KR-IST - Lecture 3a:

Problem solving in Java

Chris Thornton
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Introduction

This lecture will look at a java program for solving the water-jugs
problem.

We have two jugs X and Y.
X can hold 4 pints.
Y can hold 3.

Permissable moves are to fill X from Y, to fill Y from X, and to
empty or fill either jug completely.

The aim is to find a sequence of actions, starting from empty jugs,
which achieves a state in which Y contains exactly two pints.
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Produce a sketch of the successor met

Represent jug contents by numbers.
State representation is a data structure containing two numbers.

Successor generation will involve looking at two numbers and
finding out which actions are possible.

Is it possible to transfer from one jug to another?
Is it possible to empty a jug?
Is it possible to fill a jug?

How will these actions be applied within the chosen state
representation?



import java.util.x;

class Node {
int x = 0, y = 0; /* state variables */
Node parent = null; /* parent link */

Node (int x, int y, Node parent) {
this.x = x;
this.y = y;
this.parent = parent;

}

public String toString() {
return(x + " " + y);

}

public boolean equals(Object node) { /* argument has to be an Obje
return(((Node)node) .x == x && ((Node)node).y == y);
}



Node class con

NB. Use Vector instead of ArrayList because they allow ‘insert’
mutations.

Vector&lt;Nodekgt; getPath(Vector&lt;Node&gt; v) {
v.insertElementAt (this, 0);
if (parent != null) v = parent.getPath(v);
return(v) ;

}

Vector&lt;Node&gt; getPath() { return(getPath(new Vector&lt;Node&g



WaterJugsSearch class (successor function)

public class WaterJugsSearch {

boolean isGoal(Node node) {
return(node.y == 2);

}



WaterJugsSearch class cont.

Vector&lt;Node&gt; getSuccessors(Node parent) {
int x = parent.x, y = parent.y;
Vector&lt;Nodekgt; successors = new Vector&lt;Node&gt;();
if (x &lt; 4 & y &gt; 0) { /* transfer amount z from y to x */
int z = Math.min(y, 4-x);
successors.add(new Node(x+z, y-z, parent)); }
if (y &lt; 3 &% x &gt; 0) { /* transfer amount z from x to y */
int z = Math.min(x, 3-y);
successors.add(new Node(x-z, y+z, parent)); }
if (x &gt; 0) { /* empty x x/
successors.add(new Node(O, y, parent)); }
if (y &gt; 0) { /* empty y */
successors.add(new Node(x, 0, parent)); }
if (x &lt; 4) { /* £ill x from tap */
successors.add(new Node(4, y, parent)); }
if (y &1t; 3) { /* fill y from tap */
successors.add(new Node(x, 3, parent)); }
return(successors) ;



void run() {
Vector&lt;Node&gt; open = new Vector&lt;Node&gt; () ;
open.add(new Node(0, 0, null));

while (open.size() &gt; 0) {
Node node = open.remove(0);
if (isGoal(node)) {
System.out.println("Solution: " + node.getPath()); }
else {
Vector&lt;Node&gt; successors = getSuccessors(node) ;
for (int i = 0; i &lt; successors.size(); i++) {
Node child = successors.get(i);
if (!node.getPath().contains((Object)child)) {
open.add(child); }



public static void main(String args[]) { // do the search
new WaterJugsSearch().run();

}
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There are 12 distinct solutions:

[00, 03,30, 33, 42]
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Exercises

Implement a version of the WaterJugsSearch program which
searches for a debt-minimising sequence of card transfers (as
detailed in the previous lecture).



