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From rules to conditional probabilities

The standard symbolic rule is treated as fully certain.

speedingTicket ⇒ speeding

This is read ‘getting a speedingTicket implies that you were
speeding’.

But we often need to be able to state consequences
probabilistically. This can be done using conditional probabilities.

P(speeding|speedingTicket) = 0.9

This is read ‘the probability of speeding given that you got a
speeding ticket is 0.9’



Conditional probability distributions

Working in terms of conditional probabililties, we have a
distribution of probability values over possible states of affairs.

P(speedingTicket|speeding) = 0.8
P(speedingTicket|sleeping) = 0.1
P(speedingTicket|swimming) = 0.1

Probabilities in a distribution must sum to 1.0.



Uncertainty

The level of uncertainty regarding the state of affairs can be
worked out by looking at the distribution.

The more flat it is, the greater the uncertainty.

The more cases there are, the greater the uncertainty (for
distributions of a particular flatness).



Entropy

The entropy formula takes both aspects into account.

−
∑

i

Pi log2 Pi

where Pi is the probability of the ith alternative.

The value of the entropy rises with the number of alternatives and
the uniformity of the attributed probabilities.

More extreme probabilities produce lower evaluations.

−(1.0 log2 1.0) = 0
−(0.0 log2 0.0) = 0
−(0.5 log2 0.5) = 0.5
−(0.7 log2 0.7) = 0.36



Information and knowledge

P(sun)=0.6 

P(rain)=0.4 

P(sun)=0.8 

P(rain)=0.2 

H = 0.97 H=0.72 

 0.97 - 0.72 = 0.25 bits

Information 

A B

Using entropy as a measure of uncertainty, we can evaluate how
much information is obtained when something happens (e.g., a
message) which updates distributions.

Reduction of uncertainty implies an increase of knowledge.



Information in bits

Let’s say there are 4 possible states of affairs: speeding, sleeping,
swimming, eating.

We have no knowledge about which is the case.

The probability distribution is {0.25, 0.25, 0.25, 0.25}.

The entropy is 2.0

(It’s always log2 n with a flat distribution.)

Given we took logs to base 2, the entropy is also the number of
bits you need in a binary system to encode 4 values.

The amount of information in a message or event which establishes
the state of affairs is then measured as 2 bits.



Probabilistic reasoning

As well as being key for information theory, conditional probabilities
are also the basis for methods of probabilistic reasoning.

These methods chain implications together in a way that takes
probability into account.

The simplest approach to probabilistic reasoning uses the inference
method known as Bayes’ rule.



Bayes rule

Given evidence E and some conclusion C, it’s always the case that

P(C |E ) = P(C)P(E |C)
P(E)

We can plug any values we like into this formula to infer a
conditional probability for the conclusion.

P(C) and P(E) are called prior probabilities. P(E|C) is the
likelihood. P(C|E) is called the posterior probability.



Rich bankers example

1.0

P(R) = 0.5

P(B) = 0.2

P(B|R) = 0.3

R B

B

P(R|B) = P(R) P(B|R)

P(B)

0.5 x 0.3

0.2

0.15

0.2

0.75

=

=

=

50% of people are rich and 20%  are bankers.
30% of rich people are bankers. 
What are the chances of a random banker being rich?



Flu diagnosis example

1.0

P(F) = 0.2

P(S) = 0.6

P(S|F) = 0.7

F S

S

P(F|S) = P(F) P(S|F)

P(S)

0.2 x 0.7

0.6

0.14

0.6

0.23

=

=

=

20% of people have !u and 60% are sneezing. 
70% of people with !u are found to be sneezing. 
What is the probability someone sneezing has !u?



Exam prediction example

1.0

P(P) = 0.6

P(A) = 0.5

P(A|P) = 0.8

P A

A

P(P|A) = P(P) P(A|P)

P(A)

0.6 x 0.8

0.5

0.48

0.5

0.96

=

=

=

60% of people pass the AI exam but only 50% attend lectures. 
80% of people who pass the exam attend lectures.  
What is the probability of passing the exam given you attend lectures?



Bayesian (MAP) inference

Say we have observations D1, D2, and explanatory hypotheses H1
and H2, with all priors (e.g., P(D2)) and likelihoods (e.g.,
P(D2|H1)) known.

By combining Bayes rule with the product rule, can find the
probability of each hypothesis given the data.

P(H1|D1,D2) = P(H1|D1) x P(H1|D2)

The most probable hypothesis is called the maximum a posteriori

(MAP) hypothesis.

Deriving it is called MAP inference (what is usually meant by
‘Bayesian inference’)

In practice, the process has the problem that probabilities become
vanishingly small.
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