
KR-IST - Lecture 2b:

Route finding in Java

Chris Thornton

October 30, 2014

Introduction

This lecture looks at a search program for finding routes in a toy
map of campus.

CampusSearch class

import java.util.*;

public class CampusSearch {

String links[][] = {

{"office", "debuggingRoom"},

{"office", "CHI343"},

{"CHI343", "informaticsSchoolOffice"},

{"informaticsSchoolOffice", "ITS"},

{"ITS", "PEV11A6"},

{"PEV11A6", "PEV12A11"},

{"PEV11A6", "library"},

{"CHI343", "PEV11A6"},

{"PEV12A11", "library"},

{"library", "bridgeTeaBar"},

{"library", "meetingHouse"},

{"meetingHouse", "bridgeTeaBar"},

{"bridgeTeaBar", "debuggingRoom"}};

String goal = "meetingHouse";

Successor function

ArrayList<String> getSuccessors(String location) {

ArrayList<String> successors = new ArrayList<String>();

for (int i = 0; i < links.length; i++) {

if (links[i][0].equals(location)) {

successors.add(links[i][1]); }

if (links[i][1].equals(location)) {

successors.add(links[i][0]); }

}

return(successors);

}

Main loop

void run() {

ArrayList<ArrayList<String>> open = new ArrayList<ArrayList<Strin

ArrayList<String> path = new ArrayList<String>();

path.add("office");

open.add(path);

while (open.size() > 0) {

path = open.remove(0);

String parent = path.get(path.size()-1);

if (parent.equals(goal)) {

System.out.println("ROUTE: " + path); }

ArrayList<String> successors = getSuccessors(parent);

for (int i = 0; i < successors.size(); i++) {

String child = successors.get(i);

if (!path.contains(child)) {

ArrayList<String> newPath = new ArrayList<String>(path)

newPath.add(child);

open.add(newPath); }

}

}

}

main method

public static void main(String args[]) { // do the search

new CampusSearch().run();

}

}

Running the program the traditional way

Compile the program with ”javac”, then run it with ”java”
command:

javac CampusSearch.java

java CampusSearch

Running it from BlueJ

If you are running Java via BlueJ, then you would run the program
by explicitly calling the ‘run’ method of the CampusSearch class.

You could also explicitly call the ‘main’ method; i.e., right-click on
the CampusSearch box, choose ‘void main(args)’. Then press ‘Ok’.

Output generated

The program generates all possible routes connecting ‘office’ with
‘meetingHouse’, ordered by length.

ROUTE: [office, debuggingRoom, bridgeTeaBar, meetingHouse]

ROUTE: [office, debuggingRoom, bridgeTeaBar, library, meetingHouse]

ROUTE: [office, CHI343, PEV11A6, library, meetingHouse]

ROUTE: [office, CHI343, PEV11A6, PEV12A11, library, meetingHouse]

ROUTE: [office, CHI343, PEV11A6, library, bridgeTeaBar, meetingHouse]

ROUTE: [office, CHI343, informaticsSchoolOffice, ITS, PEV11A6, library,

ROUTE: [office, CHI343, PEV11A6, PEV12A11, library, bridgeTeaBar, meetingHouse]

ROUTE: [office, CHI343, informaticsSchoolOffice, ITS, PEV11A6, PEV12A11,

ROUTE: [office, CHI343, informaticsSchoolOffice, ITS, PEV11A6, library,

ROUTE: [office, CHI343, informaticsSchoolOffice, ITS, PEV11A6, PEV12A11,

Summary

Summary

◮ CampusSearch class

Summary

◮ CampusSearch class

◮ Successor function

Summary

◮ CampusSearch class

◮ Successor function

◮ Main loop

Summary

◮ CampusSearch class

◮ Successor function

◮ Main loop

◮ main method

Summary

◮ CampusSearch class

◮ Successor function

◮ Main loop

◮ main method

◮ Running the program the traditional way

Summary

◮ CampusSearch class

◮ Successor function

◮ Main loop

◮ main method

◮ Running the program the traditional way

◮ Running it from BlueJ

Summary

◮ CampusSearch class

◮ Successor function

◮ Main loop

◮ main method

◮ Running the program the traditional way

◮ Running it from BlueJ

Questions

Questions

◮ Does the ordering of link data make any difference? Does it
make any difference if {”library”, ”bridgeTeaBar”} comes
before {”library”, ”meetingHouse”} in the array?

Questions

◮ Does the ordering of link data make any difference? Does it
make any difference if {”library”, ”bridgeTeaBar”} comes
before {”library”, ”meetingHouse”} in the array?

◮ Does it make any difference if {”library”, ”meetingHouse”}
appears as {”meetingHouse”, ”libary”}?

Questions

◮ Does the ordering of link data make any difference? Does it
make any difference if {”library”, ”bridgeTeaBar”} comes
before {”library”, ”meetingHouse”} in the array?

◮ Does it make any difference if {”library”, ”meetingHouse”}
appears as {”meetingHouse”, ”libary”}?

