
AI - Lecture 1b:

Route Finding

Chris Thornton

October 30, 2014



Introduction

The goal in AI is to reproduce intelligent behaviour.

The focus is particularly on replicating thought processes and
knowledge representation.

Other approaches, such as Alife, neural networks and robotics,
focus more on replication of behaviour.

AI approaches are informed by an



Introduction

The goal in AI is to reproduce intelligent behaviour.

The focus is particularly on replicating thought processes and
knowledge representation.

Other approaches, such as Alife, neural networks and robotics,
focus more on replication of behaviour.

AI approaches are informed by an

◮ introspective understanding of thought processes,



Introduction

The goal in AI is to reproduce intelligent behaviour.

The focus is particularly on replicating thought processes and
knowledge representation.

Other approaches, such as Alife, neural networks and robotics,
focus more on replication of behaviour.

AI approaches are informed by an

◮ introspective understanding of thought processes,

◮ concepts of symbolic computation and



Introduction

The goal in AI is to reproduce intelligent behaviour.

The focus is particularly on replicating thought processes and
knowledge representation.

Other approaches, such as Alife, neural networks and robotics,
focus more on replication of behaviour.

AI approaches are informed by an

◮ introspective understanding of thought processes,

◮ concepts of symbolic computation and

◮ principles of mathematics



Introduction

The goal in AI is to reproduce intelligent behaviour.

The focus is particularly on replicating thought processes and
knowledge representation.

Other approaches, such as Alife, neural networks and robotics,
focus more on replication of behaviour.

AI approaches are informed by an

◮ introspective understanding of thought processes,

◮ concepts of symbolic computation and

◮ principles of mathematics



Search as a key concept

A key discovery in AI has been that many forms of knowledge and
thought can be represented in terms of a mechanism which



Search as a key concept

A key discovery in AI has been that many forms of knowledge and
thought can be represented in terms of a mechanism which

(1) identifies ways in which possible actions can be
arranged into sequences



Search as a key concept

A key discovery in AI has been that many forms of knowledge and
thought can be represented in terms of a mechanism which

(1) identifies ways in which possible actions can be
arranged into sequences

(2) finds a ‘route’ through the sequences which achieves
a desired result.



Search as a key concept

A key discovery in AI has been that many forms of knowledge and
thought can be represented in terms of a mechanism which

(1) identifies ways in which possible actions can be
arranged into sequences

(2) finds a ‘route’ through the sequences which achieves
a desired result.

This is the process known as search.

Most AI methods use search in one way or another.



Route finding

In the simplest case, the possible actions are physical transitions
from one location to another.

Search can then be used to discover a literal route from a starting
point to a goal location.



Toy rail map of Europe

London

Paris

Lyon
Poitiers

Cherbourg Brussels

Geneva

Milan

Marseilles

Bilbao

Barcelona

Hamburg

Edinburgh

Each (blob-connecting) line represents a direct rail connection
somewhere in western europe.



Route finding task

Route-finding task



Route finding task

Route-finding task

◮ Given knowledge of direct rail connections, what’s the shortest
rail itinery which gets you from A to B?



Route finding task

Route-finding task

◮ Given knowledge of direct rail connections, what’s the shortest
rail itinery which gets you from A to B?

In this problem, action sequences form a tree structure.

At some given point, certain actions are possible.

These actions take you to new points.

At each of those new points, more actions are possible.

And so on.

At each point the possible actions form a branch.

Joining up the branches gives you a tree.



Search by generation

To find a solution, we need to search the tree of possible action
sequences looking for one with the right start and finish.

But since the tree doesn’t actually exist to begin with, we will have
to generate it first.

If we are going to do this, we may as well inspect nodes as we are
going along.

So, in practice, ‘tree generation’ and ‘search’ are merged into one
process.



Search strategies

The two basic methods of search:



Search strategies

The two basic methods of search:

◮ Depth-first search (DFS) always expand nodes at a deeper
level of the tree whenever there is a choice.



