Introduction to Logic 13

Last time:

- Propositional Logic
- Limitations of Propositional Logic
- The Structure of Propositions
- Individuals, Properties and Quantifiers

This time:

- The Language of the Predicate Calculus
 - Basic Expressions
 - Terms and Formulas
- Expressing Propositions
- Semantic Preliminaries

The Language of FOPC

- The basic expressions of Predicate Logic fall into four separate categories:
 - 1. **Individual names:** a, b, c, \ldots These represent specific objects, persons or events
 - 2. Individual variables: x, y, z, \ldots These are variables that range over individuals.
 - 3. Predicate Symbols: P, Q, R, \ldots Predicate symbols are used to represent properties or relations over individuals
 - 4. Function Symbols: f, g, h, \ldots Function symbols denote functions that map individuals to individuals.

A Note about Predicates and **Functions**

Note: The predicate and function symbols represent relations over individuals.

e.g.

Bill talks

1 individual

Bill likes Logic

2 individuals

Bill teaches Moira Logic 3 individuals

• More generally, we can have relations or functions over an arbitrary number n of individuals

Terminology: An *n*-place predicate or function symbol is said to have **arity** n.

• We assume that each predicate or function symbol is associated with a known, fixed arity

- In addition to the four classes of basic expression, the predicate calculus includes:
 - A truth-functionally complete set of connectives: e.g. \neg , \wedge , \vee , \rightarrow , and \leftrightarrow .
 - Two quantifier symbols:
 The Universal Quantifier: ∀
 The Existential Quantifier: ∃
 - Brackets '(' and ')', and punctuation symbols ',' and '.'.
- These symbols, taken together with the basic expressions, form the **alphabet** of the language of First Order Predicate Logic.
- The language is defined in two stages: **terms**, and **formulas**

Terms

• Terms are used to pick out individuals:

Definition A term t is either:

- 1. an individual name; or
- 2. an individual variable; or
- 3. a functional term $f(t_1, ..., t_n)$ where f is a function symbol of arity n, and $t_1, ..., t_n$ are terms

Question: Which of the following are terms?

a y P f(a,x) Q(x,y) (f(x,x)) f(g(x,a),h(b))

Formulas

Definition A well-formed formula of

Predicate Logic is either:

- 1. an atomic formula $P(t_1, ..., t_n)$ where P is a predicate symbol of arity n and $t_1, ..., t_n$ are terms; or
- 2. a compound formula of one of the following forms:
 - $(a) (\neg A)$
 - (b) $(A \wedge B)$
 - (c) $(A \lor B)$
 - $(d) (A \rightarrow B)$
 - (e) $(A \leftrightarrow B)$
 - $(f) \ \forall v.A$
 - $(g) \exists v.A$

where A and B are wffs, and v is an individual variable.

Question: Which of the below are well-formed formulas of Predicate Logic?

$$P(a)$$

$$(P(a) \to Q(a))$$

$$P(Q(a))$$

$$(\neg P(f(a,x)))$$

$$\forall x. (P(x) \to (\neg Q(x)))$$

$$(P(\forall x.) \land Q(a))$$

$$(P(a) \lor \exists x. Q(x))$$

$$\exists x. (P(x) \land \forall y. (Q(y) \to R(x,y)))$$

Notes:

- We can drop brackets (as for Propositional Logic) by adopting conventions for operator precedence, etc.
- We may relax conventions for naming predicate symbols, individual names etc.

Representing Propositions

• The FOPC permits finer-grained representation of propositions.

e.g.

Logic is fun

If Logic is fun, then Bill is happy

$$F(l) \to H(b)$$

Either Logic is fun or Bill is not happy

$$F(l) \vee \neg H(b)$$

All lecturers are happy

$$\forall x.(L(x) \to H(x))$$

Some lectures are happy

$$\exists x.(L(x) \land H(x))$$

Question: How might you represent the following?

Some lecturer is not happy

No lecturer is happy

All lecturers teach Logic

All lecturers teach some course

Every course tutor is happy

Semantic Preliminaries

- The semantics of Propositional Logic was particularly simple:
 - Valuations: $V: Prop \rightarrow \{t, f\}$
 - Truth tables for connectives:
- For Predicate Logic, the picture is more complicated:
 - four kinds of basic expression;
 - quantification;
 - terms and formulas.
- Meaning is no longer just a matter of **true** and **false**.

- We need a richer semantic domain:
 - individuals for names
 - functions over individuals for function symbols
 - relations over individuals for predicates
- Our semantics should:
 - 1. map basic expressions onto elements of the semantic domain;
 - 2. associate individuals with terms; and
 - 3. give us a way of determining the truth-values of
 - atomic formulas
 - compound formulas (including quantified formulas)

Summary

- The language of First Order Predicate Logic has an alphabet consisting of four basic kind of expression.
- The language is defined in two stages: first order terms, and first order formulas.
- Predicate Logic provides a richer language for representing propositions.
- We can represent propositions concerned with particular individuals, or capture generalisations about groups of classes of individual.
- Our definition of meaning must be correspondingly rich.