
KR-IST - Lecture 4b

Heuristic search in Java

Chris Thornton

November 7, 2014

Introduction

This lecture (which may be skipped if we are behind time) works
through an implementation of heurstic search for the 8-puzzle.

Node class

import java.util.*;

class Node {

int[] state = new int[9];

int cost;

Node parent = null;

Vector<Node> successors = new Vector<Node>();

Node(int s[], Node parent) {

this.parent = parent;

for (int i = 0; i < 9; i++) state[i] = s[i];

}

public String toString() {

String s = "";

for (int i = 0; i < 9; i++) {

s = s + state[i] + " "; }

return s;

}

Node class cont.

public boolean equals(Node n) {

boolean result = true;

for (int i = 0; i < 9; i++) {

if (n.state[i] != state[i]) result = false; }

return result;

}

Vector<Node> getPath(Vector<Node> v) {

v.insertElementAt(this, 0);

if (parent != null) v = parent.getPath(v);

return v;

}

Vector<Node> getPath() {

return getPath(new Vector<Node>()); }

}

Space representation

class EightPuzzleSpace {

Node getRoot() {

int ex[] = {3, 1, 2, 4, 7, 5, 6, 8, 0};

int rn[] = {7, 2, 4, 5, 0, 6, 8, 3, 1}; // the Russell and Norvig

return new Node(ex, null);

}

Node getGoal() {

int state[] = {0, 1, 2, 3, 4, 5, 6, 7, 8};

return new Node(state, null);

}

Node transformState(int r0, int c0, int r1, int c1, Node parent) {

int[] s = parent.state;

int[] newState = {s[0], s[1], s[2], s[3], s[4], s[5], s[6], s[7],

newState[(r1 * 3) + c1] = s[(r0 * 3) + c0];

newState[(r0 * 3) + c0] = 0;

return new Node(newState, parent);

}

Successsor function

Vector<Node> getSuccessors(Node parent) {

Vector<Node> successors = new Vector<Node>();

for (int r = 0; r < 3; r++) {

for (int c = 0; c < 3; c++) {

if (parent.state[(r * 3) + c] == 0) { /* hole here */

if (r > 0) { /* move tile from left */

successors.add(transformState(r-1, c, r, c, parent));

if (r < 2) { /* move tile from right */

successors.add(transformState(r+1, c, r, c, parent));

if (c > 0) { /* move tile from below */

successors.add(transformState(r, c-1, r, c, parent));

if (c < 2) { /* move tile from above */

successors.add(transformState(r, c+1, r, c, parent));

}

}

}

parent.successors = successors; /* used in getTree */

return successors;

}

}

Search representation

public class EightPuzzleSearch {

EightPuzzleSpace space = new EightPuzzleSpace();

Vector<Node> open = new Vector<Node>();

Vector<Node> closed = new Vector<Node>();

int h1Cost(Node node) {

int cost = 0;

for (int i = 0; i < node.state.length; i++) {

if (node.state[i] != i) cost++; }

return cost;

}

The h2 heuristic

int h2Cost(Node node) {

int cost = 0;

int state[] = node.state;

for (int i = 0; i < state.length; i++) {

int v0 = i, v1 = state[i];

if (v1 == 0) continue; /* don’t count the hole */

int row0 = v0 / 3, col0 = v0 % 3, row1 = v1 / 3, col1 = v1 % 3;

int c = (Math.abs(row0 - row1) + Math.abs(col0 - col1));

cost += c; }

return cost;

}

int hCost(Node node) { /* set to call either h1 or h2 */

return h2Cost(node);

}

Node selection

Node getBestNode(Vector nodes) {

int index = 0, minCost = Integer.MAX_VALUE;

for (int i = 0; i < nodes.size(); i++) {

Node node = (Node)nodes.elementAt(i);

if (node.cost < minCost) {

minCost = node.cost;

index = i; } }

Node bestNode = (Node)nodes.remove(index);

return(bestNode);

}

Node getUniqueNode(Node node) {

int i = open.indexOf(node);

if (i != -1) {

node = open.get(i); }

else if ((i = closed.indexOf(node)) != -1) {

node = closed.get(i); }

return(node);

}

run method

void printPath(Vector path) {

for (int i = 0; i < path.size(); i++) {

System.out.print(" " + path.elementAt(i) + "\n"); }

}

void run() {

Node root = space.getRoot();