Search strategies

The two basic methods of search:

◮ Depth-first search (DFS) always expand nodes at a deeper
level of the tree whenever there is a choice.

◮ Breadth-first search (BFS): always expand every node at the
present level of the tree before moving to any deeper level.



Search strategies

The two basic methods of search:

◮ Depth-first search (DFS) always expand nodes at a deeper
level of the tree whenever there is a choice.

◮ Breadth-first search (BFS): always expand every node at the
present level of the tree before moving to any deeper level.

DFS is a ‘maverick’. BFS is ‘conservative’.

The two strategies can be illustrated by showing how they generate
the search tree for the route-finding problem.



Breadth-first search from ‘Brussels’: step 1

London 

Paris 

Lyon 
Poitiers 

Cherbourg Brussels 

Geneva 

Milan 

Marseilles 

Bilbao 

Barcelona 

Hamburg 

Edinburgh 
Brussels 

CONNECTIONS BFS TREE



Step 2

London 

Paris 

Lyon 
Poitiers 

Cherbourg Brussels 

Geneva 

Milan 

Marseilles 

Bilbao 

Barcelona 

Hamburg 

Edinburgh 
Brussels 

Hamburg Paris 

CONNECTIONS BFS TREE

Geneva 



Step 3

London 

Paris 

Lyon 
Poitiers 

Cherbourg Brussels 

Geneva 

Milan 

Marseilles 

Bilbao 

Barcelona 

Hamburg 

Edinburgh 
Brussels 

Hamburg Paris 

Lyon Poitiers Cherbourg London Geneva 

CONNECTIONS BFS TREE

Geneva 



Step 4

London 

Paris 

Lyon 
Poitiers 

Cherbourg Brussels 

Geneva 

Milan 

Marseilles 

Bilbao 

Barcelona 

Hamburg 

Edinburgh 
Brussels 

Hamburg Paris 

Lyon Poitiers Cherbourg London Geneva 

Marseilles Bilbao Poitiers Geneva 

CONNECTIONS BFS TREE

Geneva 



Step 5

London 

Paris 

Lyon 
Poitiers 

Cherbourg Brussels 

Geneva 

Milan 

Marseilles 

Bilbao 

Barcelona 

Hamburg 

Edinburgh 
Brussels 

Hamburg Paris 

Lyon Poitiers Cherbourg London Geneva 

Marseilles Bilbao Poitiers Geneva 

CONNECTIONS BFS TREE

Geneva 



Depth-first search from ‘Brussels’: step 1

London

Paris

Lyon
Poitiers

Cherbourg Brussels

Geneva

Milan

Marseilles

Bilbao

Barcelona

Hamburg

Edinburgh
Brussels

CONNECTIONS



Step 2

London

Paris

Lyon
Poitiers

Cherbourg Brussels

Geneva

Milan

Marseilles

Bilbao

Barcelona

Hamburg

Edinburgh
Brussels

HamburgParis

CONNECTIONS DFS TREE

Geneva



Step 3

London

Paris

Lyon
Poitiers

Cherbourg Brussels

Geneva

Milan

Marseilles

Bilbao

Barcelona

Hamburg

Edinburgh
Brussels

HamburgParis

Lyon Poitiers CherbourgLondon

CONNECTIONS DFS TREE

Geneva



Step 4

London

Paris

Lyon
Poitiers

Cherbourg Brussels

Geneva

Milan

Marseilles

Bilbao

Barcelona

Hamburg

Edinburgh
Brussels

HamburgParis

Lyon Poitiers CherbourgLondon

MarseillesBilbao Poitiers Geneva

CONNECTIONS DFS TREE

Geneva



Step 5

London

Paris

Lyon
Poitiers

Cherbourg Brussels

Geneva

Milan

Marseilles

Bilbao

Barcelona

Hamburg

Edinburgh
Brussels

HamburgParis

Lyon Poitiers CherbourgLondon

MarseillesBilbao Poitiers Geneva

CONNECTIONS DFS TREE

Geneva



Node expansion



Node expansion

◮ To generate the nodes in a particular tree, we first generate a
node to represent the starting point. This is the start node.



