Introduction to Logic 1

What is Logic?

Why Study Logic?

Object-language/Meta-language.

Propositions, Beliefs and Contradictions.

e Formalisation

What is Logic?
Logic is ...

e the study of the ... principles used to
distinguish good (correct) from bad
(incorrect) reasoning (Copi);

e the study, by symbolic means, of the exact
conditions under which patterns of argument

are valid or invalid (Lemmon);

e the study of formal (that is symbolic) systems
of reasoning and of methods of attaching
meaning to them (Reeves & Clarke).

— Abstract principle or patterns
— Distinguishing valid/invalid patterns
— Formalisation/abstraction

Patterns of Reasoning
e.g.
If Logic is fun, then Bill is happy.
Logic is fun.

(It follows that) Bill is happy.

If mungs are flit, then mizzles are gloggy
Mungs are flit.
(It follows that) mizzles are gloggy.

Question: Do the conclusions follow in the
above?

Questions: What is noticeable about these two
patterns?

Abstraction
if A then B ADB Premiss
A A Premiss
B B Conclusion

Question: What about the following pattern?
Does it fit; is it good?

If Logic is fun, then Bill is happy.
Programming is fun.

(It follows that) Bill is happy.

Why Study Logic?
A little history:

Aristotle (384-322 BC): first systematic
study of “patterns of reasoning”; development
of syllogistic reasoning.

Boole (1815-1864): develops algebraic system
of symbol manipulation now regarded as the
basis of propositional logic and computer
hardware.

Frege (1848-1925): studies the foundations of
mathematics with the objective of deriving all
mathematics from logical principles;
introduces a new notation and language
which provides the basis of modern logic (the
first order predicate calculus).

But why study logic as computer scientists?

Logic and Computer Science

e Foundational issues:

— there are intimate links between
computation and logic

e Analytic tool:
— use of logic as a tool for
formalizing /studying properties of programs.
e Hardware Design:
— conventional computer hardware is is based
on electronic devices called logic gates.
e Automated reasoning:
— mechanical generation of proofs: automated
theorem proving, artificial intelligence
— logic as a programming language (e.g.
Prolog)

Some Terminology

We will, in this course, be looking at
mathematical (formal/symbolic) logic.

In fact, we are using mathematical techniques to
study a branch of mathematics called ‘logic’

Question: does this make sense?
e It does, as long as we are careful.

o We use different languages to separate the
object of our study (i.e. logic) from the
means of our study.

e The former is called the object language; the
latter is called the meta-language.

Example
e “The expression ‘Karl ist krank’ is a
well-formed sentence of German”
Here, the object language is German, while
the meta-language is English.
e “r=0;is equivalent to x = 1;z =2z —1; in
Java”

In this case, the object language is
presumably Java, while the meta-language is
English again.

e “The sentence ‘John likes Mary’ is true”

Note that is this case the object language is
the same as the meta-language (i.e. English).

rropositions

Logic is is concerned with objects called
propositions and the relationships between them,
but what are propositions?

e Language can be used to express propositions:
Bill teaches Logic
Logic is taught by Bill
I teach Logic
— propositions communicate judgements or
beliefs about the world.

e Note that not all sentences express
propositions:
Who teaches Logic?
Teach Logic!!

— declarative sentences express
propositions

Simple test for declarative sentences:

“It is true that SENTENCE ”

Beliefs and Contradictions

e Qur beliefs provide our ‘world view’ or picture

They allow us to reason about the world, to
construct hypotheses and to draw conclusions

e Is there any restriction on the beliefs that we
may hold or entertain?
We cannot knowingly entertain,

simultaneously, contradictory beliefs:
“Bill teaches Logic/Bill does not teach Logic”
A fundamental task of logic is to be able to decide

whether or not a set of beliefs (propositions) is
contradictory.

Formalization

We are interested in a formal approach to the
study of logic. Actually, there are two different
senses of ‘formalization’ here:

1. The process of constructing an object
language and the rules needed to manipulate
sentences.

2. The provision of a means of manipulating
objects according to their form rather than
their content.

i.e. we can work without understanding
exactly what we are doing (there’s no need to
know what individual propositions mean or

what the manipulations achieve)!

Summary

e Logic is concerned with abstract principles of
reasoning and the notion of truth;

e Mathematical logic began at the turn of the
last century (Frege);

e Logic is an important area of study for

computer scientists;

e Logic deals with propositions, which express
beliefs;

e Sets of beliefs may be contradictory (we
would like to know when this is so);

e Formalization allows us to ‘mechanize’ the

process of reasoning.

Introduction to Logic 2

Last time:
e What is Logic and why study it?
e Object-language/Meta-language.
e Propositions, Beliefs and Contradictions.
e Formalization
This time:
e The Propositional Calculus.
e The Language of Propositional Logic.
e What does it all mean?

e Arguments

Introduction to the

Propositional Calculus

e The Propositional Calculus (PC) is a simple
language for expressing certain kinds of
propositions.

e Egssentially, it allows us to write down Boolean
combinations of simple declarative sentences.

For example:
e Logic is fun

e Logic is not fun

Bill teaches Logic and Logic is fun

Logic is fun or Bill is happy

e if Logic is fun, then Bill is happy

Connectives

e Statements are combined with words such as
not, and, or and if ..., then to build more

complex statements
— The words will be called the connectives
— The connectives are truth-functional
The statement
“It is raining and it is snowing”

is true if
— the statement “it is raining” is true; and
— the statement “it is snowing” is true
otherwise it is false.

e The truth-value of the whole can be

calculated once the truth-values of the parts
are known.

The Language of PC

e Rather than using the English connectives,
we will use the following symbols:

Symbol English Equivalent

- not

A and

\ or

— implies (if ... then ...)

> ... if and only if ...

e We will also require some further symbols:
— left and right parentheses: ‘(‘ and ‘)°
— a stock of propositional variables :
D,q, 7,8, ...
These symbols (connectives, propositional
variables, parentheses) form the alphabet of
our language.

The well-formed formulas (wifs) of the language
are strings (i.e. sequences) of symbols from the
alphabet.

Definition: (The language of the PC)

1. Any propositional variable is a wff;

2. If A and B are wffs, then so are:
o (~4)
e (ANB)
e (AV B)
e (A—~ B)
e (A+ B)

8. Nothing is a wff except in virtue of 1 and 2

abowve.

NB: I may also refer to a wif as a sentence or a
statement.

Which of these are wifs?

A Note about Brackets

In practice, we adopt conventions that permit
parentheses to be dropped where no confusion can
arise from doing so

Operator Precedence: — takes precedence over
A and V, so:

((=p)Ng@) =)
becomes

(=pAg) =)
and A and V in turn take precedence over —
and < so:

(kpAgq)—r)

becomes
(-pAg—r)
Outermost Parentheses: these can always be
dropped, so:
(~pAg—r)
becomes

pAq—r

What does it all mean?

e We have provided a definition of the wifs of
the PC.

— This tells us what form they take (their
syntazx)

— It does not tell us about their meaning
(their semantics)

e Questions:

— How do we assign meaning to the
sentences of the PC?

— What do we mean by ‘meaning’ anyway?

Meaning and Truth

e Sentences express propositions, and these
may be either true or false.

— we say that sentences denote truth-values

e We have already noted that the connectives
are truth-functional

— they allow us to calculate the meaning
(i.e. truth-value) of complex sentences as a
function of the meaning (i.e. truth-values)
of their parts.

Arguments

e Part of our motivation for introducing
Propositional Logic is to formalize and study
‘patterns of reasoning’ or arguments.

e We have seen some examples of arguments,
both ‘good’ and ‘bad’:
e.g.
If Logic is fun, then Bill is happy
Logic is fun

Therefore, Bill is happy

If Logic is fun, then Bill is happy
Programming is fun

Therefore, Bill is happy

e We can now ‘formalize’ these arguments (and
many others) in the sense of providing an
abstract representation of their structure.

e Consider the first argument given on the last
overhead. Let

p stand for ‘Logic is fun’
g stand for ’Bill is happy’
then, we can write:
(p—q)
p
q
e Or perhaps:

(=9 Ap)—q

Summary

e The Propositional Calculus (PC) is a simple
language for expressing propositions

e Sentences of the PC are built up from
propositional variables, connectives and

parentheses.
o Sentences of the PC are either true or false

o Connectives are truth-functional

o The PC allows us to formalize the structure

of arguments

e The formal representations are abstract.

