
KR-IST - Lecture 5a

Game playing with Minimax and Pruning

Chris Thornton

November 16, 2011

Introduction

An important application of AI search methods has been in the
domain of 2-person games, such as draughts (checkers) and chess.

Until quite recently (late 1990s) it was widely believed by many
that hard problems of intelligence would never be solved by
computer.

Chess was often put forward as a good example.

Then, in May 1997, an IBM machine known as ‘Deep Blue’
defeated chess grandmaster Garry Kasparov.

No special techniques were used to achieve the victory. Deep Blue
relied on tried and trusted methods.

The version of Deep Blue which beat Kasparov was able to evalute
more than 200 million chess states per second.

Kasparov and Deep Blue

Deep Blue

Recordings

Recordings

◮ Kasparov points out that he is a human being:
http://www.cnn.com/WORLD/9705/11/chess.update/kasparov.scared.2

Recordings

◮ Kasparov points out that he is a human being:
http://www.cnn.com/WORLD/9705/11/chess.update/kasparov.scared.2

◮ Kasparov predicts Deep Blue will eventually be beaten:
http://www.cnn.com/WORLD/9705/11/chess.update/kasparov.beaten.2

Recordings

◮ Kasparov points out that he is a human being:
http://www.cnn.com/WORLD/9705/11/chess.update/kasparov.scared.2

◮ Kasparov predicts Deep Blue will eventually be beaten:
http://www.cnn.com/WORLD/9705/11/chess.update/kasparov.beaten.2

Adapting search for game playing

Deep Blue used ordinary search methods. and the standard
approach for adapting those methods to the problem of game-play.

Games like chess can readily be seen in terms of transitions
between states. Transitions are moves; states are board
configurations.

Normally, we would then solve the problem by searching for a path
of transitions (i.e., moves) connecting the start state with a goal
state.

Unfortunately, in this context, we ‘lose’ control over the choice of
move every other turn.

Using search for evaluation

In a 2-person game, a solution path is unobtainable because we
never know what the other player is going to do at any stage.

What we need to work out is the best move.

In the minimax method we use the search process not to find a
solution path, but to derive the most accurate evaluation of the
possible moves, i.e., an evaluation which takes into account the
implications that any given move will have later in the game.

Minimax method

There are three elements to the minimax method.

Minimax method

There are three elements to the minimax method.

(1) Expand the search tree all the way down to a game
conclusion (win, lose or draw). If this is too much
search, choose a suitable cutoff.

Minimax method

There are three elements to the minimax method.

(1) Expand the search tree all the way down to a game
conclusion (win, lose or draw). If this is too much
search, choose a suitable cutoff.

(2) Obtain an evaluation of the relevant terminal state.
(e.g., positive for a win, negative for a lose and
neutral for a draw). This is known as the static

evaluation.

Minimax method

There are three elements to the minimax method.

(1) Expand the search tree all the way down to a game
conclusion (win, lose or draw). If this is too much
search, choose a suitable cutoff.

(2) Obtain an evaluation of the relevant terminal state.
(e.g., positive for a win, negative for a lose and
neutral for a draw). This is known as the static

evaluation.
(3) Then back-up the evaluations, level by level, working

on the basis that when it is the opponent’s turn, they
will chose a transition which achieves the worst
outcome from our point of view, and whenever it is
our turn to move, we will choose the best.

Minimax method

There are three elements to the minimax method.

(1) Expand the search tree all the way down to a game
conclusion (win, lose or draw). If this is too much
search, choose a suitable cutoff.

(2) Obtain an evaluation of the relevant terminal state.
(e.g., positive for a win, negative for a lose and
neutral for a draw). This is known as the static

evaluation.
(3) Then back-up the evaluations, level by level, working

on the basis that when it is the opponent’s turn, they
will chose a transition which achieves the worst
outcome from our point of view, and whenever it is
our turn to move, we will choose the best.

To do this we need to identify the minimum evaluation in any level
of the tree corresponding to the opponent’s move, and the
maximum otherwise.