Node goal = space.getGoal();

Node solution = null;

open.add(root);

System.out.print("\nRoot: " + root + "\n\n");

Main loop

while (open.size() > 0) {

Node node = getBestNode(open);

int pathLength = node.getPath().size();

closed.add(node);

if (node.equals(goal)) { solution = node; break; }

Vector<Node> successors = space.getSuccessors(node);

for (int i = 0; i < successors.size(); i++) {

Node successor = getUniqueNode(successors.get(i));

int cost = hCost(successor) + pathLength + 1;

int previousCost = successor.cost;

boolean inClosed = closed.contains(successor);

boolean inOpen = open.contains(successor);

if (!(inClosed || inOpen)

|| cost < previousCost) {

if (inClosed) closed.remove(successor);

if (!inOpen) open.add(successor);

successor.cost = cost;

successor.parent = node;

}

}

}

Solution printing

// new TreePrint(getTree(root));

if (solution != null) {

Vector path = solution.getPath();

System.out.print("\nSolution found\n");

printPath(path); }

}

public static void main(String args[]) { // do the search

new EightPuzzleSearch().run();

}

}

Search space explored

Root: 3 1 2 4 7 5 6 8 0

3 1 2 4 7 5 6 8 0

|-- 3 1 2 4 7 0 6 8 5

|-- 3 1 2 4 7 5 6 0 8

|-- 3 1 2 4 0 5 6 7 8

| |-- 3 0 2 4 1 5 6 7 8

| |-- 3 1 2 4 7 5 6 0 8

| |-- 3 1 2 0 4 5 6 7 8

| | |-- 0 1 2 3 4 5 6 7 8

| | |-- 3 1 2 6 4 5 0 7 8

| | |-- 3 1 2 4 0 5 6 7 8

| |-- 3 1 2 4 5 0 6 7 8

|-- 3 1 2 4 7 5 0 6 8

|-- 3 1 2 4 7 5 6 8 0

Solution path

3 1 2 4 7 5 6 8 0

3 1 2 4 7 5 6 0 8

3 1 2 4 0 5 6 7 8

3 1 2 0 4 5 6 7 8

0 1 2 3 4 5 6 7 8

.

Summary

Summary

◮ Node class

Summary

◮ Node class

◮ Space representation

Summary

◮ Node class

◮ Space representation

◮ Successsor function

Summary

◮ Node class

◮ Space representation

◮ Successsor function

◮ Search representation

Summary

◮ Node class

◮ Space representation

◮ Successsor function

◮ Search representation

◮ Node selection

Summary

◮ Node class

◮ Space representation

◮ Successsor function

◮ Search representation

◮ Node selection

◮ Main loop

Summary

◮ Node class

◮ Space representation

◮ Successsor function

◮ Search representation

◮ Node selection

◮ Main loop

◮ main method

Summary

◮ Node class

◮ Space representation

◮ Successsor function

◮ Search representation

◮ Node selection

◮ Main loop

◮ main method

◮ Output

Summary

◮ Node class

◮ Space representation

◮ Successsor function

◮ Search representation

◮ Node selection

◮ Main loop

◮ main method

◮ Output

Questions

Questions

◮ What are the main shortcomings of the EightPuzzleSearch
program?

Questions

◮ What are the main shortcomings of the EightPuzzleSearch
program?

◮ This program uses a ‘linear’ representation of the board state.
What method is used for translating between 2d cell
references and 1d array subscripts?

Questions

◮ What are the main shortcomings of the EightPuzzleSearch
program?

◮ This program uses a ‘linear’ representation of the board state.
What method is used for translating between 2d cell
references and 1d array subscripts?

◮ The program uses an explicit map for associating nodes with
parents. Why is it necessary to represent this information and
what alternative strategies are there?

Questions

◮ What are the main shortcomings of the EightPuzzleSearch
program?

◮ This program uses a ‘linear’ representation of the board state.
What method is used for translating between 2d cell
references and 1d array subscripts?

◮ The program uses an explicit map for associating nodes with
parents. Why is it necessary to represent this information and
what alternative strategies are there?

◮ Russell and Norvig focus on 8-puzzle goal states in which the
hole is in the top-right corner. What impact does use of this
form of goal have on the computation of the h1 function?

Questions

◮ What are the main shortcomings of the EightPuzzleSearch
program?

