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Introduction

This lecture looks at a search program for finding routes in a toy
map of campus.



CampusSearch class

import java.util.*;

public class CampusSearch {

String links[][] = {

{"office", "debuggingRoom"},

{"office", "CHI343"},

{"CHI343", "informaticsSchoolOffice"},

{"informaticsSchoolOffice", "ITS"},

{"ITS", "PEV11A6"},

{"PEV11A6", "PEV12A11"},

{"PEV11A6", "library"},

{"CHI343", "PEV11A6"},

{"PEV12A11", "library"},

{"library", "bridgeTeaBar"},

{"library", "meetingHouse"},

{"meetingHouse", "bridgeTeaBar"},

{"bridgeTeaBar", "debuggingRoom"}};

String goal = "meetingHouse";



Successor function

ArrayList<String> getSuccessors(String location) {

ArrayList&lt;String&gt; successors = new ArrayList&lt;String&gt;();

for (int i = 0; i &lt; links.length; i++) {

if (links[i][0].equals(location)) {

successors.add(links[i][1]); }

if (links[i][1].equals(location)) {

successors.add(links[i][0]); }

}

return(successors);

}



Main loop

void run() {

ArrayList&lt;ArrayList&lt;String&gt;> open = new ArrayList&lt;ArrayList&lt;Strin

ArrayList&lt;String&gt; path = new ArrayList&lt;String&gt;();

path.add("office");

open.add(path);

while (open.size() &gt; 0) {

path = open.remove(0);

String parent = path.get(path.size()-1);

if (parent.equals(goal)) {

System.out.println("ROUTE: " + path); }

ArrayList&lt;String&gt; successors = getSuccessors(parent);

for (int i = 0; i &lt; successors.size(); i++) {

String child = successors.get(i);

if (!path.contains(child)) {

ArrayList&lt;String&gt; newPath = new ArrayList&lt;String&gt;(path)

newPath.add(child);

open.add(newPath); }

}

}

}



main method

public static void main(String args[]) { // do the search

new CampusSearch().run();

}

}



Running the program the traditional way

Compile the program with ”javac”, then run it with ”java”
command:

javac CampusSearch.java

java CampusSearch



Running it from BlueJ

If you are running Java via BlueJ, then you would run the program
by explicitly calling the ‘run’ method of the CampusSearch class.

You could also explicitly call the ‘main’ method; i.e., right-click on
the CampusSearch box, choose ‘void main(args)’. Then press ‘Ok’.



Output generated

The program generates all possible routes connecting ‘office’ with
‘meetingHouse’, ordered by length.

ROUTE: [office, debuggingRoom, bridgeTeaBar, meetingHouse]

ROUTE: [office, debuggingRoom, bridgeTeaBar, library, meetingHouse]

ROUTE: [office, CHI343, PEV11A6, library, meetingHouse]

ROUTE: [office, CHI343, PEV11A6, PEV12A11, library, meetingHouse]

ROUTE: [office, CHI343, PEV11A6, library, bridgeTeaBar, meetingHouse]

ROUTE: [office, CHI343, informaticsSchoolOffice, ITS, PEV11A6, library,

ROUTE: [office, CHI343, PEV11A6, PEV12A11, library, bridgeTeaBar, meetingHouse]

ROUTE: [office, CHI343, informaticsSchoolOffice, ITS, PEV11A6, PEV12A11,

ROUTE: [office, CHI343, informaticsSchoolOffice, ITS, PEV11A6, library,

ROUTE: [office, CHI343, informaticsSchoolOffice, ITS, PEV11A6, PEV12A11,
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