Node expansion

◮ To generate the nodes in a particular tree, we first generate a
node to represent the starting point. This is the start node.

◮ We then work out the possible transitions from the start node,
creating one node for each point that can be reached. This is
expanding the start node.



Node expansion

◮ To generate the nodes in a particular tree, we first generate a
node to represent the starting point. This is the start node.

◮ We then work out the possible transitions from the start node,
creating one node for each point that can be reached. This is
expanding the start node.

◮ The new nodes are the children or successors of the original
or parent node.



Node expansion

◮ To generate the nodes in a particular tree, we first generate a
node to represent the starting point. This is the start node.

◮ We then work out the possible transitions from the start node,
creating one node for each point that can be reached. This is
expanding the start node.

◮ The new nodes are the children or successors of the original
or parent node.

◮ To continue the search we expand each of the children in
turn, creating more nodes at the next level down.



Node expansion

◮ To generate the nodes in a particular tree, we first generate a
node to represent the starting point. This is the start node.

◮ We then work out the possible transitions from the start node,
creating one node for each point that can be reached. This is
expanding the start node.

◮ The new nodes are the children or successors of the original
or parent node.

◮ To continue the search we expand each of the children in
turn, creating more nodes at the next level down.

◮ Nodes which cannot be expanded are terminal nodes or tip
nodes



Node expansion

◮ To generate the nodes in a particular tree, we first generate a
node to represent the starting point. This is the start node.

◮ We then work out the possible transitions from the start node,
creating one node for each point that can be reached. This is
expanding the start node.

◮ The new nodes are the children or successors of the original
or parent node.

◮ To continue the search we expand each of the children in
turn, creating more nodes at the next level down.

◮ Nodes which cannot be expanded are terminal nodes or tip
nodes

◮ The search tree may also be called the search space.



Node expansion

◮ To generate the nodes in a particular tree, we first generate a
node to represent the starting point. This is the start node.

◮ We then work out the possible transitions from the start node,
creating one node for each point that can be reached. This is
expanding the start node.

◮ The new nodes are the children or successors of the original
or parent node.

◮ To continue the search we expand each of the children in
turn, creating more nodes at the next level down.

◮ Nodes which cannot be expanded are terminal nodes or tip
nodes

◮ The search tree may also be called the search space.



Search completion

The process can end once it has achieved the desired result.

When a node is about to be expanded, a check should be made to
see if it is the node we’re searching for, i.e., if it’s a node
representing the goal location.

This is the target or goal node.

As soon as we identify the goal node, a solution to the problem
can be generated by listing out the sequence of nodes connecting
the start node to the goal node.

Any such sequence of nodes is a path.

A path connecting the start node to the goal node is a solution

path.



How much work is involved?

The number of nodes in a search tree multiplies with each new
level.

Even simple problems can create search trees which are extremely

large.

If we don’t want to waste a lot of time using trial-and-error, we
need a way of estimating how much work is going to be involved in
a particular search.



How much work is involved?

The number of nodes in a search tree multiplies with each new
level.

Even simple problems can create search trees which are extremely

large.

If we don’t want to waste a lot of time using trial-and-error, we
need a way of estimating how much work is going to be involved in
a particular search.

◮ We want to know how much time it’s going to take. This is
known as the time complexity of the process.



How much work is involved?

The number of nodes in a search tree multiplies with each new
level.

Even simple problems can create search trees which are extremely

large.

If we don’t want to waste a lot of time using trial-and-error, we
need a way of estimating how much work is going to be involved in
a particular search.

◮ We want to know how much time it’s going to take. This is
known as the time complexity of the process.

◮ We want to know how much memory it’s going to need. This
is known as the space complexity of the process.



