# Introduction to Logic 3

#### Last time:

- Introduction to the PC
- The Language of the PC
- Giving the language meaning
- Arguments

#### This time:

- Truth-values and the connectives
- Truth tables
- Tautologies and Inconsistencies
- Arguments revisited

• The simplest sentence-types of our language are the propositional variables:

$$p, q, r, s, \dots$$

• These are combined with the connectives to build 'complex' or 'compound' sentences:

$$((p \to q) \land p) \to q$$

- Clearly, the truth-value of a compound sentence depends on:
  - 1. the truth-values of the propositional variables that it contains;
  - 2. the meaning (i.e. truth-functions) of the connectives  $\neg$ ,  $\wedge$ ,  $\vee$ ,  $\rightarrow$ ,  $\leftrightarrow$ .

# Truth Tables and the Connectives

- We said last time that sentences of the PC express propositions and may be either **true** or **false**. What exactly, are we assuming?
  - there are only two truth values: true and false
  - sentences cannot be both true and false simultaneously.
  - sentences cannot be 'undefined' (i.e. there are not truth-value 'gaps')
- These are fundamental assumptions of 'classical' logic

**Questions:** Could you have a non-classical logic? What might that be like?

- For classical logic, this is *all* we need to know.
  - We don't need to know how the variables got their values;
  - We don't need to know anything about the meaning of sentences beyond their truth-values.
- Analogy: (arithmetic)
  - Suppose that variable x has value 3, y has value 2 and z has value 5.
  - Given that you know the meaning of + and -, you can calculate the value of the expression:

$$(x+y)-z$$

- Thus: (3+2)-5=5-5=0

### Truth Tables

- The connectives of our language are truth-functional
- The truth-functions that they correspond to can be expressed conveniently in the form of matrices:

- Note that the truth-value of a compound sentence can vary according to (as a function of!) the truth-values of its parts.
- Given a sentence of the PC, we can display all of the different possible cases in the form of a matrix or **truth table**:

e.g. 
$$p \rightarrow q$$

| p            | q | p 	o q |
|--------------|---|--------|
| t            | t | t      |
| t            | f | f      |
| $\mathbf{f}$ | t | t      |
| $\mathbf{f}$ | f | t      |

• Thus we see that  $p \to q$  is alway **true** except in case that p is **true** and q is **false**.

## Example

• Suppose that we want to determine the truth-value of the sentence

$$p \to q$$

given that p = t and q = f.

• We know the truth-function for  $\rightarrow$ :

$$\begin{array}{c|cccc} \rightarrow & t & q = f \\ \hline p = t & t & p \rightarrow q = f \\ f & t & t \end{array}$$

- So, in this case  $p \to q$  is **false**.
- Here's the case when p = t and q = t:

$$\begin{array}{c|cccc} \rightarrow & q = t & f \\ \hline p = t & p \rightarrow q = t & f \\ f & t & t \end{array}$$

• Here's a more complicated example:

$$((p \to q) \land p) \to q$$

| p            | q | $(p \rightarrow q)$ | $(p \to q) \land p$ | $((p \to q) \land p) \to q$ |
|--------------|---|---------------------|---------------------|-----------------------------|
| t            | t | t                   | t                   | t                           |
| $\mathbf{t}$ | f | f                   | f                   | t                           |
| f            | t | t                   | f                   | t                           |
| f            | f | t                   | f                   | t                           |

- We calculate the truth-value of the whole expression 'inside-out'.
- Each line of the table corresponds to one way of assigning truth-values to the propositional variables in the sentence
- a function from propositional variables to truth-values is called a valuation.