Introduction to Logic 3

Last time:
e Introduction to the PC
e The Language of the PC
e Giving the language meaning
e Arguments
This time:
e Truth-values and the connectives
e Truth tables
e Tautologies and Inconsistencies

e Arguments revisited

Truth Tables and the

Connectives

e We said last time that sentences of the PC
express propositions and may be either true
or false. What exactly, are we assuming?

— there are only two truth values: true and
false

— sentences cannot be both true and
false simultaneously.

— sentences cannot be ‘undefined’ (i.e. there
are not truth-value ‘gaps’)

e These are fundamental assumptions of
‘classical’ logic

Questions: Could you have a non-classical logic?
What might that be like?

e The simplest sentence-types of our language
are the propositional variables:
p7 q7 ,r’ S’ e

e These are combined with the connectives to
build ‘complex’ or ‘compound’ sentences:

(p—=a)Ap)—4q
e Clearly, the truth-value of a compound
sentence depends on:
1. the truth-values of the propositional
variables that it contains;

2. the meaning (i.e. truth-functions) of the
connectives =, A, V, =, .

e For classical logic, this is all we need to know.
— We don’t need to know how the variables

got their values;

— We don’t need to know anything about
the meaning of sentences beyond their
truth-values.

e Analogy: (arithmetic)

— Suppose that variable x has value 3, y has
value 2 and z has value 5.

— Given that you know the meaning of +
and —, you can calculate the value of the
expression:

(z+y)—2z
— Thus: 3+2)—-5=5-5=0

Truth Tables

e The connectives of our language are
truth-functional

e The truth-functions that they correspond to
can be expressed conveniently in the form of

matrices:
t | f
flt
ANt f vV |t f
t t f t t ¢
f | f f f |t f
t f t f
t |t f t |t f
f |t t f|f ¢

Example

e Suppose that we want to determine the
truth-value of the sentence

p—q
given that p =t and ¢ = f{.
o We know the truth-function for —:

— |t q="1

p=t|t p—oqg=1
flt t
e So, in this case p — ¢ is false .
e Here’s the case when p =t and g = t:

— g=t f

p=t|p—=>qg=t f
f t t

e Note that the truth-value of a compound
sentence can vary according to (as a function
of!) the truth-values of its parts.

e Given a sentence of the PC, we can display
all of the different possible cases in the form
of a matrix or truth table:

eg. p—q

p—q

e = s =
G e -)
&+ ot o+

e Thus we see that p — ¢ is alway true ezcept
in case that p is true and q is false .

e Here’s a more complicated example:

(p—=a)Ap) —q

pla|l—=a) | P2 Ap | (P a)Ap)—4q
]t t t t
t | f f f t
£t t f t
£l f t f t

o We calculate the truth-value of the whole

expression ‘inside-out’.

e Each line of the table corresponds to one way
of assigning truth-values to the propositional
variables in the sentence

e a function from propositional variables to
truth-values is called a wvaluation.

Tautologies, Inconsistencies
and Equivalences

e A tautology is a sentence that is true in all
possible valuations.

e Consider the sentence p V —p:
p ‘ P ‘ pV-p
t f t
f t t

e We've already seen an example of a sentence
that is not a tautology:

p|lqg|p—gq
t]t t
t | f f
flt t
flf

e An inconsistency is a sentence that is
false in all possible valuations:

e Consider the sentence p A —p:
p ‘ —p ‘ pPA—D
t | f f
f1 ¢ f

Clearly, p A —p is inconsistent.

e A sentence is contingent if it is neither
tautologous nor inconsistent.

p|lqg|p—Qq
t]t t
t | f f
flt t
f1f

So, p — g is contingent.

e Two sentences A and B are said to be
equivalent if, for any given valuation, they
have exactly the same truth-value.

e Consider —pV g and p — ¢:

p| pVag|p

e e s =
[T s~ = S T
&+ o Hh R
R e
N I

e Note that the last two columns are identical,
row-by-row. So, —p V q is equivalent to p — ¢

e Question Suppose that A and B are

equivalent. What can you say about
(A+ B)?

Arguments Revisited

e We now have a way of distinguishing between
‘good’ (i.e. valid) and ‘bad’ (i.e. invalid)
arguments.

e Intuitively, an argument is valid if whenever
all of its premisses Py, P, ..., Py are true ,
then its conclusion C is also true .

e In other words, the sentence:

(P1 /\Pg/\...Pk) - C
is a tautology.

e So, to check whether an argument is valid we
can

— formalize the argument as a sentence of
the PC

— check whether the resulting sentence is a
tautology

Example

Lets return to the argument that we formalized in

the last lecture.

P, = If Logic is fun, then Bill is happy
P, = Logicis fun
C = Therefore, Bill is happy
So:
Pl N P2 - C
(=9 AN p — ¢
pla| =9 | =dAp | (P> ADP) —q
t |t t t t
t | f f t
f|t t f t
f|f t f t

Note that the final column contains only t. This
means that the sentence is a tautology, and hence

the argument is valid.

summary

Sentences of the PC can be either true or
false (but not both and they cannot be
undefined or have some other value).

The connectives correspond to truth-functions

Truth tables allow us to set out,
systematically, the way the truth-value of a
compound sentence varies according to the
truth-values of its simpler parts.

We can distinguish between sentences that
are true in all valuations (tautologies), and
false in all valuations (inconsistencies).

Two sentences are logically equivalent if they
have the same truth values in all possible
valuations

We can test the validity of arguments by
formalizing them as sentences of the PC and
then testing to see if they are tautologous.

Introduction to Logic 4

Last time:
e The meaning of the connectives
e Truth tables

e Tautologies, Inconsistencies and
Equivalences

e Arguments and validity
This time:

e Functional completeness

e The Sheffer Stroke

e Logical Equivalences

e Limitations of Truth Tables

Functional Completeness

Our definition of the PC includes the
connectives —, A, V, —, and <.

Our motivation for introducing these
connectives came from considering sentences
of English

Perhaps surprisingly, it turns out that it is
not necessary, strictly speaking, to have so

many connectives.

Proposition: We can express all of the

connectives in terms of negation (—) and
congunction (A).

Proof (sketch):

We can show that for any sentences A and B:

AVB = =(=AA-B)
A—B = -(AA-B)
A< B = —(AAN-B)A-(BA-A)

Proof continued:

o We can show logical equivalence using the
method of truth tables.

Consider: AV B = =(~AA-B):

A| B |-A|-B | AVB | “AA-B | ~(~AA-B)
tlt| f| 7 ¢ f ¢
AN EN ¢ f ¢
flrel t | f t f

flrfr]t]t f t f

e We can provide similar demonstrations for
the other connectives.

e There are other combinations of connectives
that are functionally complete in this
sense (e.g. = and V).

e It is even possible to find a single connective
that is functionally complete!

The Sheffer Stroke

e The Sheffer Stroke is a logical connective
written as | with the following meaning (i.e.
truth function):

BEEE:
t|f t
flt t

Proposition: All of the connectives introduced
as part of the language of the PC can be
expressed in terms of the single connective |.

Proof: We must show that any sentence of the
PC can be re-written as an equivalent
sentence involving involving only the
connective |.

Note: we can simplify the proof by noting that we
have already shown (in sketch) that the
connectives can be expressed in terms of — and A.

Proof continued:

There are two cases to consider:

1. —A is equivalent to A|A

A=Al Aa
e £ | f
f t t

2. A A B is equivalent to (A|B)|(A|B)

Al B|AAB| AB | (4B)|(AB)
t t t f t
¢ f § £
flt f t f
f | f f t f

The Sheffer Stroke is functionally complete. O

So What?

e It is interesting to observe that logically
speaking, the full set of connectives is not
necessary.

Question: Why is it that natural languages
such as English have so many connectives
when they could be more economical?

e The observation is also helpful when we want
to prove things about the PC itself.

— Note that this assumption helped to
shorten the proof that the Sheffer Stroke
was functionally complete.

— Many other facts about the PC can be
proved more easily using the same trick.

More on Logical Equivalence

e We have already noted that different
sentences of the PC can be logically
equivalent.

e For example, for any sentences A and B we
showed (last lecture) that
A—-B=-AVB

e Here are some further examples:

ANB = BAA
AVB = BVA

These are rather obvious. They show that A
and V are commutative operators.