How much work is involved?

The number of nodes in a search tree multiplies with each new
level.

Even simple problems can create search trees which are extremely

large.

If we don’t want to waste a lot of time using trial-and-error, we
need a way of estimating how much work is going to be involved in
a particular search.

◮ We want to know how much time it’s going to take. This is
known as the time complexity of the process.

◮ We want to know how much memory it’s going to need. This
is known as the space complexity of the process.



Branching factor

Time and space complexity are both proportional to the number of
nodes in the tree (although as we’ll see, space complexity is also
strongly affected by the strategy used).

To estimate this, we need to calculate the branching factor,
which is just the average number of children of each node.

Next we calculate the depth of the tree, i.e., the expected number
of levels.

To estimate the total number of nodes at a particular level, we then
raise the branching factor to the relevant degree, i.e., we calculate

bd

where b is the branching factor and d is the depth. This gives the
number of nodes at depth d.



Example

Say the branching factor is 3.

The number of states to be processed at level 1 is then 3.

The number to be processed at level 2 is 3 x 3, or

32

The number to be processed at level 3 is 3 x 3 x 3, or

33

And so on.



Time and space complexity

The number of nodes at the deepest level of search is a lower
bound on the total number of nodes.

For many purposes, deriving this value is sufficient to decide
whether or not search is a practical option.

If the expected depth is 8 and the branching factor is 5, a lower
bound on the total number of nodes in the space is

58

To estimate time complexity, we would multiply this by the time it
takes to check out a single node.

To estimate space complexity, we would multiply this by the
amount of memory it takes to represent a single node.

Again these values would in fact be lower bounds.



Summary



Summary

◮ The concept of search



Summary

◮ The concept of search

◮ Route finding



Summary

◮ The concept of search

◮ Route finding

◮ Tree-structure of possible action sequences



Summary

◮ The concept of search

◮ Route finding

◮ Tree-structure of possible action sequences

◮ Search by generation



Summary

◮ The concept of search

◮ Route finding

◮ Tree-structure of possible action sequences

◮ Search by generation

◮ Node expansion



Summary

◮ The concept of search

◮ Route finding

◮ Tree-structure of possible action sequences

◮ Search by generation

◮ Node expansion

◮ Search strategies (DFS v BFS)



Summary

◮ The concept of search

◮ Route finding

◮ Tree-structure of possible action sequences

◮ Search by generation

◮ Node expansion

◮ Search strategies (DFS v BFS)

◮ Branching factor



Summary

◮ The concept of search

◮ Route finding

◮ Tree-structure of possible action sequences

◮ Search by generation

◮ Node expansion

◮ Search strategies (DFS v BFS)

◮ Branching factor

◮ Time and space complexity



Summary

◮ The concept of search

◮ Route finding

◮ Tree-structure of possible action sequences

◮ Search by generation

◮ Node expansion

◮ Search strategies (DFS v BFS)

◮ Branching factor

◮ Time and space complexity



Questions



Questions

◮ Why do route-finding problems produce tree-structured
searches?



Questions

◮ Why do route-finding problems produce tree-structured
searches?

◮ A particular search tree has a branching factor of 2 and a
depth of 4. What is the total number of nodes?



Questions

◮ Why do route-finding problems produce tree-structured
searches?

◮ A particular search tree has a branching factor of 2 and a
depth of 4. What is the total number of nodes?

◮ What additional information is required in order to be able to
identify the space complexity of a search, other than the
branching factor and depth of the tree?



Questions

◮ Why do route-finding problems produce tree-structured
searches?

◮ A particular search tree has a branching factor of 2 and a
depth of 4. What is the total number of nodes?

◮ What additional information is required in order to be able to
identify the space complexity of a search, other than the
branching factor and depth of the tree?

◮ In what circumstances will the expansion of a search-tree node
produce no children?



Questions

◮ Why do route-finding problems produce tree-structured
searches?

