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Search as a key concept

A key discovery in AI has been that many forms of knowledge and
thought can be represented in terms of a mechanism which

(1) identifies ways in which possible actions can be
arranged into sequences

(2) finds a ‘route’ through the sequences which achieves
a desired result.

This is the process known as search.

Most AI methods use search in one way or another.



Route finding

In the simplest case, the possible actions are physical transitions
from one location to another.

Search can then be used to discover a literal route from a starting
point to a goal location.



Toy rail map of Europe
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Each (blob-connecting) line represents a direct rail connection
somewhere in western europe.
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Route-finding task

◮ Given knowledge of direct rail connections, what’s the shortest
rail itinery which gets you from A to B?

In this problem, action sequences form a tree structure.

At some given point, certain actions are possible.

These actions take you to new points.

At each of those new points, more actions are possible.

And so on.

At each point the possible actions form a branch.

Joining up the branches gives you a tree.



Search by generation

To find a solution, we need to search the tree of possible action
sequences looking for one with the right start and finish.

But since the tree doesn’t actually exist to begin with, we will have
to generate it first.

If we are going to do this, we may as well inspect nodes as we are
going along.

So, in practice, ‘tree generation’ and ‘search’ are merged into one
process.
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Search strategies

The two basic methods of search:

◮ Depth-first search (DFS) always expand nodes at a deeper
level of the tree whenever there is a choice.

◮ Breadth-first search (BFS): always expand every node at the
present level of the tree before moving to any deeper level.

DFS is a ‘maverick’. BFS is ‘conservative’.

The two strategies can be illustrated by showing how they generate
the search tree for the route-finding problem.
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Search completion

The process can end once it has achieved the desired result.

When a node is about to be expanded, a check should be made to
see if it is the node we’re searching for, i.e., if it’s a node
representing the goal location.

This is the target or goal node.

As soon as we identify the goal node, a solution to the problem
can be generated by listing out the sequence of nodes connecting
the start node to the goal node.

Any such sequence of nodes is a path.

A path connecting the start node to the goal node is a solution

path.
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Branching factor

Time and space complexity are both proportional to the number of
nodes in the tree (although as we’ll see, space complexity is also
strongly affected by the strategy used).

To estimate this, we need to calculate the branching factor,
which is just the average number of children of each node.

Next we calculate the depth of the tree, i.e., the expected number
of levels.

To estimate the total number of nodes at a particular level, we then
raise the branching factor to the relevant degree, i.e., we calculate

bd

where b is the branching factor and d is the depth. This gives the
number of nodes at depth d.



Example

Say the branching factor is 3.

The number of states to be processed at level 1 is then 3.

The number to be processed at level 2 is 3 x 3, or

32

The number to be processed at level 3 is 3 x 3 x 3, or

33

And so on.



Time and space complexity

The number of nodes at the deepest level of search is a lower
bound on the total number of nodes.

For many purposes, deriving this value is sufficient to decide
whether or not search is a practical option.

If the expected depth is 8 and the branching factor is 5, a lower
bound on the total number of nodes in the space is

58

To estimate time complexity, we would multiply this by the time it
takes to check out a single node.

To estimate space complexity, we would multiply this by the
amount of memory it takes to represent a single node.

Again these values would in fact be lower bounds.
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Exercises

KingAlfred
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This schematic map of Brighton shows bus routes between a
number of locations. A valid bus route is simply a connected
sequence of locations.
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