Introduction to Logic 14

Last time:

- The Language of the Predicate Calculus
- Expressing Propositions
- Semantic Preliminaries

This time:

- Interpretations
 - Examples
- Formalizing Interpretations
 - Examples

Interpretations

- The Predicate Calculus allows us to:
 - 1. make statements about particular individuals: e.g.

$$T(b,l) \to H(b)$$

2. make statements about relationships between individuals:

e.g.

3. make general statements about individuals: e.g.

$$\forall x. (T(x,l) \rightarrow \neg H(x))$$

- Just as for Propositional Logic, we can study this new language in two different ways:
 - 1. in terms of its meaning.
 - 2. in terms of its form;
- To do the former, we must *interpret* the language.
 - i.e. we must:
 - 1. fix a domain of interpretation D
 - the set of things we are interested in talking about
 - 2. provide an interpretation function I
 - relates expressions of the language to our domain D

The 'Blocks World'

Domain:

Interpretation Function:

Notation $interpreted\ as$ Denotation $\begin{array}{cccc} a & \Longrightarrow & b_1 \\ b & \Longrightarrow & b_2 \\ c & \Longrightarrow & b_3 \\ d & \Longrightarrow & b_4 \\ C & \Longrightarrow & is\ a\ cube \\ P & \Longrightarrow & is\ a\ pyramid \end{array}$

 $O \implies is on top of$

 $R \implies is red$

Question: Given the Blocks World domain and associated interpretation function, what do the following statements mean?

 \Longrightarrow

 \Longrightarrow

$$\exists x. (C(x) \land R(x))$$

 \Longrightarrow

$$\exists x. (R(x) \land P(x) \land \exists y. (C(y)) \land O(x,y)))$$

 \Longrightarrow

The Integers

Domain: $\{\ldots, -4, -3, -2, -1, 0, 1, 2, 3, 4, \ldots\}$

Interpretation Function:

Notation interpreted as Denotation

 $z \implies integer zero$

 $p \implies predecessor function$

 $s \implies successor function$

 $L \implies is less than$

Question: What do the following statements mean?

 \Longrightarrow

$$\forall x. \exists y. L(x,y)$$

 \Longrightarrow

$$\exists x. \forall y. L(x,y)$$

Formalizing Interretations

Definition An interpretion for a first order language is a pair:

$$\mathcal{I} = (D, I)$$

where:

- D is a set of individuals (the "domain interpretation"); and
- I is an interpretation function
- The interpretation function I has to
 - assign a fixed element of *D* to each individual constant *a*;
 - assign an n-ary function on D to each function symbol f of arity n;
 - assigns an n-ary relation on D to each predicate symbol P of arity n.

The Blocks World (again)

$$D = \{b_1, b_2, b_3, b_4\}$$

$$I(a) = b_1$$

$$I(b) = b_2$$

$$I(c) = b_3$$

$$I(d) = b_4$$

$$I(C) = \{b_2, b_4\}$$

$$I(P) = \{b_1\}$$

$$I(O) = \{(b_1, b_2)\}$$

$$I(R) = \{b_1, b_3\}$$

The Integers (more formally)

$$D = \{\dots, -4, -3, -2, -1, 0, 1, 2, 3, 4, \dots\}$$

$$I(z) = 0$$

$$I(p) = \{ \dots (-3, -4)$$

$$(-2, -3)$$

$$(-1, -2)$$

$$(0, -1)$$

$$(1, 0)$$

$$(2, 1) \dots \}$$

$$I(L) = \{ \dots (-5,1)$$

$$(-4,1)$$

$$(-3,1)$$

$$(-2,1)$$

$$(-1,1)$$

$$(0,1) \dots \}$$

Notes:

- 1. So far, we have not mentioned the interpretation of individual variables.
 - We will assume the existence of a separate variable assignment function g
 - The assignment function g will map variables onto elements of the domain D
- 2. Note that a particular interpretation just tells us about the meaning of basic expressions.
 - it does not tell us (directly) about the meaning of compound expressions.
 - the meaning of connectives and quantifiers is 'fixed'
 - there are general rules for calculating the meaning of compound expressions

Summary

- The language of predicate logic permits us to express propositions about particular individuals, and to make generalizations.
- Like propositional logic, we can study the language from the perspective of its meaning, or its form.
- To study the language in terms of its meaning we must provide an interpretation.
- An interpretation for a first-order language consists of a domain and an interpretation function.
- A particular interpretation fixes the meaning of the basic expressions of a first-order language.
- There are general rules for evaluating the meaning of compound expressions (terms and formulas).