Hence the ‘minimax’.

Worked example

x

0 0 x

x

x
0 0 x

x
x

0 0 x

x
x

0 0 x

x
x

x x

0

0 0 0

X‘s move

Cont.

x

0 0 x

x

x
0 0 x

x
x

0 0 x

x
x

0 0 x

x
x

x x

0

0 0 0

x
0 0 x

x
x 0

x
0 0 x

x
x 0

0 0
x

0 0 x

x x
0 x

0 0 x

x x
0 0

0
x

0 0 x

x x
0 x

0 0 x

x x
0 0

0

X‘s move

O‘s move

Cont.

x
00 x

x

x
00 x

x
x

00 x

x
x

00 x

x
x

x x

0

0 0 0

x
00 x

x
x 0 x

00 x

x
x 0

0 0
x

00 x

xx
0 x

00 x

xx
00

0
x

00 x

xx
0 x

00 x

xx
00

0

x
00 x

x
x 0

0 x
x

00 x

x
x 0
0x

x
00 x

xx
00

x
x

00 x

xx
0

0
x x

00 x

xx
00

x
x

00 x

xx
0

0
x

X‘s move

O‘s move

X‘s move

Cont.

x
00 x

x

x
00 x

x
x

00 x

x
x

00 x

x
x

x x

0

0 0 0

x
00 x

x
x 0 x

00 x

x
x 0

0 0
x

00 x

xx
0 x

00 x

xx
00

0
x

00 x

xx
0 x

00 x

xx
00

0

x
00 x

x
x 0

0 x
x

00 x

x
x 0
0x

x
00 x

xx
00

x
x

00 x

xx
0

0
x x

00 x

xx
00

x
x

00 x

xx
0

0
x

0 1 1 0 1 1

X‘s move

O‘s move

X‘s move

Cont.

x
00 x

x

x
00 x

x
x

00 x

x
x

00 x

x
x

x x

0

0 0 0

x
00 x

x
x 0 x

00 x

x
x 0

0 0
x

00 x

xx
0 x

00 x

xx
00

0
x

00 x

xx
0 x

00 x

xx
00

0

x
00 x

x
x 0

0 x
x

00 x

x
x 0
0x

x
00 x

xx
00

x
x

00 x

xx
0

0
x x

00 x

xx
00

x
x

00 x

xx
0

0
x

0 1 1 0 1 1

0 1 1 0 1 1

X‘s move

O‘s move

X‘s move
(back-up max)

Evaluation obtained

x
00 x

x

x
00 x

x
x

00 x

x
x

00 x

x
x

x x

0

0 0 0

x
00 x

x
x 0 x

00 x

x
x 0

0 0
x

00 x

xx
0 x

00 x

xx
00

0
x

00 x

xx
0 x

00 x

xx
00

0

x
00 x

x
x 0

0 x
x

00 x

x
x 0
0x

x
00 x

xx
00

x
x

00 x

xx
0

0
x x

00 x

xx
00

x
x

00 x

xx
0

0
x

0 1 1 0 1 1

0 1 1 0 1 1

0 10
X‘s move

O‘s move

X‘s move

(back-up min)

(choose max)

(back-up max)

Negmax simplification

Implementing minimax can be a pain because of the need to
alternate between minimisation and maximisation in the
backing-up of evaluations.

The negmax idea gets around this problem.

Board states are still evaluated from the ‘current’ player’s point of
view (i.e., whichever player has control at the given depth). but the
value which is backed-up is always the negative of the maximum.

As in minimax, the effect is to ensure that the value backed-up is
the value of the worst outcome that the opponent can achieve
from our point of view.

But the code to implement the method can be written using a
simple recursive procedure.