AN(BAC) = (AAB)AC
AVv(BvC) = (AvB)vC

These equivalences show that A and V are
associative operators.

e More interesting are the following ‘laws’ of

distributivity:
ANBVC) = (AANB)V(AACQ)
AV(BAC) = (AVB)A(AVCO)

e The following equivalences are known as De
Morgan’s laws:

—|(A/\B) = —|A\/—|B
~(AVB) = -AA-B

e Aside: De Morgan (1806-1871) was a
pioneer of the algebraic approach to logic.

e Let us introduce explicit symbols to represent
inconsistency and tautology.

— | represents a proposition that is always
false (inconsistency).

— T represents a proposition that is always
true (tautology).
e It is not difficult to see that:
ANL
ANT =
AV L =
AVT =
AN-A =
Av-A

S I

T

e There are many other equivalences (See:
Kelly p.12 for a summary of some of the most
important)

e The various logical equivalences provide a
means of simplifying expressions.

e Consider for example:
A=)V (rAPAg)
We can simplify this as follows:
(pA=q)V(rA(pAg)
= (@A-qV((pAgAT) Commutativity
= (A9 V(A(GAT)) Associativity

= pA(nqV(gAT)) Distributivity
= pA((—qVq)A(—qVr)) Distributivity
= pA(TA(—qVr)) Tautology

= pA(—qVr) Identity of A

e Note that the final line is also equivalent to:

pA(g—r)

Limitations of the Method of
Truth Tables

e In principle, the method of truth tables can
be applied to answer questions about:

— the validity of arguments
— consistency and inconsistency
— logical equivalence

e There are practical limitations to this method
however.

You may have noticed the following:

e for a sentence with 1 propositional variable,
the truth table has two rows.

e for a sentence with 2 (distinct) propositional
variables, the truth table has four rows.

Question: In general, for a sentence with n
distinct propositional variables, how many rows
does its truth table have?

e To appreciate what this means in practice,
suppose that the sentence has 10 distinct
propositional variables.

e In this case, the truth table has 210 = 1024
rows. (That’s rather a lot for a person to

work out, but we’ve got fast computers,
right?)

e For a sentence with 50 distinct propositional

variables, the number of rows is:
250 = 1,125,899, 906, 842, 624

e Calculating the truth table at the rate of one
million rows per second, would still require
approximately 36 years to complete the
table.

Summary

e The stock of connectives we used to define the
language of the PC are not strictly necessary.

e It is possible to find smaller sets of
connectives that are functionally complete.

e The Sheffer Stroke is a single functionally

complete connective.

e Logical equivalences can be used to simplify
sentences of the PC.

e The method of truth tables has practical
limitations which restrict its usefulness.

Introduction to Logic 5

Last time:

Functional completeness

The Sheffer Stroke

Logical Equivalences and simplification

Practical limitations of truth tables.

This time:

e Valuations

Consistency /Inconsistency

The Entailment relation

Some Facts about entailment

Valuations

A valuation is really just a function that

assigns truth values to propositional variables.

— If we use {t, f} to model truth values; and

— Prop is the set of propositional variables,
then

— V: Prop — {t, f} is a valuation.

e It is useful to extend the notion of a valuation
to arbitrary sentences of the PC.

e Given a valuation V, we extend V' to a new
function V* that assigns truth-values to all
sentences of the PC (not just the
propositional variables).

o V*: PC — {t,f}
Note: The function V* is also called a

valuation (and confusingly, we may
sometimes just write it as V).

Consistency and Inconsistency

e The language of PC can be used to represent
sets of propositions.

e We may be interested in determining whether
it is possible for every proposition in a given
set to be true at the same time.

Consider for example the following set G:

G ={p,(-pV—q),(qd—p)}
Is there a valuation which makes every
sentence in G true?

Definition: A set G = {A1,As,..., Ay} of
sentences of the PC is said to be consistent
if there exists some valuation V' such that
V*(4;) =t for each sentences A; € G
(1 <i<k). Otherwise G is said to be
inconsistent.

Testing Consistency

e We can use the method of truth tables to test
whether a set of sentences is consistent.

Consider: {p,(—pV —q), (¢ = p)}

plqg|-p|—q|(=pV—q) | (¢g—Dp)

t |t | f | f f t

¢ £ f | ¢t t t <
flt| ¢t | f £ f

FLE] ¢ | ¢ t t

o Note that the second row of the truth table
has t in each column corresponding to one of
the sentences in the set

e The set of sentences is consistent for any
valuation V such that V(p) =t and V(q) = f

o Consider the set of sentences:

G={p,(p = q),q}

plag|—q| (@9
t|t| f t
t| £t f
flt] f t
£lf| ¢ t

e There is no row of the truth-table for which
each sentence in G has the value t.

o The set of sentences G is inconsistent

Entailment

e FEntailment is a relation that holds between a
set of sentences G and a sentence A.

e Entailment is a semantic relation:

i.e. it is defined with reference to the meaning
of the sentences involved.

e Entailment captures a notion of logical
consequence.

Definition: A set of sentences G semantically
entails a sentence A if and only if there is no
valuation that makes all of the sentences in G
true , but makes A false
— i.e. assuming the truth of all the sentences

in G has the consequence that A is true as
well.

e We will introduce some special notation to
stand for the entailment relation, and write:

GEA
to mean “G semantically entails A”.

e We can think of G |= A as formalizing the
notion that given the assumptions in G,
then the conclusion A is true , or A follows
from the assumptions.

Note:
e The symbol = does not belong to the
language of the PC.

e It belongs to our meta-language for
talking about a relation between sentences
and sets of sentences in our object
language (the PC).

Example

o Consider the set of sentences:

G ={p,(-pV—q), (¢~ p)}
Then we have:
GE—q
e To see this, note that (as we showed a little
earlier by the method of truth tables) any
valuation V' which makes each sentence in G
true is such that:

Vip) =t
Vig)=f£

e But if V(q) = f, then V*(—q) = t.

e So, assuming the truth of all the sentences in
G has the consequence that —q is true as
well.

Some Facts about Entailment

Fact 1:

For any set of sentences G, if A € G, then it
must be the case that:

GEA

e.g. if G = {(p A q), ~p}, then
G E (pha)

G E -p

But note that G |= A does not imply that
AcG.

Consider the previous example:

G={p,(-pV—q),(¢—p)}

and

G E —q

Fact 2: An inconsistency entails everything!

Consider a set of sentences G such that G is
inconsistent. It follows that:

GEA
for any sentence A

Proof: Let G be an inconsistent set of sentences
and A an arbitrary sentence. Suppose that A
is not entailed by G. From the definition of
entailment, there must exist a valuation that
makes every sentence in G true , but which
makes A false . But G is inconsistent, so no
such evaluation can exist. It follows that

GEA. O

Fact 3: Anything entails a tautology

Consider a tautology A. From the definition of
entailment it follows that

GEA
for any set of sentences G.

Proof: Let A be a tautology and G an arbitrary
set of sentences. Suppose that G does not
entail A. From the definition of entailment, it
follows that there must be a valuation which
makes every sentence in G true , but that
makes A false . But A is a tautology, so no
such valuation can exist. It follows that

GEA. O

Fact 4: Only a tautology follows from the
empty set

Consider the case when G is the empty set of
sentences {}. From the definition of entailment it
must be that:

if {} E A then A is a tautology

Proof: If G is the empty set, then there can be
no valuation that makes a sentence in G
false . In other words, every valuation makes
all of the sentences in G true . So, if G E A,
then from the definition of entailment, every
valuation must make A true as well. It
follows that A is a tautology. O

We write = A to mean {} = A.

Summary

A valuation is a function from propositional
variables to truth-values.

o A set of sentences is consistent if there exists
a valuation which makes each sentence in the
set true

e We can use the method of truth tables to
establish the consistency or inconsistency of
sets of sentences.

e Entailment is a semantic relation that holds
between sentences and sets of sentences.

e The entailment relation captures a notion of
logical consequence

Introduction to Logic 6

Last time:
e Valuations
e Consistency /Inconsistency
e The Entailment relation

e Some Facts about entailment

This time:
e Meaning and form
e Formal systems
e PC as a formal system
e Proof and Theorems
e Soundness and Completeness

Decidability

Meaning and Form

e We have introduced a simple language for
expressing propositions and sets of
propositions.

e We have studied this language from the point
of view of its meaning
ie.
— Sentences are taken to denote truth-values
— The connectives are truth-functions

— We have looked at how the truth-value of
a compound sentence is calculated from
the meaning of its parts

e By investigating the meaning of our language
we have found ways to:

— classify sentences as tautologous,
contingent or inconsistent

— decide whether simple arguments are valid
or not

— decide whether two sentences are logically
equivalent

— determine the consistency/inconsistency of
sets of sentences

— formalize a notion of logical consequence
between sentences and sets of sentences

(entailment)

— etc. etc. ...

e Studying a language from the point of view of
its meaning seems natural.

e It is not the only way to proceed however.

