KR-IST - Lecture 3a:

Problem solving in Java

Chris Thornton

October 30, 2014

Introduction

This lecture will look at a java program for solving the water-jugs
problem.

We have two jugs X and Y.
X can hold 4 pints.
Y can hold 3.

Permissable moves are to fill X from Y, to fill Y from X, and to
empty or fill either jug completely.

The aim is to find a sequence of actions, starting from empty jugs,
which achieves a state in which Y contains exactly two pints.

Preliminaries

Initial questions

Preliminaries

Initial questions

» What are the essential features of a state?

Preliminaries

Initial questions

» What are the essential features of a state?

» What is the best way to represent a state?

Preliminaries

Initial questions

» What are the essential features of a state?
» What is the best way to represent a state?

» Given a chosen state representation, how easy will it be to
generate successors?

Preliminaries

Initial questions

» What are the essential features of a state?
» What is the best way to represent a state?

» Given a chosen state representation, how easy will it be to
generate successors?

Produce a sketch of the successor met

Represent jug contents by numbers.
State representation is a data structure containing two numbers.

Successor generation will involve looking at two numbers and
finding out which actions are possible.

Is it possible to transfer from one jug to another?
Is it possible to empty a jug?
Is it possible to fill a jug?

How will these actions be applied within the chosen state
representation?

import java.util.x;

class Node {
int x = 0, y = 0; /* state variables */
Node parent = null; /* parent link */

Node (int x, int y, Node parent) {
this.x = x;
this.y = y;
this.parent = parent;

}

public String toString() {
return(x + " " + y);

}

public boolean equals(Object node) { /* argument has to be an Obje
return(((Node)node) .x == x && ((Node)node).y == y);
}

Node class con

NB. Use Vector instead of ArrayList because they allow ‘insert’
mutations.

Vector<Nodekgt; getPath(Vector<Node> v) {
v.insertElementAt (this, 0);
if (parent != null) v = parent.getPath(v);
return(v) ;

}

Vector<Node> getPath() { return(getPath(new Vector<Node&g

WaterJugsSearch class (successor function)

public class WaterJugsSearch {

boolean isGoal(Node node) {
return(node.y == 2);

}

WaterJugsSearch class cont.

Vector<Node> getSuccessors(Node parent) {
int x = parent.x, y = parent.y;
Vector<Nodekgt; successors = new Vector<Node>();
if (x < 4 & y > 0) { /* transfer amount z from y to x */
int z = Math.min(y, 4-x);
successors.add(new Node(x+z, y-z, parent)); }
if (y < 3 &% x > 0) { /* transfer amount z from x to y */
int z = Math.min(x, 3-y);
successors.add(new Node(x-z, y+z, parent)); }
if (x > 0) { /* empty x x/
successors.add(new Node(O, y, parent)); }
if (y > 0) { /* empty y */
successors.add(new Node(x, 0, parent)); }
if (x < 4) { /* £ill x from tap */
successors.add(new Node(4, y, parent)); }
if (y &1t; 3) { /* fill y from tap */
successors.add(new Node(x, 3, parent)); }
return(successors) ;

void run() {
Vector<Node> open = new Vector<Node> () ;
open.add(new Node(0, 0, null));

while (open.size() > 0) {
Node node = open.remove(0);
if (isGoal(node)) {
System.out.println("Solution: " + node.getPath()); }
else {
Vector<Node> successors = getSuccessors(node) ;
for (int i = 0; i < successors.size(); i++) {
Node child = successors.get(i);
if (!node.getPath().contains((Object)child)) {
open.add(child); }

public static void main(String args[]) { // do the search
new WaterJugsSearch().run();

}

O
[}
e
T
—
()
c
()
Y]
)
=
o
)
=}
@)

There are 12 distinct solutions:

[00, 03,30, 33, 42]

Solution:

[0O0,40,13,03,30, 33, 42]
[0O0,40,43,03,30, 33, 42]

Solution:

Solution:

[0O0,40,13,43,03, 30, 33, 42]

Solution:

[0O0,40,13,10,01,41, 23,20, 02]

Solution:

[00,40,13,10,01, 03, 30, 33, 42]

Solution:

[00,40,13,10,01,41, 23,03, 30, 33, 42]
[0o0o,40,13,10,01, 41, 43,03, 30, 33, 42]
[00,03,30,40,13,10,01,41, 23,20, 02]
[00,03,43,40,13,10,01, 41, 23,20, 02]

Solution:

Solution:

Solution:

Solution:

[bo,40,13,10,01,41, 23,43,03,30,33, 42

[00,03,30,33,43,40,13,10,01,41,23, 20

Solution:

Solution:

> Always start by choosing a state representation

> Always start by choosing a state representation

» Node class

> Always start by choosing a state representation
> Node class

» WaterJugsSearch class with successor function

v

Always start by choosing a state representation

v

Node class

v

WaterJugsSearch class with successor function

v

Main loop

v

Always start by choosing a state representation
Node class

v

v

WaterJugsSearch class with successor function

v

Main loop

» main method

v

Always start by choosing a state representation

v

Node class

v

WaterJugsSearch class with successor function

v

Main loop

» main method

v

Output generated

v

Always start by choosing a state representation

v

Node class

v

WaterJugsSearch class with successor function

v

Main loop

» main method

v

Output generated

» What is the first task when implementating a search program?

» What is the first task when implementating a search program?

» How soon should you start writing code?

» What is the first task when implementating a search program?
» How soon should you start writing code?

» How can we resolve the main drawback with the Vector data
structure?

» What is the first task when implementating a search program?
» How soon should you start writing code?

» How can we resolve the main drawback with the Vector data
structure?

» Writing the code for successor generation is the key task in
implementing a search program? What is the best way to go
about this task?

» What is the first task when implementating a search program?

» How soon should you start writing code?

» How can we resolve the main drawback with the Vector data
structure?

» Writing the code for successor generation is the key task in
implementing a search program? What is the best way to go
about this task?

» What strategy does the WaterJugsSearch program use for
generating solution paths?

» What is the first task when implementating a search program?
» How soon should you start writing code?

» How can we resolve the main drawback with the Vector data
structure?

» Writing the code for successor generation is the key task in
implementing a search program? What is the best way to go
about this task?

» What strategy does the WaterJugsSearch program use for
generating solution paths?

» What other strategies might be used for keeping track of and
printing out solution paths?

» What is the first task when implementating a search program?
» How soon should you start writing code?

» How can we resolve the main drawback with the Vector data
structure?

» Writing the code for successor generation is the key task in
implementing a search program? What is the best way to go
about this task?

» What strategy does the WaterJugsSearch program use for
generating solution paths?

» What other strategies might be used for keeping track of and
printing out solution paths?

» Modify the program so that it implements an
iterative-deepening search strategy.

» What is the first task when implementating a search program?
» How soon should you start writing code?

» How can we resolve the main drawback with the Vector data
structure?

» Writing the code for successor generation is the key task in
implementing a search program? What is the best way to go
about this task?

» What strategy does the WaterJugsSearch program use for
generating solution paths?

» What other strategies might be used for keeping track of and
printing out solution paths?

» Modify the program so that it implements an
iterative-deepening search strategy.

Exercises

Implement a version of the WaterJugsSearch program which
searches for a debt-minimising sequence of card transfers (as
detailed in the previous lecture).

