Summary

◮ Bayes rule again

◮ Probabilistic representation



Summary

◮ Bayes rule again

◮ Probabilistic representation

◮ Use of Bayesian networks



Summary

◮ Bayes rule again

◮ Probabilistic representation

◮ Use of Bayesian networks

◮ Reasoning as propagation



Summary

◮ Bayes rule again

◮ Probabilistic representation

◮ Use of Bayesian networks

◮ Reasoning as propagation

◮ Top-down propagation



Summary

◮ Bayes rule again

◮ Probabilistic representation

◮ Use of Bayesian networks

◮ Reasoning as propagation

◮ Top-down propagation

◮ Equivocation



Summary

◮ Bayes rule again

◮ Probabilistic representation

◮ Use of Bayesian networks

◮ Reasoning as propagation

◮ Top-down propagation

◮ Equivocation



Questions



Questions

◮ Let’s say the university communicates your degree result to
you using either a tick or a cross. What is the level of
equivocation?



Questions

◮ Let’s say the university communicates your degree result to
you using either a tick or a cross. What is the level of
equivocation?



Exercises



Exercises

◮ Use Bayes’ rule to work out P(east|sun) given that P(sun)=
0.3, P(east)=0.4 and P(sun|east)=0.6.



Exercises

◮ Use Bayes’ rule to work out P(east|sun) given that P(sun)=
0.3, P(east)=0.4 and P(sun|east)=0.6.

◮ Use the frequency interpretation of probability to explain why
Bayes rule works.



Exercises

◮ Use Bayes’ rule to work out P(east|sun) given that P(sun)=
0.3, P(east)=0.4 and P(sun|east)=0.6.

◮ Use the frequency interpretation of probability to explain why
Bayes rule works.