— We can examine the form of the sentences
in our language rather than the content

— We can provide rules for manipulating
sentences in a purely formal (i.e. symbolic,
syntactical) way.

— We can devise techniques for determining
consistency, inconsistency, equivalence,
validity, etc., etc., that do not depend on
meaning or truth.

e This all raises a couple of questions:

Question 1: Why study logic in this purely
formal way?

Answer: Formal techniques are often more
convenient, both for people and computers

o recall the limitations of the method of
truth tables that we uncovered

Question 2: If it’s all a matter of symbol
manipulation, without regard to meaning at
all, how do we know that it makes any sense?

Answer: Good question!

e Ultimately we have to demonstrate that
the formal rules are sensible (and this does
require reference to meaning and truth).

Logic as a Formal System
In general, a formal system is made up of

1. A language of some kind for making
statements (expressing propositions)

2. A designated set of sentences called axioms

3. A set of rules for generating new sentences
from old — the rules of inference.

In studying logic as a formal system we are
interested in the notion of formal deduction or
proof

e The axioms are sentences that we hold to be
true in virtue of their form.

e The rules of inference allow us to prove
theorems

e idea is that the formal notion of a theorem
should coincide exactly with our previous
semantic notion of a tautology.

Axiomatic Propositional Logic

e We can now view propositional logic as a
formal system.

e One way is the following:
1. The language of propositional logic

2. The following axiom schemas:
Al (A— (B — A))
A2 (A (B—-0C) = ((A—=>B)—=(4—-0)))
A3 (((-4) = (=B)) = (B = 4))

3. Modus Ponens:
from A and (A — B) infer B

Note:
e We have specified the axioms of the system
using three schemas

— Each schema must be instantiated to

provide an axiom
— There is an infinite number of
instantiations of each schema
e The axioms (axiom schemas) do not appear
very natural.
— it is hard to see where they come from
— it is also hard to see how they might be

used

e On the other hand, there is a single, and

reasonably intuitive rule of inference

Proofs and Theorems

e Our intention is to provide a formal definition
of our informal notion of proof.

e What is a proof?

— Informally, we might say that a proof is a
demonstration that some statement
follows from some set of statements

— A connected sequence of statements that
go together to establish a conclusion

e Informal forms of proof often leave much of
the structure or working implicit.

Note that this includes mathematical proofs.
While these are precise, many obvious steps
(obvious to mathematicians!) are typically
left out.

e To provide a formal notion of proof, we must
make everything explicit.

Soundness and Completeness

e Of course, in the end we must show that our

formal notion of proof makes sense.

e The formal notion of proof must be related
back to our notion of logical consequence (the
semantic relation =)

Soundness: If there is a proof of a statement A
(i.e. A is a theorem), then = A (i.e. Aisa
tautology).

Completeness: If = A (A is a tautology), then
it must be possible to prove that A (i.e. A is
a theorem).

e Only if our formal system is both sound and
complete can we regard it as adequate.

Note:

e Soundness and completeness is something
that we must prove about a formal system of
logic. We cannot just take it for granted.

— Proving that a formal system is sound is

generally quite straightforward.

— Proving completeness can be very tricky.

e Having said this, we will not actually attempt
to prove soundness and completeness for
axiomatic propositional logic.

e In fact, the system is both sound and
complete (see e.g. Kelly chapter 4, section 5
for proofs).

Decidability

e A further property of a formal system of logic
of interest to us is decidability.

e A formal system of logic is decidable if there
exists an effective procedure for
determining whether or not an arbitrary
statement A is a theorem; i.e.:

— If A is a theorem the procedure should
halt and answer yes

— If A is not a theorem the procedure should
halt and answer no

Proposition: Aziomatic propositional logic is
decidable.

Proof: (Sketch) A is a theorem if and only if it
is a tautology (soundness and completeness).

We can check whether A is a tautology in a
purely mechanical way (e.g. by constructing
its truth table). O

Summary

We can study logic according to the meaning

or content of statement.

An alternative is to examine the form of

statements.

A formal system of logic has axioms and

inference rules.

The aim is to formalize a notion of proof.

To be adequate, a formal system of logic must
be both sound and complete — axiomatic
propositional logic is adequate in this sense.

A wuseful property of a formal system of logic

is decidability — axiomatic propositional logic
is decidable.

Introduction to Logic 7

Last time:

e Meaning and Form

Formal Systems

PC as a Formal System
e Proof and Truth
Decidability

This time:
e PC as an Axiomatic System
Formal Proofs

The Deduction Relation

Deduction and Entailment

Propositional Logic as an

Axiomatic System
e The language of Propositional Logic

e The following axiom schemas:
S1: (A— (B — A))
S2: (A= (B—-C))—= (A= B)—=(A—-20)))
S3: (((=4) = (=B)) = (B — 4))

e The following rule of inference:

From A and (A — B) deduce B

e B is called a direct consequence of A and
(A— B)

e The rule is known as Modus Ponens (MP
for short)

e Note once again that the number of axioms is
infinite.

e There is an infinite number of instances of the
axiom schemas S1, 52 and S3.

Intuitively, and instance of an axiom is a sentence
of propositional logic formed by instantiating the
meta-language variables in a schema.

Example:
(A — (B — A)) — (schema S1)

can be instantiated as:

(= q) = ((—g) = (» —)
where:

A is instantiated as (p — q)

B is instantiated as (—q)

e Each instantiation of S1, S2 or S3 is an axiom
of the formal system of Propositional Logic.

e.g. The following sentences are all axioms:

Inst S1: (p — (¢ — p))

Inst S2: (p— (g —=7) = ((p—=q) = (p—7))
Inst S3: ((-p) = (=q)) = (¢ — p))
(pAg) = (r—(pA4)))
(

Inst S1:
: (=(pVvg) = -r) = (r—(pVa))

Inst S3

etc., etc. ...

Formal Proofs and Theorems

e We are interested in formalizing the notion of
proof

e We can now define a notion of proof within a
formal system as follows:

Defintion: (Proof) A proof in a formal system is
a sequence of sentences

AlaA2a"'aAn

where each A; (1 < ¢ < n) is either:
1. an aziom; or

2. a direct consequence of two earlier
sentences A; and Ay (j, k < 17)

Definition: (Theorem) If a sequence of sentences
Aq, Ay, ... A, is a proof in a formal system,
then the sentence A,, is called a theorem of
that system.

Example:

e Proof that (p — p) is a theorem of the formal
system of propositional logic.

1) ((p—= ((p—p)—=p) = ((p—(P—p))—(P—p)))

~ Tnst S2
2) (p— ((p—p)—p) — Inst S1
B)((p—=>(@—=p)—>@®—p) ~MPon(l) & (2)
(4) (p— (—p) ~ Tnst S1
(5) (p = p) ~MP on (3) & (4)

e So (p — p) is a theorem.

Note:

e Proofs give us a way of generating new
theorems from a given stock of ‘old’ theorems
(i.e. the axioms).

e In general, if
Ay, Agy . Apq, Ay
is a proof, then so is
Ay, Ag, . A

Question: Why and what does this imply about
An_1?

Deduction

e We may be interested in finding out what
follows from an arbitrary stock of sentences
(i.e. not just from the axioms).

e We formalize a notion of a deduction (in a
formal system) as follows:

Definition: (Deduction) Let G be an arbitrary
set of sentences. A sequence of sentences

A1, Az, ..., A,

is a deduction from G if each sentence A;
(1 <i < n) is either:

1. an aziom; or

2. a sentence in G; or

3. a direct consequence from two earlier
members of the sequence

Note:

1. a deduction from a set G is just like a proof,
except that the members of the sequence
Ay, Ay, ..., A, can also be drawn from G.

e The elements of G are like temporary

axioms.

2. Also, if a sequence of sentences:
A, Ay LA,

is a deduction from a set GG, then the sentence
A, will not, in general, be a theorem.

e We say that A, is deducible from G and
this is written:

GF A,

Question: What can we say about A,, if G is the
empty set?