# Tautologies, Inconsistencies and Equivalences

- A **tautology** is a sentence that is **true** in all possible valuations.
- Consider the sentence  $p \vee \neg p$ :

| p            | $\neg p$ | $p \vee \neg p$ |
|--------------|----------|-----------------|
| t            | f        | t               |
| $\mathbf{f}$ | t        | t               |

• We've already seen an example of a sentence that is *not* a tautology:

| p            | q | p 	o q |
|--------------|---|--------|
| t            | t | t      |
| $\mathbf{t}$ | f | f      |
| $\mathbf{f}$ | t | t      |
| f            | f | t      |

- Two sentences A and B are said to be **equivalent** if, for any given valuation, they have exactly the same truth-value.
- Consider  $\neg p \lor q$  and  $p \to q$ :

| p            | q | $\neg p$ | $\neg p \vee q$ | p 	o q |
|--------------|---|----------|-----------------|--------|
| t            | t | f        | t               | t      |
| $\mathbf{t}$ | f | f        | $\mathbf{f}$    | f      |
| $\mathbf{f}$ | t | t        | t               | t      |
| $\mathbf{f}$ | f | t        | t               | t      |

- Note that the last two columns are identical, row-by-row. So,  $\neg p \lor q$  is equivalent to  $p \to q$
- Question Suppose that A and B are equivalent. What can you say about  $(A \leftrightarrow B)$ ?

- An **inconsistency** is a sentence that is **false** in all possible valuations:
- Consider the sentence  $p \land \neg p$ :

| p            | $\neg p$ | $p \wedge \neg p$ |
|--------------|----------|-------------------|
| t            | f        | $\mathbf{f}$      |
| $\mathbf{f}$ | t        | f                 |

Clearly,  $p \land \neg p$  is inconsistent.

• A sentence is **contingent** if it is *neither* tautologous *nor* inconsistent.

| p            | q | p 	o q       |
|--------------|---|--------------|
| $\mathbf{t}$ | t | $\mathbf{t}$ |
| $\mathbf{t}$ | f | ${f f}$      |
| $\mathbf{f}$ | t | t            |
| f            | f | t            |

So,  $p \to q$  is contingent.

## **Arguments Revisited**

- We now have a way of distinguishing between 'good' (i.e. valid) and 'bad' (i.e. invalid) arguments.
- Intuitively, an argument is valid if whenever all of its premisses  $P_1, P_2, \ldots, P_k$  are true, then its conclusion C is also true.
- In other words, the sentence:

$$(P_1 \wedge P_2 \wedge \dots P_k) \to C$$

is a tautology.

- So, to check whether an argument is valid we can
  - formalize the argument as a sentence of the PC
  - check whether the resulting sentence is a tautology

### Example

Lets return to the argument that we formalized in the last lecture.

 $P_1$  = If Logic is fun, then Bill is happy

 $P_2$  = Logic is fun

C = Therefore, Bill is happy

So:

$$P_1 \qquad \wedge \qquad P_2 \qquad \rightarrow \qquad C$$
 $((p \rightarrow q) \qquad \wedge \qquad p) \qquad \rightarrow \qquad q$ 

| p            | q | $(p \rightarrow q)$ | $(p \to q) \land p$ | $((p \to q) \land p) \to q$ |
|--------------|---|---------------------|---------------------|-----------------------------|
| t            | t | t                   | t                   | t                           |
| $\mathbf{t}$ | f | f                   | f                   | $\mathbf{t}$                |
| $\mathbf{f}$ | t | t                   | f                   | $\mathbf{t}$                |
| $\mathbf{f}$ | f | t                   | f                   | $\mathbf{t}$                |

Note that the final column contains only t. This means that the sentence is a tautology, and hence the argument is valid.

#### Summary

- Sentences of the PC can be either **true** or **false** (but not both and they cannot be undefined or have some other value).
- The connectives correspond to truth-functions
- Truth tables allow us to set out, systematically, the way the truth-value of a compound sentence varies according to the truth-values of its simpler parts.
- We can distinguish between sentences that are **true** in all valuations (tautologies), and **false** in all valuations (inconsistencies).
- Two sentences are *logically equivalent* if they have the same truth values in all possible valuations
- We can test the validity of arguments by formalizing them as sentences of the PC and then testing to see if they are tautologous.