◮ How is the goal for a particular search presented? How could
we improve on this?

Questions

◮ Does the ordering of link data make any difference? Does it
make any difference if {”library”, ”bridgeTeaBar”} comes
before {”library”, ”meetingHouse”} in the array?

◮ Does it make any difference if {”library”, ”meetingHouse”}
appears as {”meetingHouse”, ”libary”}?

◮ How is the goal for a particular search presented? How could
we improve on this?

◮ What advantages are there of using ArrayList data in
preference to user-defined data?

Questions

◮ Does the ordering of link data make any difference? Does it
make any difference if {”library”, ”bridgeTeaBar”} comes
before {”library”, ”meetingHouse”} in the array?

◮ Does it make any difference if {”library”, ”meetingHouse”}
appears as {”meetingHouse”, ”libary”}?

◮ How is the goal for a particular search presented? How could
we improve on this?

◮ What advantages are there of using ArrayList data in
preference to user-defined data?

◮ What does the ArrayList ”remove” method do? Suggest a
more meaningful name for this method.

Questions

◮ Does the ordering of link data make any difference? Does it
make any difference if {”library”, ”bridgeTeaBar”} comes
before {”library”, ”meetingHouse”} in the array?

◮ Does it make any difference if {”library”, ”meetingHouse”}
appears as {”meetingHouse”, ”libary”}?

◮ How is the goal for a particular search presented? How could
we improve on this?

◮ What advantages are there of using ArrayList data in
preference to user-defined data?

◮ What does the ArrayList ”remove” method do? Suggest a
more meaningful name for this method.

◮ What strategy does this program use for purposes of
producing solution paths?

Questions

◮ Does the ordering of link data make any difference? Does it
make any difference if {”library”, ”bridgeTeaBar”} comes
before {”library”, ”meetingHouse”} in the array?

◮ Does it make any difference if {”library”, ”meetingHouse”}
appears as {”meetingHouse”, ”libary”}?

◮ How is the goal for a particular search presented? How could
we improve on this?

◮ What advantages are there of using ArrayList data in
preference to user-defined data?

◮ What does the ArrayList ”remove” method do? Suggest a
more meaningful name for this method.

◮ What strategy does this program use for purposes of
producing solution paths?

Exercises

Adapt the CampusSearch program for use with data derived from
the toy map of Brighton featured in the previous exercises. Check
that the program produces valid routes for that map.

Exercises

Adapt the CampusSearch program for use with data derived from
the toy map of Brighton featured in the previous exercises. Check
that the program produces valid routes for that map.

◮ Estimate the space complexity for this program searching a
tree of depth 4 and branching factor 3.

Exercises

Adapt the CampusSearch program for use with data derived from
the toy map of Brighton featured in the previous exercises. Check
that the program produces valid routes for that map.

◮ Estimate the space complexity for this program searching a
tree of depth 4 and branching factor 3.

◮ Modify the program so that it produces only the shortest
route between two locations.

Exercises

Adapt the CampusSearch program for use with data derived from
the toy map of Brighton featured in the previous exercises. Check
that the program produces valid routes for that map.

◮ Estimate the space complexity for this program searching a
tree of depth 4 and branching factor 3.

◮ Modify the program so that it produces only the shortest
route between two locations.

◮ Modify the program so that it prints out the total number of
locations inspected in order to obtain the shortest route
between two locations.

Exercises

Adapt the CampusSearch program for use with data derived from
the toy map of Brighton featured in the previous exercises. Check
that the program produces valid routes for that map.

◮ Estimate the space complexity for this program searching a
tree of depth 4 and branching factor 3.

◮ Modify the program so that it produces only the shortest
route between two locations.

◮ Modify the program so that it prints out the total number of
locations inspected in order to obtain the shortest route
between two locations.

Exercises cont.

Exercises cont.

◮ Modify the program so that it performs depth-first search if
the value of boolean class variable ”dfs” is 〈true〉, and
breadth-first search otherwise.

Exercises cont.

◮ Modify the program so that it performs depth-first search if
the value of boolean class variable ”dfs” is 〈true〉, and
breadth-first search otherwise.

◮ Modify the program so that it searches to a maximum depth
of four levels in the search tree.

Exercises cont.

◮ Modify the program so that it performs depth-first search if
the value of boolean class variable ”dfs” is 〈true〉, and
breadth-first search otherwise.

◮ Modify the program so that it searches to a maximum depth
of four levels in the search tree.

◮ Modify the program so that the depth-limit may be passed in
as a command-line argument. (This will involve modifying the
”main” method.)

Exercises cont.

◮ Modify the program so that it performs depth-first search if
the value of boolean class variable ”dfs” is 〈true〉, and
breadth-first search otherwise.

◮ Modify the program so that it searches to a maximum depth
of four levels in the search tree.

◮ Modify the program so that the depth-limit may be passed in
as a command-line argument. (This will involve modifying the
”main” method.)