◮ A particular search tree has a branching factor of 2 and a
depth of 4. What is the total number of nodes?

◮ What additional information is required in order to be able to
identify the space complexity of a search, other than the
branching factor and depth of the tree?

◮ In what circumstances will the expansion of a search-tree node
produce no children?

◮ AI is just one of several approaches which seek to replicate
intelligent behaviour. What is distinctive about it?



Questions

◮ Why do route-finding problems produce tree-structured
searches?

◮ A particular search tree has a branching factor of 2 and a
depth of 4. What is the total number of nodes?

◮ What additional information is required in order to be able to
identify the space complexity of a search, other than the
branching factor and depth of the tree?

◮ In what circumstances will the expansion of a search-tree node
produce no children?

◮ AI is just one of several approaches which seek to replicate
intelligent behaviour. What is distinctive about it?

◮ Why does AI tend to rely on search-based methods?



Questions

◮ Why do route-finding problems produce tree-structured
searches?

◮ A particular search tree has a branching factor of 2 and a
depth of 4. What is the total number of nodes?

◮ What additional information is required in order to be able to
identify the space complexity of a search, other than the
branching factor and depth of the tree?

◮ In what circumstances will the expansion of a search-tree node
produce no children?

◮ AI is just one of several approaches which seek to replicate
intelligent behaviour. What is distinctive about it?

◮ Why does AI tend to rely on search-based methods?



More questions



More questions

◮ Depth-first search and breadth-first search are the two basic
search methods. Which one will solve a route-finding problem
quickest?



More questions

◮ Depth-first search and breadth-first search are the two basic
search methods. Which one will solve a route-finding problem
quickest?

◮ What are the main components of a search tree?



More questions

◮ Depth-first search and breadth-first search are the two basic
search methods. Which one will solve a route-finding problem
quickest?

◮ What are the main components of a search tree?

◮ What information is needed (i.e., must be saved by the search
process) in order to be able to list a solution path?



More questions

◮ Depth-first search and breadth-first search are the two basic
search methods. Which one will solve a route-finding problem
quickest?

◮ What are the main components of a search tree?

◮ What information is needed (i.e., must be saved by the search
process) in order to be able to list a solution path?

◮ What degree of space complexity implies that a search is
intractible?



More questions

◮ Depth-first search and breadth-first search are the two basic
search methods. Which one will solve a route-finding problem
quickest?

◮ What are the main components of a search tree?

◮ What information is needed (i.e., must be saved by the search
process) in order to be able to list a solution path?

◮ What degree of space complexity implies that a search is
intractible?

◮ What degree of time complexity implies that a search is
intractible?



More questions

◮ Depth-first search and breadth-first search are the two basic
search methods. Which one will solve a route-finding problem
quickest?

◮ What are the main components of a search tree?

◮ What information is needed (i.e., must be saved by the search
process) in order to be able to list a solution path?

◮ What degree of space complexity implies that a search is
intractible?

◮ What degree of time complexity implies that a search is
intractible?

◮ Define what these terms mean in the context of search: node,
start node, goal node, children, depth, branching factor, path,
solution path.



More questions

◮ Depth-first search and breadth-first search are the two basic
search methods. Which one will solve a route-finding problem
quickest?

◮ What are the main components of a search tree?

◮ What information is needed (i.e., must be saved by the search
process) in order to be able to list a solution path?

◮ What degree of space complexity implies that a search is
intractible?

◮ What degree of time complexity implies that a search is
intractible?

◮ Define what these terms mean in the context of search: node,
start node, goal node, children, depth, branching factor, path,
solution path.



Exercises

KingAlfred

Waitrose

WestPier BrightonCentre

Lanes

StPeter

Steine

PalacePier Marina

Pavilion

Station

SevenDials

Churchill

Square

Clock

tower

Theatre

Hospital

This schematic map of Brighton shows bus routes between a
number of locations. A valid bus route is simply a connected
sequence of locations.



