Introduction to Logic 16

Last time:

- Interpretations and Assignments
- The Meaning of Terms
- The Meaning of Formulas
 - Atomic Formulas
 - Compound Formulas

This time:

- Interpretations
- Models
- First Order Theories

Interpretations and Models

• We give meaning to the sentences of predicate logic by providing an interpretation

$$\mathcal{I} = (D, I)$$

• For a given interpretation we can judge whether a sentence is **true** or **false**. e.g.

$$\forall x. \forall y. \forall z. ((R(x,y) \land R(y,z)) \rightarrow R(x,z))$$

Considerand interpretation with:

$$D = Integers$$

 $I(R) = less-than (i.e. <)$

- An interpretation \mathcal{I} that makes a formula A true is said to satisfy A.
- We may write

$$\mathcal{I} \models A$$

to mean "interpretation \mathcal{I} satisfies A"

- Also, if $\mathcal{I} \models A$ we may refer to \mathcal{I} as "a model for A".
- More generally, this applies to *sets* of formulas.

Definition Let G be a set of formulas and \mathcal{I} and interpretation. We write

$$\mathcal{I} \models G$$

and say \mathcal{I} is a model for G (I satisfies G) if and only if \mathcal{I} is a model for every formula in G.

First Order Theories

- A first order theory is a (possibly infinite) set of formulas of first order logic.
- A theory may be defined by a set of **axioms**: e.g.

$$\forall x. \forall y. \forall z. ((R(x,y) \land R(y,z)) \rightarrow R(x,z))$$

 $\forall x. \neg R(x,x)$

- A theory provides a characterisation of the salient properties of some domain of interest.
 - 1. R is the less-than relation in the Integer domain.
 - 2. R is the ancestor relation in the People domain.
- There may be many models satisfying a given theory.

- In general, we have an intended interpretation in mind as our model.
- aim to axiomatize the domain of interest;
- axiomatic theories provide a basis for:
 - formalizing aspects of mathematics and computer science
 characterizing data-structures or the behviour of differents kinds of mathematical spaces/structures
 - studying properties of programs
 proofs of correctness, program
 transformations
 - automated reasoning
 building 'intelligent' systems capable of reasoning about particular domains
 - computer programminglogic programming (e.g. Prolog)

- A set of axioms G determines a set of theorems.
- If G is a set of axioms and A is a statement, then as usual we may write:

$$G \models A$$

to mean that A is entailed by G.

• And we may write:

$$G \vdash A$$

to mean that A can be deduced from G.

- We need techniques for determining what follows from a set of axioms (theorem-hood).
 - examine the models for G
 - develop viable proof methods.

Summary

- Interpretations determine the truth-value of statements of the predicate calculus
- An interpretation that satisfies a set of statements is called a model.
- A first order theory is a set of statements.
- We may define a theory axiomatically
- A first order theory characterizes a set of models with common structure.
- We need proof-theoretic techniques for determining theorem-hood.