Seminar IV

The following exercises are concerned with the Propositional Calculus as a formal, deductive system. The following formalization (axioms and inference rules) is assumed:

Axiom Schemas:

S1
$(A \rightarrow (B \rightarrow A))$
S2
$((A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow
B) \rightarrow (A \rightarrow C)))$
S3
$(((\neg A) \rightarrow (\neg B)) \rightarrow (B \rightarrow
A))$

Inference Rule:

MP
From $A$ and $A \rightarrow B$, infer $B$

I. Decide whether or not the following sentences are axioms (i.e. instances of the axiom schemas given above):

  1. $(p \rightarrow (p \rightarrow p))$
  2. $(p \rightarrow (q \rightarrow r))$
  3. $((p \rightarrow ((\neg q) \rightarrow (\neg r))) \rightarrow ((p
\rightarrow (\neg q)) \rightarrow (p \rightarrow (\neg r))))$
  4. $(((\neg p) \rightarrow (\neg \neg p)) \rightarrow (p \rightarrow
(\neg p)))$

II. Justify the steps in the following proof that $(p \rightarrow
p)$ is deducible from $p$ (that is, $\{p\} \vdash (p \rightarrow p)$):


\begin{displaymath}
\begin{array}{lll}
(1) & p & \\
(2) & (p \rightarrow (p \rightarrow p)) & \\
(3) & (p \rightarrow p)
\end{array}\end{displaymath}

III. Construct proofs of the following:

  1. $\vdash (p \rightarrow (p \rightarrow p))$
  2. $\{p, (p \rightarrow q)\} \vdash q$
  3. $\{q\} \vdash (p \rightarrow q)$



Bill Keller
2000-01-21