Negmax illustration

x

0 0 x

x

x
0 0 x

x
x

0 0 x

x
x

0 0 x

x
x

x x

0

0 0 0

x
0 0 x

x
x 0

x
0 0 x

x
x 0

0 0
x

0 0 x

x x
0 x

0 0 x

x x
0 0

0
x

0 0 x

x x
0 x

0 0 x

x x
0 0

0

x
0 0 x

x
x 0

0 x

x
0 0 x

x
x 0
0 x

x
0 0 x

x x
0 0

x
x

0 0 x

x x
0

0
x x

0 0 x

x x
0 0

x
x

0 0 x

x x
0

0
x

0 1 1 0 1 1

0 1 1 0 1 1

0 1 0
X‘s move

O‘s move

X‘s move

(back-up min)

(choose max)

(back-up max)

0 -1

(back-up negative of max)

-1 0 -1 -1

(back-up negative of max)

Alpha-beta pruning

When using minimax (or negmax), situations can arise when search
of a particular branch can be safely terminated.

Alpha-beta pruning

When using minimax (or negmax), situations can arise when search
of a particular branch can be safely terminated.

◮ Applying an alpha-cutoff means we stop search of a
particular branch because we see that we already have a
better opportunity elsewhere.

Alpha-beta pruning

When using minimax (or negmax), situations can arise when search
of a particular branch can be safely terminated.

◮ Applying an alpha-cutoff means we stop search of a
particular branch because we see that we already have a
better opportunity elsewhere.

◮ Applying a beta-cutoff means we stop search of a particular
branch because we see that the opponent already has a better
opportunity elsewhere.

Alpha-beta pruning

When using minimax (or negmax), situations can arise when search
of a particular branch can be safely terminated.

◮ Applying an alpha-cutoff means we stop search of a
particular branch because we see that we already have a
better opportunity elsewhere.

◮ Applying a beta-cutoff means we stop search of a particular
branch because we see that the opponent already has a better
opportunity elsewhere.

Applying both forms is alpha-beta pruning.

Alpha-cutoff

If, from some state S, the opponent can achieve a state with a
lower value for us than one achievable in another branch. we will
certainly not move the game to S. We do not need to expand S.

Choose max

Back-up min

15

10

No point in

exploring

this branch

Beta-cutoff

If, from some state S, we would be able to achieve a state which
has a higher value for us than one the opponent can hold us to in
another branch, we can assume the opponent will not choose S.

Choose max

Back-up min

20

25

Back-up max

No point in

exploring

this branch

Summary

Summary

◮ Adapting search for game playing

Summary

◮ Adapting search for game playing

◮ Minimax method

Summary

◮ Adapting search for game playing

◮ Minimax method

◮ Negmax simplification

Summary

◮ Adapting search for game playing

◮ Minimax method

◮ Negmax simplification

◮ Alpha-cutoff

Summary

◮ Adapting search for game playing

◮ Minimax method

◮ Negmax simplification

◮ Alpha-cutoff

◮ Beta-cutoff

Summary

◮ Adapting search for game playing

◮ Minimax method

◮ Negmax simplification

◮ Alpha-cutoff

◮ Beta-cutoff

Questions

Questions

◮ Could we use the A* algorithm to improve the effectiveness of
minimax?

Questions

◮ Could we use the A* algorithm to improve the effectiveness of
minimax?

◮ Why is there no point searching for a solution path in a
game-playing problem?

Questions

◮ Could we use the A* algorithm to improve the effectiveness of
minimax?

◮ Why is there no point searching for a solution path in a
game-playing problem?

◮ What is minimised and what is maximised in minimax search?

Questions

◮ Could we use the A* algorithm to improve the effectiveness of
minimax?

◮ Why is there no point searching for a solution path in a
game-playing problem?

◮ What is minimised and what is maximised in minimax search?

◮ What is special about a static evaluation?

Questions

◮ Could we use the A* algorithm to improve the effectiveness of
minimax?

◮ Why is there no point searching for a solution path in a
game-playing problem?

◮ What is minimised and what is maximised in minimax search?

◮ What is special about a static evaluation?

◮ How are static evaluations of board states in a 2-person game
derived?

Questions

◮ Could we use the A* algorithm to improve the effectiveness of
minimax?

