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Introduction

An important application of AI search methods has been in the
domain of 2-person games, such as draughts (checkers) and chess.

Until quite recently (late 1990s) it was widely believed by many
that hard problems of intelligence would never be solved by
computer.

Chess was often put forward as a good example.

Then, in May 1997, an IBM machine known as ‘Deep Blue’
defeated chess grandmaster Garry Kasparov.

No special techniques were used to achieve the victory. Deep Blue
relied on tried and trusted methods.

The version of Deep Blue which beat Kasparov was able to evalute
more than 200 million chess states per second.
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Adapting search for game playing

Deep Blue used ordinary search methods. and the standard
approach for adapting those methods to the problem of game-play.

Games like chess can readily be seen in terms of transitions
between states. Transitions are moves; states are board
configurations.

Normally, we would then solve the problem by searching for a path
of transitions (i.e., moves) connecting the start state with a goal
state.

Unfortunately, in this context, we ‘lose’ control over the choice of
move every other turn.



Using search for evaluation

In a 2-person game, a solution path is unobtainable because we
never know what the other player is going to do at any stage.

What we need to work out is the best move.

In the minimax method we use the search process not to find a
solution path, but to derive the most accurate evaluation of the
possible moves, i.e., an evaluation which takes into account the
implications that any given move will have later in the game.
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Minimax method

There are three elements to the minimax method.

(1) Expand the search tree all the way down to a game
conclusion (win, lose or draw). If this is too much
search, choose a suitable cutoff.

(2) Obtain an evaluation of the relevant terminal state.
(e.g., positive for a win, negative for a lose and
neutral for a draw). This is known as the static

evaluation.
(3) Then back-up the evaluations, level by level, working

on the basis that when it is the opponent’s turn, they
will chose a transition which achieves the worst
outcome from our point of view, and whenever it is
our turn to move, we will choose the best.

To do this we need to identify the minimum evaluation in any level
of the tree corresponding to the opponent’s move, and the
maximum otherwise.

Hence the ‘minimax’.
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Evaluation obtained
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Negmax simplification

Implementing minimax can be a pain because of the need to
alternate between minimisation and maximisation in the
backing-up of evaluations.

The negmax idea gets around this problem.

Board states are still evaluated from the ‘current’ player’s point of
view (i.e., whichever player has control at the given depth). but the
value which is backed-up is always the negative of the maximum.

As in minimax, the effect is to ensure that the value backed-up is
the value of the worst outcome that the opponent can achieve
from our point of view.

But the code to implement the method can be written using a
simple recursive procedure.



Negmax illustration
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Alpha-beta pruning

When using minimax (or negmax), situations can arise when search
of a particular branch can be safely terminated.

◮ Applying an alpha-cutoff means we stop search of a
particular branch because we see that we already have a
better opportunity elsewhere.

◮ Applying a beta-cutoff means we stop search of a particular
branch because we see that the opponent already has a better
opportunity elsewhere.

Applying both forms is alpha-beta pruning.



Alpha-cutoff

If, from some state S, the opponent can achieve a state with a
lower value for us than one achievable in another branch. we will
certainly not move the game to S. We do not need to expand S.

Choose max 

Back-up min 

15 

10 
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exploring 

this branch 



Beta-cutoff

If, from some state S, we would be able to achieve a state which
has a higher value for us than one the opponent can hold us to in
another branch, we can assume the opponent will not choose S.

Choose max 

Back-up min 

20 

25 

Back-up max 

No point in  

exploring 

this branch 
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