Example
e We shall show that:

{p@g—=>@—r)}E(@—r)

1)p — Assumption
2) (g—=@—r1) — Assumption
(3) (p— (a—p)) — Inst S1
(4) (¢ —p) MP on (1) & (3)

(5)((@=@—7) = ((g—p) > (g—r)) —Inst S2
(6) ((@—=p)—>(a—1)) —MP on (2) & (5)
(M) (@—r) ~ MP on (4) & (6)

So: (g —) is deducible from {p, (¢ > (p — 7))}

Deduction and Entailment

e You may have observed some similarities
between notion of the deduction relation ()
and the notion of entailment (}=).

— both relations are defined to hold between
a set of sentences G and a sentence A;

— both attempt to capture a notion of
‘consequence’
e We may suspect that the two relations will
actually turn out to be identical.

ie.

GEAifandonlyif GF A

Summary

e Propositional logic can be formalized as an

axiomatic system.

e We can define a notion of formal proof within
such a system.

e Proofs establish that certain sentences are
theorems of the system.

e More generally, we have the notion of a
deduction from a set of statements or

assumptions.

e Deduction captures the idea of a statement
being consequent on some set of assumptions.

e Deduction and entailment have striking
similarities, even though they are defined in
very different ways.

Introduction to Logic 8

Last time:
e PC as an Axiomatic System
Formal Proofs

The Deduction Relation

Deduction and Entailment

This time:

Consistency and Inconsistency

Semantic Tableau

The Tableaux Technique

Tableaux Derivation Rules

Consistency and Inconsistency

e Recall that a set of sentences G is consistent
if there is at least one valuation that makes
every sentence in G true (and otherwise G is
inconsistent).

e We can test consistency/inconsistency using
the method of truth tables:

e.g.

G={leNq), ([~ 9}

pla| ®Ag | ~q| (p——q)
|t t f f
t | f t t
£t f f t
£l f f t t

Thus G is inconsistent!

Semantic Tableaux

e There are more effective ways of testing for
consistency /inconsistency.

e The method of semantic tableaux provides a
means of testing inconsistency of sets of

sentences.

e Semantic tableaux are more expressive and in

some ways easier to use than truth tables

e Can also be used to test entailement :
Is it the case that G |= A ?

e Based on the idea of generating descriptions
of situations.

411C 1aplCcaux 1c€0iniguc

o Consider a set of sentences G.

— We can think of G as describing different
possible situations....

—those situations which make every
sentence of G true.

i.e.

{(it is cloudy V it is sunny), Bill is happy}

AN

Situation 1 Situation 2

NPV

3

e Semantic tableaux provide a systematic
method for finding what possible situations
are described by a set of sentences G.

— We use G to produce new descriptions of
the situations....

—the new descriptions are obtained by
simplifying the complex sentences in G.

e.g.

{ (it is cloudy V it is sunny), Bill is happy}

Description 1 Description 2

{it is cloudy, Bill is happy} {it is sunny, Bill is happy}

Tableaux and Inconsistency

e The tableaux method has various tableaux
derivation rules that allow us to construct
a ‘picture’ of all the different possible
descriptions.

e This picture is a tree diagram (the tableau).

e.g.

(it is cloudy V it is sunny)
Bill is happy

/N

it is cloudy it is sunny

e This tableau has two branches, where each
branch represents a situation.

e Sometimes, branches fail to represent a

possible situation.
e.g.

(it is cloudy V it is sunny)
-t 48 sunny

/N

it is cloudy it 1is sunny

e This tableau has two branches.

— One branch fails to describe a situation —

it contains inconsistent information.

— The branch is said to be closed

e We write a line under the branch to show
that it is closed.

e In general, whenever a branch contains a

statement A and a statement —A, then it

contains inconsistent information, and is said

to be closed.

o Closed branches are not extended further.

e If all the branches of a tableau are closed,

then we have shown that the set of

statements we started from is inconsistent.

e.g.
(it is cloudy V it is sunny)

(=it is cloudy A =it is sunny)

=it 45 cloudy
-4t 18 sunny

it 1is cloudy it is sunny

A CAJiUvVvAAUAA Avaaiuw

Example
e Is the set

{-=(pA=q),(g—7),(pA—r)}

consistent or inconsistent?

1.
=(p A —q)

(@—r)

(pA)

=(p A—q)
(g—r)
(pA)

/N

||A
A
(AA B) ~(AAB)
A -A -B
B
(AV B) ~(AV B)
A B -A
-B
(A— B) -(A — B)
-A B A
-B
(A <~ B) —(A < B)
A -A A —-A
B -B -B B
(q—r)
(pA-r)
b p
r -r
(@—r)
(pA-r)
p p
-r -r

J
S
3

e Each branch or the tableau is closed.

e Because each branch of the tableau closed, we

say that the tableau s closed.

e This means that every branch of the tableau

contains contradictory information.

— we cannot find a valuation that will make
every sentence on a given branch true.

— there is no valuation that makes every
sentence in the original set true.

o It follows that the set

{_'(p A _‘Q)7 (q — 7’), (p A —|’I“)}

is inconsistent.

Summary

e Semantic tableaux provide a technique for
testing consistency/inconsistency of sets of

sentences

e Tableaux are more expressive, and easier to
use than truth tables

e The method is based on the idea of
simplifying descriptions/sentences and
looking for contradictions.

e The tableaux derivation rules allow us to
grow a tree diagram representing possible

situations.

e In contrast to the axiomatic system of
propositional logic, the tableaux proof
method is simple and straightforward to use.

Introduction to Logic 9

Last time:
e Consistency and Inconsistency
e Semantic Tableaux
e The Tableaux Technique

e Tableaux Derivation Rules

This time:

e Tableaux Examples

Satisfying Valuations

Justification for the Tableaux Rules

Inconsistency and Entailment

e Bacon and Hamlet (Again)

Semantic Tableaux Examples
e Semantic Tableaux enable us to check
consistency /inconsistency of sets of sentences.
e.g.
G={lpNqg),(p——a)}

e Construct a tableau as follows:

(pNq)
(p— —q)
VN
—p —q
p q

e Both branches are closed, so G is inconsistent!

e The method typically requires less effort than
the method of truthtables (see start of last

lecture for comparison).

e Is the following set of sentences inconsistent?

G={p—q),(V-9}

o Construct a tableau as follows:

(p—q)
(pV —q)
/\
-p q
VA NEVZAN
p ~q p —q

e The tableau is ‘finished’, but it is not closed.

e Two branches remain open: the set G is
consistent.

Definition: Let G be a set of sentences and V' a
valuation. We say that V satisfies G if and
only if V' makes every sentence in the set G
true.

e We may want to know what valuations satisfy
a consistent set G.

e This information can be found from a tableau
for G. For example:

(p—q)

P 2 [—
Question: What can we say about
valuations that satisfy this set?

Justifying Tableaux Rules
e We can view the tableaux rules syntactically.

e We can also view them semantically.
i.e. we can interpret the rules and show that
they are sensible.

e Tableaux rules can be justified/motivated
straightforwardly by considering truth tables.
e.g.

A| B | (AVB)
(AV B)
/\ t t t
A B t f t
f t t
f f f

e Note that there are just two sorts of
‘situations’ in which (A V B) is true:

1. situations where A is true

2. situations where B is true

e Consider now the tableau rule for =(A A B):

-(A A B)

AN

-A -B
e Recall the following equivalence:
-~(AAB)=(-AV-B)

(this is one of De Morgan’s equivalences — see
lecture 4).

e So, using the tableau rule for disjunction, we
can justify the rule by noting that:

(~AV -B)

AN

-A -B

Similarly, we can justify the rule for (A — B):

(A— B)

/N

-A B

In this case we can make use of the following
logical equivalence:

(A— B)=(-AV B)
(easy to check with truthtables; also given in

lecture 4.)

We can provide a justification for each of the
derivation rules of the semantic tableaux
method.

This effectively shows that the method is
sound

Inconsistency and Entailment

e The tableaux method allows us to test
consistency /inconsistency of sets of sentences

e This may seem rather limiting, but it was
claimed in the previous lecture that the
method can also be used for testing

entailment.

Question: how do we use semantic tableaux to
test for entailment?

The answer to this can be found in the definition
of entailment.
e Recall the definition:

G E A if and only if every valuation
that makes each sentence in G
true also makes A true .

e or to put it another (and equivalent) way.....