◮ Why is there no point searching for a solution path in a
game-playing problem?

◮ What is minimised and what is maximised in minimax search?

◮ What is special about a static evaluation?

◮ How are static evaluations of board states in a 2-person game
derived?

◮ In a game like chess, where the full search tree is very large,
how might reasonable static evaluations of board states be
obtained?

Questions

◮ Could we use the A* algorithm to improve the effectiveness of
minimax?

◮ Why is there no point searching for a solution path in a
game-playing problem?

◮ What is minimised and what is maximised in minimax search?

◮ What is special about a static evaluation?

◮ How are static evaluations of board states in a 2-person game
derived?

◮ In a game like chess, where the full search tree is very large,
how might reasonable static evaluations of board states be
obtained?

◮ What is the advantage of the negmax method?

Questions

◮ Could we use the A* algorithm to improve the effectiveness of
minimax?

◮ Why is there no point searching for a solution path in a
game-playing problem?

◮ What is minimised and what is maximised in minimax search?

◮ What is special about a static evaluation?

◮ How are static evaluations of board states in a 2-person game
derived?

◮ In a game like chess, where the full search tree is very large,
how might reasonable static evaluations of board states be
obtained?

◮ What is the advantage of the negmax method?

◮ What is the minimum depth of search for the application of
alpha-cutoffs?

Questions

◮ Could we use the A* algorithm to improve the effectiveness of
minimax?

◮ Why is there no point searching for a solution path in a
game-playing problem?

◮ What is minimised and what is maximised in minimax search?

◮ What is special about a static evaluation?

◮ How are static evaluations of board states in a 2-person game
derived?

◮ In a game like chess, where the full search tree is very large,
how might reasonable static evaluations of board states be
obtained?

◮ What is the advantage of the negmax method?

◮ What is the minimum depth of search for the application of
alpha-cutoffs?

◮ What is the minimum depth of search for the application of
beta-cutoffs?

Questions

◮ Could we use the A* algorithm to improve the effectiveness of
minimax?

◮ Why is there no point searching for a solution path in a
game-playing problem?

◮ What is minimised and what is maximised in minimax search?

◮ What is special about a static evaluation?

◮ How are static evaluations of board states in a 2-person game
derived?

◮ In a game like chess, where the full search tree is very large,
how might reasonable static evaluations of board states be
obtained?

◮ What is the advantage of the negmax method?

◮ What is the minimum depth of search for the application of
alpha-cutoffs?

◮ What is the minimum depth of search for the application of
beta-cutoffs?

Exercises

Exercises

◮ In the game of noughts and crosses (tic-tac-toe), the two
players take it in turns to capture an empty cell of a 3x3 grid.
The game is won once a line of three cells has been captured.
Devise a suitable representation scheme for states in this
game.

Exercises

◮ In the game of noughts and crosses (tic-tac-toe), the two
players take it in turns to capture an empty cell of a 3x3 grid.
The game is won once a line of three cells has been captured.
Devise a suitable representation scheme for states in this
game.

◮ Estimate the branching factor of the space.

Exercises

◮ In the game of noughts and crosses (tic-tac-toe), the two
players take it in turns to capture an empty cell of a 3x3 grid.
The game is won once a line of three cells has been captured.
Devise a suitable representation scheme for states in this
game.

◮ Estimate the branching factor of the space.

◮ Calculate the maximum depth of a search tree in this game.

Exercises

◮ In the game of noughts and crosses (tic-tac-toe), the two
players take it in turns to capture an empty cell of a 3x3 grid.
The game is won once a line of three cells has been captured.
Devise a suitable representation scheme for states in this
game.

◮ Estimate the branching factor of the space.

◮ Calculate the maximum depth of a search tree in this game.

◮ Calculate the total size of the state space in this game.

Exercises

◮ In the game of noughts and crosses (tic-tac-toe), the two
players take it in turns to capture an empty cell of a 3x3 grid.
The game is won once a line of three cells has been captured.
Devise a suitable representation scheme for states in this
game.

