Introduction to Logic 2

Last time:

- What is Logic and why study it?
- Object-language/Meta-language.
- Propositions, Beliefs and Contradictions.
- Formalization

This time:

- The Propositional Calculus.
- The Language of Propositional Logic.
- What does it all mean?
- Arguments

Introduction to the Propositional Calculus

- The *Propositional Calculus* (PC) is a simple language for expressing certain kinds of propositions.
- Essentially, it allows us to write down Boolean combinations of simple declarative sentences.

For example:

- Logic is fun
- Logic is *not* fun
- Bill teaches Logic and Logic is fun
- Logic is fun or Bill is happy
- if Logic is fun, then Bill is happy

Connectives

- Statements are combined with words such as not, and, or and if ..., then to build more complex statements
 - The words will be called the **connectives**
 - The connectives are truth-functional
 The statement

"It is raining and it is snowing" is **true** if

- the statement "it is raining" is **true**; and
- the statement "it is snowing" is **true** otherwise it is **false**.
- The truth-value of the whole can be calculated once the truth-values of the parts are known.

The Language of PC

• Rather than using the English connectives, we will use the following symbols:

Symbol	English Equivalent
一	not
\land	and
V	or
\rightarrow	implies (if then)
\leftrightarrow	if and only if

- We will also require some further symbols:
 - left and right parentheses: '(' and ')'
 - a stock of propositional variables : p, q, r, s, \dots

These symbols (connectives, propositional variables, parentheses) form the *alphabet* of our language.

The well-formed formulas (wffs) of the language are strings (i.e. sequences) of symbols from the alphabet.

Definition: (The language of the PC)

- 1. Any propositional variable is a wff;
- 2. If A and B are wffs, then so are:
 - \bullet $(\neg A)$
 - $(A \wedge B)$
 - \bullet $(A \lor B)$
 - \bullet $(A \rightarrow B)$
 - \bullet $(A \leftrightarrow B)$
- 3. Nothing is a wff except in virtue of 1 and 2 above.

NB: I may also refer to a wff as a sentence or a statement.

Which of these are wffs?

p $(p \land q)$ $(p \land (\neg q))$ $((p \rightarrow q) \lor (\neg r))$ $(p \rightarrow \land q)$ $p \lor q$ $(A \land B)$

A Note about Brackets

In practice, we adopt conventions that permit parentheses to be dropped where no confusion can arise from doing so

Operator Precedence: \neg takes precedence over \land and \lor , so:

$$(((\neg p) \land q) \to r)$$
becomes
$$((\neg p \land q) \to r)$$

and \land and \lor in turn take precedence over \rightarrow and \leftrightarrow so:

$$((\neg p \land q) \to r)$$
becomes
$$(\neg p \land q \to r)$$

Outermost Parentheses: these can always be dropped, so:

$$(\neg p \land q \to r)$$
becomes
$$\neg p \land q \to r$$

What does it all mean?

- We have provided a definition of the wffs of the PC.
 - This tells us what form they take (their syntax)
 - It does not tell us about their meaning (their semantics)

• Questions:

- How do we assign meaning to the sentences of the PC?
- What do we mean by 'meaning' anyway?

Meaning and Truth

- Sentences express propositions, and these may be either **true** or **false**.
 - we say that sentences denote *truth-values*
- We have already noted that the connectives are *truth-functional*
 - they allow us to calculate the meaning
 (i.e. truth-value) of complex sentences as a function of the meaning (i.e. truth-values)
 of their parts.

Arguments

- Part of our motivation for introducing Propositional Logic is to formalize and study 'patterns of reasoning' or arguments.
- We have seen some examples of arguments, both 'good' and 'bad':

e.g.

If Logic is fun, then Bill is happy

Logic is fun

Therefore, Bill is happy

If Logic is fun, then Bill is happy

Programming is fun

Therefore, Bill is happy

- We can now 'formalize' these arguments (and many others) in the sense of providing an abstract representation of their *structure*.
- Consider the first argument given on the last overhead. Let

p stand for 'Logic is fun'

q stand for 'Bill is happy'

then, we can write:

$$(p \to q)$$

$$\frac{p}{q}$$

• Or perhaps:

$$((p \to q) \land p) \to q$$

Summary

- The Propositional Calculus (PC) is a simple language for expressing propositions
- Sentences of the PC are built up from propositional variables, connectives and parentheses.
- Sentences of the PC are either **true** or **false**
- Connectives are truth-functional
- The PC allows us to formalize the structure of arguments
- \bullet The formal representations are abstract.