G = A if and only if every valuation
that makes each sentence in G
true also makes —A false .
and what this comes down to is...
G = A if and only if the set of

sentences G U {—A} is inconsistent.

But we can use semantic tableaux to test

consistency/inconsistency.

So we can use semantic tableaux to test
entailment.

To test whether G = A, we:

1. form the set G U {—A}; and

2. use tableaux to determine if the set is
inconsistent (entailment holds) or
consistent (entailment does not hold).

Example (Bacon and Hamlet (Again))
e Consider the following argument:

If Bacon wrote Hamlet, then Bacon was a
great writer. But Bacon did not write
Hamlet. So Bacon was not a great writer.

e We can formalize the premisses and the
conclusion of the argument as follows:

Premise 1 (p — q)

Premise 2 -p

Conclusion —gq

e Moreover, this argument will be correct (valid,
sound) just in case the following entailment holds:

{lp—q),-p} = —q

e We will test this entailment using the semantic
tableaux method.

® 10 test whether

{lp—q),-p} = —q

we test consistency of the set:

{(p = @), ~p,—~q}
e Applying the tableau method yields:

(»—q)
-p
—|ﬂq
-p q
q

e The tableau is ‘finished’, but not closed.

o It follows that the set is consistent ... so
entailment does not hold ... and the
argument is not valid.

Summary

e Semantic tableaux provide a convenient and
systematic technique for testing
consistency /inconsistency of sets of sentences

e Tableaux can be used to find the valuations
that satisfy a set of statements.

e Tableax derivation rules can be given a
semantic justification

e There is a close connection between the
notions of inconsistency and entailment.

e This provides the basis for testing entailment
using the method of semantic tableaux.

Introduction to Logic 10

Last time:
e Tableaux and Valuations
o Justifying the Tableaux Rules
e Inconsistency and Entailment

e Testing Validity of Arguments

This time:
e Un-natural Deduction
e Natural Deduction
e Introduction Rules

e Examples

Un-natural Deduction
e We have seen how logic can be viewed as a
formal system of deduction consisting of:
1. a language for expressing propositions;
2. a set of azioms;
3. a set of rules of inference

e We can furnish a precise definition of the
notion of a proof (in a formal system):

Defintion: (Proof) A proof in a formal system is
a sequence of sentences

A1, Ag, .. A,

where each A; (1 <i < n) is either:
1. an aziom; or

2. a direct consequence of two earlier
sentences A; and Ay, (j, k < 17)

For example, in Lectures 6 and 7 we saw how the
Propositional Calculus could be formalized as an

axiomatic system.

e This systems had three axiom schemas and a
single rule of inference (Modus Ponens);

e We have noted that proofs constructed within
this system are not particularly ‘natural’:
— They are hard to construct;
— The use of axioms is not intuitive

— The individual proof steps do not appear
to correspond to steps in ‘informal’ proofs

or argumentation;

Is it possible to formulate some system of
deduction that is more ‘natural’ than this?

e The method of Semantic Tableaux has some

merit:

— it is easier to use than the axiomatic
systems (i.e. constructing tableaux is a
relatively straightforward, rule-governed
process);

— the tableaux derivation rules have a
straightforward semantic interpretation;

e In other ways however, the method is not as
‘natural’ as we might like:
— the use of tableaux to establish
inconsistency is not particularly intuitive;

— the individual derivation rules do not
correspond well to steps in informal proofs

or reasoning.

Natural Deduction

e People seem to use a variety of methods for
constructing informal arguments or proofs in

natural language.

e Even mathematicians do not generally
proceed from axiom systems of the kind we
have seen for the Propositional Calculus.

e Informal proofs exhibit ‘patterns of reasoning’
like the following:

if Logic is fun, then Bill is happy

Logic is fun

Bill s happy

e This instance of Modus Ponens seem quite

natural.

Could we formulate a system of deduction based
entirely on ‘natural laws’ such as the above?

e The new formal system of Natural Deduction
will consist of the following components:

1. The language of Propositional Logic
2. Various rules of inference:

— Introduction rules;
— Elimination rules;

e Note that in constrast to the axiomatic
system that we saw earlier, this formal
system has no axioms.

e Also, rather than a single rule of inference
(Modus Ponens) it has many such rules.

e The natural deduction rules are intended to
express frequently used patterns of reasoning.

e The rules come in two varieties:

— rules that produce complex statements
from smaller statements by introducing
connectives; and

— rules that produce simpler statements
from complex statements by eliminating
connectives.

Introduction Rules

e The introduction rules are so-called because
they are used to introduce connectives.

Conjunction Introduction (AI)

e This rule captures the following informal
‘pattern of reasoning’:

If you know that A is true and that B is
true , then it is valid to conclude that
(A A B) is true .

e In the system of Natural Deduction, this rule is
represented diagrammatically as follows:

A B

anp M

e The rule has two premisses A and B, and
produces a conclusion (A A B), that has A as its

principal connective.

Disjunction Introduction (VI)

e This rule corresponds to the following informal
pattern of reasoning:

If you know that A is true , then you can
conclue that (AV B) is true (for any
sentence B).

e This rule of disjunction introduction actually
corresponds to two rules of inference in the
system of Natural Deduction:

A B
ave V! ave V!

e The introduction rules for the connectives A
and V may seem rather trivial.

e a more interesting rule is Implication
Introduction: the so-called Method of
Conditional Proof.

Implication Introduction (— I):

e This is a method for introducing the conditional

or implication connective —.

e the method of conditional proof corresponds to
the following line of argumentation:

Under the assumption that statement A is
true , it is possible to reason to the
conclusion that statement B is true .

As the conclusion B rests on the

assumption A, it is valid to conclude that
(A — B) is true .

e It is a little harder to represent this rule
diagrammatically

e The rule of implication introduction does
not correspond neatly to a single proof step.

e The reasoning in conditional proof concerns the
overall structure of (part of) a proof.

e Implication introduction (— I) is represented as

follows:
4
B
=y
Note:

e The intermediate conclusion B rests on the
assumption A. However, the final conclusion
(A — B) does not rest on A!

e The assumption A must be cancelled or
discharged once we draw the final conclusion
(A — B).

e We cross out the assumption (4) to remind
ourselves that (A — B) does not depend on
A.

v ovyL ULUW Uavi 1ulvo 1Vl 1iivivuullils vilv

connectives A, V and —.

e Note that we have not provided introduction
rules for — and <»:

— treatment of — will be deferred until next
lecture;

— we will not consider < since, e.g.,
(A<+B)=(A—B)AN(B— A)
e The final rule included here is simply called L
(falsum).
Falsum (1):
e In essense this rule states:

Anything follows from falsum (i.e. from
an absurdity or contradiction,).

e The rule is notated as:

Ly

A

Example

e Using just the introduction rules of the system
of natural deduction, we will show that:

Fp— (V)
e The proof proceeds as follows:

Y
(pVa)
(p— (pVa)

VI
—1

e Note that the assumption p has been cancelled.

e Thus the conclusion (p — (pV ¢)) does not rest

on any assumptions.

e This means that (p — (p V q)) is a theorem.

Example
e We will show that

{p}E(r—=((pVagArT))

e The proof proceeds as follows:

D
wvo "y

(Vg Ar)
(r—=((pVvag) Ar))

e Note that in this case, only the assumption r
has been cancelled.

e The proof still contains an undischarged
assumption p.

e This means that the final statement rests on the
assumption p (though not on 7).

Summary

e The axiomatic system of Propositional Logic
is not particularly intuitive or ‘natural’

e The method of Semantic Tableaux is more
easy to apply, but does not correspond well
with informal methods of proof or
argumentation

e The System of Natural Deduction is an
attempt to formalize reasoning in a way that
captures commonly used ‘patterms of
reasoning’.

— There are no axioms...

— ...but many rules of inference

e The inference rules fall into two groups:
Introduction Rules and Elimination Rules.

Introduction to Logic 11

Last time:
e Un-natural Deduction
e Natural Deduction
e Introduction Rules

e Examples

This time:
e Natural Deduction Proof Rules
e Introduction Rules
e Elimination Rules

e Proof by Contradiction

Natural Deduction Proof
Rules

e The system of Natural Deduction is a proof
method that has some advantages over the
axiomatic system and the tableaux method
for propositional logic.

