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Introduction

This lecture (which may be skipped if we are behind time) works
through an implementation of heurstic search for the 8-puzzle.



Node class

import java.util.*;

class Node {

int[] state = new int[9];

int cost;

Node parent = null;

Vector&lt;Node&gt; successors = new Vector&lt;Node&gt;();

Node(int s[], Node parent) {

this.parent = parent;

for (int i = 0; i &lt; 9; i++) state[i] = s[i];

}

public String toString() {

String s = "";

for (int i = 0; i &lt; 9; i++) {

s = s + state[i] + " "; }

return s;

}



Node class cont.

public boolean equals(Node n) {

boolean result = true;

for (int i = 0; i &lt; 9; i++) {

if (n.state[i] != state[i]) result = false; }

return result;

}

Vector&lt;Node&gt; getPath(Vector&lt;Node&gt; v) {

v.insertElementAt(this, 0);

if (parent != null) v = parent.getPath(v);

return v;

}

Vector&lt;Node&gt; getPath() {

return getPath(new Vector&lt;Node&gt;()); }

}



Space representation

class EightPuzzleSpace {

Node getRoot() {

int ex[] = {3, 1, 2, 4, 7, 5, 6, 8, 0};

int rn[] = {7, 2, 4, 5, 0, 6, 8, 3, 1}; // the Russell and Norvig

return new Node(ex, null);

}

Node getGoal() {

int state[] = {0, 1, 2, 3, 4, 5, 6, 7, 8};

return new Node(state, null);

}

Node transformState(int r0, int c0, int r1, int c1, Node parent) {

int[] s = parent.state;

int[] newState = {s[0], s[1], s[2], s[3], s[4], s[5], s[6], s[7],

newState[(r1 * 3) + c1] = s[(r0 * 3) + c0];

newState[(r0 * 3) + c0] = 0;

return new Node(newState, parent);

}



Successsor function

Vector&lt;Node&gt; getSuccessors(Node parent) {

Vector&lt;Node&gt; successors = new Vector&lt;Node&gt;();

for (int r = 0; r &lt; 3; r++) {

for (int c = 0; c &lt; 3; c++) {

if (parent.state[(r * 3) + c] == 0) { /* hole here */

if (r &gt; 0) { /* move tile from left */

successors.add(transformState(r-1, c, r, c, parent));

if (r &lt; 2) { /* move tile from right */

successors.add(transformState(r+1, c, r, c, parent));

if (c &gt; 0) { /* move tile from below */

successors.add(transformState(r, c-1, r, c, parent));

if (c &lt; 2) { /* move tile from above */

successors.add(transformState(r, c+1, r, c, parent));

}

}

}

parent.successors = successors; /* used in getTree */

return successors;

}

}



Search representation

public class EightPuzzleSearch {

EightPuzzleSpace space = new EightPuzzleSpace();

Vector&lt;Node&gt; open = new Vector&lt;Node&gt;();

Vector&lt;Node&gt; closed = new Vector&lt;Node&gt;();

int h1Cost(Node node) {

int cost = 0;

for (int i = 0; i &lt; node.state.length; i++) {

if (node.state[i] != i) cost++; }

return cost;

}



The h2 heuristic

int h2Cost(Node node) {

int cost = 0;

int state[] = node.state;

for (int i = 0; i &lt; state.length; i++) {

int v0 = i, v1 = state[i];

if (v1 == 0) continue; /* don’t count the hole */

int row0 = v0 / 3, col0 = v0 % 3, row1 = v1 / 3, col1 = v1 % 3;

int c = (Math.abs(row0 - row1) + Math.abs(col0 - col1));

cost += c; }

return cost;

}

int hCost(Node node) { /* set to call either h1 or h2 */

return h2Cost(node);

}



Node selection

Node getBestNode(Vector nodes) {

int index = 0, minCost = Integer.MAX_VALUE;

for (int i = 0; i &lt; nodes.size(); i++) {

Node node = (Node)nodes.elementAt(i);

if (node.cost &lt; minCost) {

minCost = node.cost;

index = i; } }

Node bestNode = (Node)nodes.remove(index);

return(bestNode);

}

Node getUniqueNode(Node node) {

int i = open.indexOf(node);

if (i != -1) {

node = open.get(i); }

else if ((i = closed.indexOf(node)) != -1) {

node = closed.get(i); }

return(node);

}



run method

void printPath(Vector path) {

for (int i = 0; i &lt; path.size(); i++) {

System.out.print(" " + path.elementAt(i) + "\n"); }

}

void run() {

Node root = space.getRoot();

Node goal = space.getGoal();

Node solution = null;

open.add(root);

System.out.print("\nRoot: " + root + "\n\n");



Main loop

while (open.size() &gt; 0) {

Node node = getBestNode(open);

int pathLength = node.getPath().size();

closed.add(node);

if (node.equals(goal)) { solution = node; break; }

Vector&lt;Node&gt; successors = space.getSuccessors(node);

for (int i = 0; i &lt; successors.size(); i++) {

Node successor = getUniqueNode(successors.get(i));

int cost = hCost(successor) + pathLength + 1;

int previousCost = successor.cost;

boolean inClosed = closed.contains(successor);

boolean inOpen = open.contains(successor);

if (!(inClosed || inOpen)

|| cost &lt; previousCost) {

if (inClosed) closed.remove(successor);

if (!inOpen) open.add(successor);

successor.cost = cost;

successor.parent = node;

}

}

}



Solution printing

// new TreePrint(getTree(root));

if (solution != null) {

Vector path = solution.getPath();

System.out.print("\nSolution found\n");

printPath(path); }

}

public static void main(String args[]) { // do the search

new EightPuzzleSearch().run();

}

}



Search space explored

Root: 3 1 2 4 7 5 6 8 0

3 1 2 4 7 5 6 8 0

|-- 3 1 2 4 7 0 6 8 5

|-- 3 1 2 4 7 5 6 0 8

|-- 3 1 2 4 0 5 6 7 8

| |-- 3 0 2 4 1 5 6 7 8

| |-- 3 1 2 4 7 5 6 0 8

| |-- 3 1 2 0 4 5 6 7 8

| | |-- 0 1 2 3 4 5 6 7 8

| | |-- 3 1 2 6 4 5 0 7 8

| | |-- 3 1 2 4 0 5 6 7 8

| |-- 3 1 2 4 5 0 6 7 8

|-- 3 1 2 4 7 5 0 6 8

|-- 3 1 2 4 7 5 6 8 0



Solution path

3 1 2 4 7 5 6 8 0

3 1 2 4 7 5 6 0 8

3 1 2 4 0 5 6 7 8

3 1 2 0 4 5 6 7 8

0 1 2 3 4 5 6 7 8

.
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