Exercises cont.



Exercises cont.

◮ Using the map, draw out the first four levels in the search tree
for bus routes starting from ‘Clocktower’.



Exercises cont.

◮ Using the map, draw out the first four levels in the search tree
for bus routes starting from ‘Clocktower’.

◮ Add numeric labels (1, 2, 3...) to the nodes in your search
tree to indicate the order in which they would be expanded in
a valid depth-first search.



Exercises cont.

◮ Using the map, draw out the first four levels in the search tree
for bus routes starting from ‘Clocktower’.

◮ Add numeric labels (1, 2, 3...) to the nodes in your search
tree to indicate the order in which they would be expanded in
a valid depth-first search.

◮ Add alphabetical labels (a, b, c...) to the nodes in your tree
to indicate the order in which they would be expanded in a
valid breadth-first search.



Exercises cont.

◮ Using the map, draw out the first four levels in the search tree
for bus routes starting from ‘Clocktower’.

◮ Add numeric labels (1, 2, 3...) to the nodes in your search
tree to indicate the order in which they would be expanded in
a valid depth-first search.

◮ Add alphabetical labels (a, b, c...) to the nodes in your tree
to indicate the order in which they would be expanded in a
valid breadth-first search.

◮ Identify the shortest route (i.e., the route with the smallest
number of legs) connecting WestPier with Steine.



Exercises cont.

◮ Using the map, draw out the first four levels in the search tree
for bus routes starting from ‘Clocktower’.

◮ Add numeric labels (1, 2, 3...) to the nodes in your search
tree to indicate the order in which they would be expanded in
a valid depth-first search.

◮ Add alphabetical labels (a, b, c...) to the nodes in your tree
to indicate the order in which they would be expanded in a
valid breadth-first search.

◮ Identify the shortest route (i.e., the route with the smallest
number of legs) connecting WestPier with Steine.

◮ In the worst case, how many nodes would a depth-first search
process expand in order to identify the shortest route between
Clocktower and StPeter.



Exercises cont.

◮ Using the map, draw out the first four levels in the search tree
for bus routes starting from ‘Clocktower’.

◮ Add numeric labels (1, 2, 3...) to the nodes in your search
tree to indicate the order in which they would be expanded in
a valid depth-first search.

◮ Add alphabetical labels (a, b, c...) to the nodes in your tree
to indicate the order in which they would be expanded in a
valid breadth-first search.

◮ Identify the shortest route (i.e., the route with the smallest
number of legs) connecting WestPier with Steine.

◮ In the worst case, how many nodes would a depth-first search
process expand in order to identify the shortest route between
Clocktower and StPeter.



Exercises cont.



Exercises cont.

◮ Estimate the branching factor for the search tree for this map,
stating any assumptions made.



Exercises cont.

◮ Estimate the branching factor for the search tree for this map,
stating any assumptions made.

◮ Using your estimate of branching factor, estimate the space
complexity of a breadth-first search carried out to a depth of
five levels.



Exercises cont.

◮ Estimate the branching factor for the search tree for this map,
stating any assumptions made.

◮ Using your estimate of branching factor, estimate the space
complexity of a breadth-first search carried out to a depth of
five levels.

◮ Using your estimate of branching factor, estimate the space
complexity of an exhaustive, loop-avoiding depth-first search
of this space, stating any assumptions made.



Exercises cont.

◮ Estimate the branching factor for the search tree for this map,
stating any assumptions made.

◮ Using your estimate of branching factor, estimate the space
complexity of a breadth-first search carried out to a depth of
five levels.

◮ Using your estimate of branching factor, estimate the space
complexity of an exhaustive, loop-avoiding depth-first search
of this space, stating any assumptions made.



Resources



Resources

◮ Russell and Norvig have a good section on basic search and
time and space complexity; see pp. 74-75



Resources

◮ Russell and Norvig have a good section on basic search and
time and space complexity; see pp. 74-75