— proofs are relatively easy to construct;

— the proofs that result consist of a fairly
natural sequence of steps

e The Natural Deduction inference rules
attempt to capture frequently used patterns
of reasoning or ‘logical laws’.

e Broadly, the rules fall into two groups:

1. Introduction Rules: i.e. rules that
introduce connectives;

2. Elimination Rules: i.e. rules that

eliminate connectives.

Introduction Rules

A B
anrp M
A B
avp Yt avp V!
4
B
4-np) 1
L
A
Note:
(A B) = ((A— B)A(B— A)

-4 = (A— 1)

Elimination Rules

e Let us consider now the rules for eliminating
connectives.

Conjunction Elimination (A E):
e Consider the following pattern of reasoning;:

Suppose that you know that (A A B) is
true , then it is safe to infer that A (or

B) must be true.

e Expressing this is the notation of the system of
Natural Deduction, gives the following two rules

of inference:

(AJ/;B) B (AgB)

Implication Elimination (— E):
o Consider the following pattern of reasoning

Suppose you know that (A — B) is
true and also that A is true . In this
case, it is safe to infer that B is true .

e In the system of natural deduction, this may be
notated as:

(A—>B) A

B —E

Question: Where have we seen this rule before?
Example: {(p > q),(@ >)} (p)

(p—q) p
q 2 E (g0
_>

.
(p—r) -1

Ao juUuLnivuiviL u11111111au1u11\ v J_J}

e The rule for eliminating a disjunction (V) is a
little trickier to understand.

Suppose you know that (AV B) is

true . Suppose also that from the
assumption that A is true you can
reach a conclusion that C is true ; and
from the assumption that B is true ,
you can reach that same conclusion,
that C is true

In this case, it is safe to infer that C is
true .

e The rule is essentially that of analysis by
cases:
— whichever case we consider (A or B) we
can show that C must be true ;
— so we can conclude that C follows from
(AV B)
e Like implication introduction, this rule is not
straightforward to represent.

e Diagrammatically, the rule of Disjunction
Elimination appears as follows:

A B

(AVB) C C
C

VE

e Here is an example of its use:

(p?q) N
(pAg)Ve (V9 v (rVaq)
(pVa)

VI
VE

e So:

{{pA) Vel (Va)

Proof By Contradiction

(reductio ad absurdum)

e We now have introduction and elimination
rules for each of the binary connectives: A, V
and —.

e We have not yet considered negation: —.

e Consider the following method of reasoning;:

Suppose that we wish to prove that
some statement A holds. Assume
rather that —A holds. If we can now
show that this assumption leads to a
contradiction, then it is safe to
conclude that —=A cannot hold. In other
words, A must hold.

e This proof method is know as Proof by
Contradiction, or reductio ad absurdum
(RAA).

e As a diagram, this proof rule RAA may be
represented as follows:

-A

€L

A RAA

e The following example illustrates the use of
RAA. We show:

{=(-pVa)}tp

—p
— VI
(-pVaq) =(-pVaq)
1L
? RAA

—F

e NB: This proof also makes use of the fact
that in this system, —A is simply an
abbreviation for (A — 1).

Hilimination hvules

(AnB) (AAB)

(A—-B) A
——p—— o E

(AVB) C C

VE

Example
e We show that

F(pV-p)

e The proof proceeds as follows:

—p)
(pV-p) " —(p ¥-p)
1 — F
7 RAA
— VI)
(pV —p) —(p }—p)®
1 —
(pV -p) rAd
Remarks

e There are just two assumption introduced in
this proof

e In the end, the proof is perhaps not quite as
‘natural’ as we would like!

1
— RAA
Summary

The system of Natural Deduction has
introduction and elimination rules for

connectives.

Elimination rules for conjunction and
implication are straightforward. Implication
elimination, in particular, is familiar as the

rule Modus Ponens.

The elimination rule for disjunction
corresponds to a method of ‘reasoning by

cases’

The system also has a rule formalizing the
famous proof by contradiction or reductio ad
absurdum.

Introduction to Logic 12

Last time:
e Natural Deduction Proof Rules
e Introduction Rules
e Elimination Rules

e Proof by Contradiction

This time:
e Propositional Logic
e Limitations of Propositional Logic
e The Structure of Propositions

e A New Logical Notation

Propositional Logic
(The story so far)

e We have introduced the language of
propositional logic as a means of representing
propositions and arguments.

e.g.
If £ > 3, then y < 4. Buty £ 4, so
x # 3.

e This can be represented as:

((p—q) A=g) = —p

where:
p stands for ‘x > 3’; and
q stands for ‘y < 4’

e We have provided a precise notion of meaning
for statements of propositional logic:

pla|-p|=q|p—=q|(p=Aq|((p—a)A=q)——p
bt | f]f] ¢ f t
t | f|f|t] f f t
fle 6| f] ¢t f t
FlEl 6|t ¢ t t

e This allows us to distinguish between
statements that are tautologies,
contingencies and inconsistencies.

e We can also use truth-tables to determine
whether arguments are valid /invalid.

e.g.

(p—aq) AN—=q) = —p

This is a tautology, so the argument is valid.

e The relation of semantic entailment (=)
captures a notion of logical consequence
between propositions.

e.g.

{(p—a),~a} E-»
The statement —p is a consequence of
the set of statements {(p — q), ~q}

i.e. Any valuation that makes both p — ¢ and
—q true , also makes —p true .

p|q|7p|l7qip—Qq
t|t|f]f t
t | £ f|t f
fle|t]|f t
flf|t]|t t

e We have looked at purely formal techniques
for ‘calculating’ with (sets of) statements.

— The classical axiomatic presentation —
logic as a formal, deductive system;

— The method of Semantic Tableaux;

— The system of Natural Deduction.

Example (Tableaux Method)

{lp—>4q),~q} =-p

(»p—q)
-q
—|—|p

AN

e Tableaux is closed, so entailment holds.

Example (Natural Deduction)
{(p—q),—g} F-p
4)
poa b,

q -q
1
=p RAA

— F

e The relation - captures a notion of deduction
or proof.

e It is the syntactic (formal) counterpart of the
semantic relation |=.

e Consequently, we should expect that:

GEAifand onlyif G- A

Limitations of the

Propositional Calculus

e Consider the following argument:

All lecturers are happy.
Bill is a lecturer
So, Bill is happy.

Question: Is the reasoning here sound (i.e. does
the conclusion follow from the premises)?

Question: How might the argument be
represented in propositional logic?

e testing validity using a semantic tableau

(pAq)—r

e The tableaux for —((p A ¢) — r) does not
close.

e That means that (p A q) — r is not a
tautology.

e That in turn means that the argument is not
valid!

The Structure of Propositions

e Consider the argument again:

All lecturers are happy.
Bill is a lecturer
So, Bill is happy.

e Insight: We need some way of representing

the structure of the elementary propositions.
e Propositions involve:

— named individuals that the propositions

are ‘about’:
e.g. Bill, Brighton, Logic,...
— properties of these individuals:
e.g. is_happy, is_a_city, is_a_lecturer,
— relations between individuals:

e.g. teaches, lives_in,....

Question: Is there anything else involved?

e Consider the premise

Bill is a lecturer

e This statement:
1. expresses a proposition ‘about’ the
individual Bill’; and
2. asserts that the individual has the
property is_a_lecturer
e Rather than use a simple propositional
variable (p say), we might represent this by:
b has the property L

In fact, we are going to write:

L(b)
where:
— b stands for the individual called “Bill”;
and

— L stands for the property expressed by
“is_a_lecturer ™.

o Likewise, we might represent the conclusion
of the argument

Bill is happy

as follows:
H(b)

e But what about the first premise?
All lecturers are happy
e Note that:
— this is a generalization;

— it is not about a particular individual, but
a whole group.

How can we represent general statements of this
kind?

Paraphrasing a little:

For all individuals, if he/she is a
lecturer, then he/she is happy

Or perhaps:
For all x, if x is a lecturer, then x is
happy.

This might be written more succinctly as:
For all z, (L(z) — H(x))
In fact, we are going to write:

Vz.(L(z) — H(z))

e Here, the symbol V is know as the universal
quantifier and can be read as ”for all”.

e So now the whole argument can be notated:

Vz.(L(z) — H(x))
L(b)
H(b)

e The notation introduced informally here is
the First Order Predicate Calculus
(FOPC).

e Predicate Logic is more expressive than
simple Propositional Logic.

e We will explore this new logic in the

remainder of this course.

Summary

Propositional logic allows us to represent
simple propositions/arguments.

We have explored the language from the

point of view of its meaning and form.

