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From reasoning to knowledge representation

With any set of implication rules (e.g., the celebrity rulebase),
search-like processes can be used to determine implied facts and
conclusions.

The combination of rulebase and inference method can be viewed
as a representation of knowledge for the domain, i.e., a knowledge

base (KB).

A system which packages up knowledge represented this way is a
knowledge-based or expert system.



From knowledge representation to logic

Rule-based methods of knowledge representation are also known as
logics.

With a history stretching back 2000 years, the study of logic and
formal reasoning was a kind of pre-computation AI.

AI methods of knowledge representation (KR) are generally based
on adapted systems of formal logic.
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Truth tables

The meaning of logical relationships is defined using truth tables.

A truth table shows how truth values combine under the relevant
relationship.
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◮ Modus Tolens
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¬ Q

⊢ ¬ P
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Semantics

A semantics maps sentences to facts in the world; e.g., the
mapping determines which objects in the world are referenced by
which objects in the language. This is called a referential

semantics.

The way one fact follows another should be mirrored by the way
one sentence is entailed by another.
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Problems with propositional logic

In Propositional logic, we have no way to represent properties of
objects.

We cannot represent property-based generalisations.

For example, it is impossible to represent this categorical
syllogism in Propositional logic:

Every person is mortal

Tony Blair is a person

Therefore Tony Blair is mortal
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Problems with FOL

FOL is a powerful language for representing knowledge.

But its expressiveness complicates the derivation of inferences. (It
gets easier if we exliminate existential quantification and assume
‘negation by failure’.)

Also, in FOL you cannot construct sentences which make
assertions about other sentences. For example, you cannot say
things like ‘there exists a property such that...’

For this task, you need a higher-order logic.
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The Frame problem

A fundamental difficulty for sentential representation is the frame

problem.

This affects all varieties of knowledge representation but is
particularly apparent where evaluation is in terms of truth, and
rules are used to define the results of actions.



Frame problem example

Suppose we have

paint(X, C) ⇒ color(X, C)

move(X, P) ⇒ position(X, P)

and it is known that

paint(tony, blue).

move(tony, garden).

We should then be able to infer that

colour(tony, blue) ∧ position(tony, garden)

But the inference is, in fact, logically unsound

There is the possibility that the colour of tony gets changed by the
move action.



Addressing the frame problem

The most obvious way to protect against the frame problem is to
add rules which capture the non-effects of actions.

Such rules are known as frame axioms.

For example

move(X, P) ∧ color-before-move(X, C) ⇒ color(X, C).

asserts the fact that moving an object will not affect its colour.

However, this is not satisfactory.

Since most actions do not affect most properties of a situation, in
a domain comprising m actions and n properties, we are going to
need approximately m × n frame axioms.



The Epistemological Frame Problem

The underlying puzzle is how a cognitive creature with many
beliefs about the world can update those beliefs when it performs
an act so that they remain roughly faithful to the word.

Imagine being the designer of a robot that has to carry out an
everyday task, such as making a cup of tea. Now, suppose the
robot has to take a tea-cup from the cupboard. The present
location of the cup is represented as a sentence in its database of
facts alongside those representing innumerable other features of
the ongoing situation, such as the ambient temperature, the
configuration of its arms, the current date, the colour of the
tea-pot, and so on. Having grasped the cup and withdrawn it from
the cupboard, the robot needs to update this database. The
location of the cup has clearly changed, so that’s one fact that
demands revision. But which other sentences require modification?
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◮ Consider this categorical syllogism.

Every knowledge representation is formal

Propositional logic is a knowledge representation

Therefore propositional logic is formal

◮ Produce the most accurate propositional representation of this
assertion you can think of.

◮ Produce the best predicate logic representation you can think
of.
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◮ Represent the first three verses of the song ‘House of the
Rising Sun’ in FOL.
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◮ Represent the first three verses of the song ‘House of the
Rising Sun’ in FOL.

There is a house in New Orleans

They call the Rising Sun

And it’s been the ruin of many a poor boy

And God I know I’m one

My mother was a tailor

She sewed my new bluejeans

My father was a gamblin’ man

Down in New Orleans

Now the only thing a gambler needs

Is a suitcase and trunk

And the only time he’s satisfied
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◮ Using first-order logic, represent as accurately as possible the
information contained in these comments on the availability of
mortgages during the credit crunch.
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◮ Using first-order logic, represent as accurately as possible the
information contained in these comments on the availability of
mortgages during the credit crunch.

To be considered for the best mortgage deals during the
current

difficult conditions, you must borrow substantially less than
the

full purchase price, have a perfect credit record and be able to

act fast.

Only people who have built up savings over

several years and have shown their ability to live on less than

their salary are able to get a mortgage.

It is first-time buyers who are hardest hit by the need to
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◮ Use FOL to represent the information contained in the lyric to
‘When a man loves a woman’.
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◮ Use FOL to represent the information contained in the lyric to
‘When a man loves a woman’.

When a man loves a woman

Can’t keep his mind on nothing else

He’ll trade the world

For the good things he’s found

If she’s bad, he can’t see it

She can do no wrong

Turn his back on his best friend

If he put her down

When a man loves a woman

Spend his very last time

Tryin’ to hold on to what he needs

He’d give up all his comfort