◮ This program uses a ‘linear’ representation of the board state.
What method is used for translating between 2d cell
references and 1d array subscripts?

◮ The program uses an explicit map for associating nodes with
parents. Why is it necessary to represent this information and
what alternative strategies are there?

◮ Russell and Norvig focus on 8-puzzle goal states in which the
hole is in the top-right corner. What impact does use of this
form of goal have on the computation of the h1 function?

◮ Where and how is the g element of the heuristic value
calculated?

Questions

◮ What are the main shortcomings of the EightPuzzleSearch
program?

◮ This program uses a ‘linear’ representation of the board state.
What method is used for translating between 2d cell
references and 1d array subscripts?

◮ The program uses an explicit map for associating nodes with
parents. Why is it necessary to represent this information and
what alternative strategies are there?

◮ Russell and Norvig focus on 8-puzzle goal states in which the
hole is in the top-right corner. What impact does use of this
form of goal have on the computation of the h1 function?

◮ Where and how is the g element of the heuristic value
calculated?

◮ What is the point of moving nodes back to OPEN once they
have already been placed on CLOSED?

Questions

◮ What are the main shortcomings of the EightPuzzleSearch
program?

◮ This program uses a ‘linear’ representation of the board state.
What method is used for translating between 2d cell
references and 1d array subscripts?

◮ The program uses an explicit map for associating nodes with
parents. Why is it necessary to represent this information and
what alternative strategies are there?

◮ Russell and Norvig focus on 8-puzzle goal states in which the
hole is in the top-right corner. What impact does use of this
form of goal have on the computation of the h1 function?

◮ Where and how is the g element of the heuristic value
calculated?

◮ What is the point of moving nodes back to OPEN once they
have already been placed on CLOSED?

Exercises

Exercises

◮ Turn the program into a 5-puzzle solver, i.e., modify it so as
to use a board with three columns and two rows.

Exercises

◮ Turn the program into a 5-puzzle solver, i.e., modify it so as
to use a board with three columns and two rows.

◮ Rewrite the successor function so as to use a 2d state
representation, i.e., an array where the the rows and columns
of the array correspond directly to the arrays and columns of
the board state.

Exercises

◮ Turn the program into a 5-puzzle solver, i.e., modify it so as
to use a board with three columns and two rows.

◮ Rewrite the successor function so as to use a 2d state
representation, i.e., an array where the the rows and columns
of the array correspond directly to the arrays and columns of
the board state.

◮ Modify the h2 definition so that it uses the Euclidean distance
rather than the City-block distance as a basis for evaluation.
The Euclidean distance between two points (x1, y1) and
(x2, y2) may be calculated as

Exercises

◮ Turn the program into a 5-puzzle solver, i.e., modify it so as
to use a board with three columns and two rows.

◮ Rewrite the successor function so as to use a 2d state
representation, i.e., an array where the the rows and columns
of the array correspond directly to the arrays and columns of
the board state.

◮ Modify the h2 definition so that it uses the Euclidean distance
rather than the City-block distance as a basis for evaluation.
The Euclidean distance between two points (x1, y1) and
(x2, y2) may be calculated as

√

(x1− x2)2 + (y1− y2)2

Exercises

◮ Turn the program into a 5-puzzle solver, i.e., modify it so as
to use a board with three columns and two rows.

◮ Rewrite the successor function so as to use a 2d state
representation, i.e., an array where the the rows and columns
of the array correspond directly to the arrays and columns of
the board state.

◮ Modify the h2 definition so that it uses the Euclidean distance
rather than the City-block distance as a basis for evaluation.
The Euclidean distance between two points (x1, y1) and
(x2, y2) may be calculated as

√

(x1− x2)2 + (y1− y2)2

◮ Measure the different between the performance of this version
of h2 and the original version.

Exercises

◮ Turn the program into a 5-puzzle solver, i.e., modify it so as
to use a board with three columns and two rows.

◮ Rewrite the successor function so as to use a 2d state
representation, i.e., an array where the the rows and columns
of the array correspond directly to the arrays and columns of
the board state.

◮ Modify the h2 definition so that it uses the Euclidean distance
rather than the City-block distance as a basis for evaluation.
The Euclidean distance between two points (x1, y1) and
(x2, y2) may be calculated as

√

(x1− x2)2 + (y1− y2)2

◮ Measure the different between the performance of this version
of h2 and the original version.