Propositional logic has limitations — there are
some valid arguments that we cannot

represent.

There is more to the structure of propositions
than simple boolean combinations of ‘atomic’
propositions.

Propositions are about individuals (or sets
thereof) and their properties.

We need a new language for representing this
structure: the language of predicate logic.

Introduction to Logic 13

Last time:
e Propositional Logic
e Limitations of Propositional Logic
e The Structure of Propositions

e Individuals, Properties and Quantifiers

This time:

e The Language of the Predicate Calculus
— Basic Expressions
— Terms and Formulas

e Expressing Propositions

e Semantic Preliminaries

The Language of FOPC

e The basic expressions of Predicate Logic fall
into four separate categories:

1. Individual names: a, b, ¢, ...

These represent specific objects, persons or

events

. Individual variables: z, y, z, ...

These are variables that range over
individuals.

. Predicate Symbols: P, Q, R, ...

Predicate symbols are used to represent
properties or relations over individuals

. Function Symbols: f, g, h, ...

Function symbols denote functions that map
individuals to individuals.

A Note about Predicates and
Functions

e Note: The predicate and function symbols
represent relations over individuals.

e.g.
Bill talks 1 individual
Bill likes Logic 2 individuals

Bill teaches Moira Logic 3 individuals

e More generally, we can have relations or
functions over an arbitrary number n of
individuals
Terminology: An n-place predicate or
function symbol is said to have arity n.

e We assume that each predicate or function
symbol is associated with a known, fixed arity

e In addition to the four classes of basic
expression, the predicate calculus includes:

— A truth-functionally complete set of
connectives: e.g. 7, A, V, —, and <.

— Two quantifier symbols:
The Universal Quantifier: V
The Existential Quantifier: 3

— Brackets ‘(’ and ¢)’, and punctuation

symbols ¢, and ‘.".

e These symbols, taken together with the basic
expressions, form the alphabet of the
language of First Order Predicate Logic.

e The language is defined in two stages: terms,
and formulas

Terms

e Terms are used to pick out individuals:

Definition A term t is either:
1. an individual name; or

2. an individual variable; or

3. a functional term f(t1,...,t,) where f is a
function symbol of arity n, and t,...,t, are
terms

Question: Which of the following are terms?

a

y
P

f(a,z)

Qz,y)
(f(z,2))
f(g(z, a), h(b))

Formulas

Definition A well-formed formula of
Predicate Logic is either:

1. an atomic formula P(¢1,...,t,) where P is a
predicate symbol of arity n and tq,...,t, are
terms; or

2. a compound formula of one of the following
forms:

(a) (-4)
(b) (AN B)
(c) (AV B)
(d) (A— B)
(¢) (A< B)
(f) Yv.A
(g) Fv.A

where A and B are wffs, and v is an
individual variable.

Question: Which of the below are well-formed
formulas of Predicate Logic?

P(a)

(P(a) = Q(a))

P(Q(a))

(=P(f(a,z)))

Vz.(P(z) = (-Q(2)))

(P(vVa.) A Q(a))

(P(a) v 32.Q(x))

Jz.(P(z) AVy.(Qy) = R(z,y)))
Notes:

e We can drop brackets (as for Propositional

Logic) by adopting conventions for operator
precedence, etc.

e We may relax conventions for naming

predicate symbols, individual names etc.

ALCPLCSCLILIIIES 1T 10pPUSBILIVLLS

e The FOPC permits finer-grained
representation of propositions.

e.g.
Logic is fun

F(l)

If Logic is fun, then Bill is happy

F(l) — H(b)
Either Logic is fun or Bill is not happy

F(l)v—H(b)
All lecturers are happy

Vz.(L(z) — H(x))

Some lectures are happy

Jz.(L(z) N H(z))

Question: How might you represent the
following?

Some lecturer is not happy

No lecturer is happy

All lecturers teach Logic

All lecturers teach some course

FEvery course tutor is happy

Semantic Preliminaries

e The semantics of Propositional Logic was

particularly simple:

— Valuations: V : Prop — {t, f}

— Truth tables for connectives:
e For Predicate Logic, the picture is more

complicated:

— four kinds of basic expression;

— quantification;

— terms and formulas.

e Meaning is no longer just a matter of
true and false .

e We need a richer semantic domain:
— individuals — for names

— functions over individuals — for function

symbols

— relations over individuals - for predicates

e Our semantics should:
1. map basic expressions onto elements of the
semantic domain;
2. associate individuals with terms; and
3. give us a way of determining the
truth-values of

— atomic formulas
— compound formulas (including
quantified formulas)

Summary

e The language of First Order Predicate Logic
has an alphabet consisting of four basic kind
of expression.

e The language is defined in two stages: first
order terms, and first order formulas.

e Predicate Logic provides a richer language for
representing propositions.

e We can represent propositions concerned with
particular individuals, or capture
generalisations about groups of classes of
individual.

e Our definition of meaning must be

correspondingly rich.

Introduction to Logic 14

Last time:
e The Language of the Predicate Calculus
e Expressing Propositions

e Semantic Preliminaries

This time:
e Interpretations
e Examples
e Formalizing Interpretations

e Examples

Interpretations
e The Predicate Calculus allows us to:

1. make statements about particular individuals:

e.g.
T(b,1) — H(b)

2. make statements about relationships between

individuals:

e.g.
T(b,1)

3. make general statements about individuals:

e.g.

Ve.(T(xz,l) — —H(x))

e Just as for Propositional Logic, we can study
this new language in two different ways:

1. in terms of its meaning,.
2. in terms of its form;
e To do the former, we must interpret the
language.
i.e. we must:
1. fix a domain of interpretation D

— the set of things we are interested in
talking about

2. provide an interpretation function 7
— relates expressions of the language to

our domain D

14 11C DIOCRKRDd> VVOI'LIQ

Domain:

bl

b2 b4

Interpretation Function:

Notation interpreted as Denotation
b1
be
bs
by

s a cube

>

is a pyramid

is on top of

RN EEE

QO v QA & o

is red

Question: Given the Blocks World domain and
associated interpretation function, what do the
following statements mean?

C(d)
—
O(a,b)
—
32.(C(z) A R(x))
—
Jz.(R(z) A P(z) A 3y.(C(y)) A O(,y)))
—

The Integers
Domain: {...,—4,-3,-2,-1,0,1,2,3,4,...}
Interpretation Function:

Notation interpreted as Denotation

z = integer zero

P == predecessor function
S == successor function
L = is less than

Question: What do the following statements
mean?

L(z,5(2))
—
Vz.3y.L(z, y)
—
3z.¥y.L(z,y)

Formalizing Intepretations
Definition An interpretion for a first order
language is a pair:

I=(D,I)

where:

e D is a set of individuals (the "domain
interpretation”); and

e [is an interpretation function
e The interpretation function I has to

e assign a fixed element of D to each individual

constant a;

e assign an n-ary function on D to each
function symbol f of arity n;

e assigns an n-ary relation on D to each
predicate symbol P of arity n.

The Blocks World (again)

bl

b2 b4

D= {bla b27 b37 b4}

I(a) = by
) = b
I(e) = b3
Id = by
I(C) = {b2,bs}
Ir) = {}
1(0) = {(b1,b2}
I(R) = {b1,bs}

The Integers (more formally)

D={..,-4,-3,-2,-1,0,1,2,3,4,...}

Iz) = 0

) = {.. (-3,-9)
(-2,-3)
(-1,-2)
(0,-1)
(1,0)
(2,1)...}

w = {..

0,1)...}

Notes:
1. So far, we have not mentioned the
interpretation of individual variables.
e We will assume the existence of a separate
variable assignment function g
e The assignment function g will map
variables onto elements of the domain D

2. Note that a particular interpretation just tells
us about the meaning of basic expressions.

e it does not tell us (directly) about the

meaning of compound expressions.

e the meaning of connectives and

quantifiers is ‘fixed’

e there are general rules for calculating

the meaning of compound expressions

summary

The language of predicate logic permits us to
express propositions about particular
individuals, and to make generalizations.

Like propositional logic, we can study the
language from the perspective of its meaning,

or its form.

To study the language in terms of its meaning
we must provide an interpretation.

An interpretation for a first-order language
consists of a domain and an intepretation

function.

A particular interpretation fixes the meaning
of the basic expressions of a first-order
language.

There are general rules for evaluating the
meaning of compound expressions (terms and

formulas).