◮ Estimate the branching factor of the space.

◮ Calculate the maximum depth of a search tree in this game.

◮ Calculate the total size of the state space in this game.

Exercises cont.

Exercises cont.

◮ On the basis that the underscore represents an unfilled cell,
draw out the full tree of states that can be reached from the
state

Exercises cont.

◮ On the basis that the underscore represents an unfilled cell,
draw out the full tree of states that can be reached from the
state

X X O

X O O

_ _ _

Exercises cont.

◮ On the basis that the underscore represents an unfilled cell,
draw out the full tree of states that can be reached from the
state

X X O

X O O

_ _ _

◮ Annotate the tree to differentiate levels where X has control
(i.e., where it is X’s turn) from the levels at which O has
control.

Exercises cont.

◮ On the basis that the underscore represents an unfilled cell,
draw out the full tree of states that can be reached from the
state

X X O

X O O

_ _ _

◮ Annotate the tree to differentiate levels where X has control
(i.e., where it is X’s turn) from the levels at which O has
control.

◮ Annotate nodes of the tree which represent won/lost states,
giving them a value of one 1 if the state is won by X, and zero
if it is won by O.

Exercises cont.

◮ On the basis that the underscore represents an unfilled cell,
draw out the full tree of states that can be reached from the
state

X X O

X O O

_ _ _

◮ Annotate the tree to differentiate levels where X has control
(i.e., where it is X’s turn) from the levels at which O has
control.

◮ Annotate nodes of the tree which represent won/lost states,
giving them a value of one 1 if the state is won by X, and zero
if it is won by O.

Exercises cont.

Exercises cont.

◮ Show how the evaluations of immediate successor states can
be produced by backing up evaluations of terminal states
using first MINIMAX and then NEGMAX.

Exercises cont.

◮ Show how the evaluations of immediate successor states can
be produced by backing up evaluations of terminal states
using first MINIMAX and then NEGMAX.

◮ How well would the NEGMAX evaluation work if you used -1
as the static evaluation for a lost state?

Exercises cont.

◮ Show how the evaluations of immediate successor states can
be produced by backing up evaluations of terminal states
using first MINIMAX and then NEGMAX.

◮ How well would the NEGMAX evaluation work if you used -1
as the static evaluation for a lost state?

◮ Devise a representation scheme for states in this game which
minimises the difficulty of generating successors and
evaluating states.

Exercises cont.

◮ Show how the evaluations of immediate successor states can
be produced by backing up evaluations of terminal states
using first MINIMAX and then NEGMAX.

◮ How well would the NEGMAX evaluation work if you used -1
as the static evaluation for a lost state?

◮ Devise a representation scheme for states in this game which
minimises the difficulty of generating successors and
evaluating states.

◮ In this game, the first player to move can always force a draw
provided a certain procedure is followed. Devise a way of
using the evaluation mechanism (i.e., backing up of terminal
evaluations) to identify what this procedure is.

Exercises cont.

◮ Show how the evaluations of immediate successor states can
be produced by backing up evaluations of terminal states
using first MINIMAX and then NEGMAX.

◮ How well would the NEGMAX evaluation work if you used -1
as the static evaluation for a lost state?

◮ Devise a representation scheme for states in this game which
minimises the difficulty of generating successors and
evaluating states.

◮ In this game, the first player to move can always force a draw
provided a certain procedure is followed. Devise a way of
using the evaluation mechanism (i.e., backing up of terminal
evaluations) to identify what this procedure is.

Resources

Resources

◮ Another chess applet: http://chess.captain.at/

Resources

◮ Another chess applet: http://chess.captain.at/

◮ CNN website on Deep Blue v. Kasparov:
http://www.cnn.com/WORLD/9705/11/chess.update/

Resources

◮ Another chess applet: http://chess.captain.at/

◮ CNN website on Deep Blue v. Kasparov:
http://www.cnn.com/WORLD/9705/11/chess.update/

