Introduction to Logic 12

Last time:

- Natural Deduction Proof Rules
- Introduction Rules
- Elimination Rules
- Proof by Contradiction

This time:

- Propositional Logic
- Limitations of Propositional Logic
- The Structure of Propositions
- A New Logical Notation

Propositional Logic (The story so far)

• We have introduced the language of propositional logic as a means of representing propositions and arguments.

e.g.

If
$$x > 3$$
, then $y < 4$. But $y \not< 4$, so $x \not> 3$.

• This can be represented as:

$$((p \to q) \land \neg q) \to \neg p$$

where:

p stands for 'x > 3'; and q stands for 'y < 4'

• We have provided a precise notion of meaning for statements of propositional logic:

p	q	$\neg p$	$\neg q$	$p \rightarrow q$	$(p \rightarrow q) \land \neg q$	$((p \rightarrow q) \land \neg q) \rightarrow \neg p$
t	\mathbf{t}	f	f	\mathbf{t}	f	t
\mathbf{t}	f	f	\mathbf{t}	\mathbf{f}	f	t
f	\mathbf{t}	\mathbf{t}	f	\mathbf{t}	\mathbf{f}	t
f	f	\mathbf{t}	\mathbf{t}	t f t	t	t

- This allows us to distinguish between statements that are **tautologies**, **contingencies** and **inconsistencies**.
- We can also use truth-tables to determine whether arguments are valid/invalid. e.g.

$$((p \to q) \land \neg q) \to \neg p$$

This is a tautology, so the argument is valid.

The relation of semantic entailment (⊨) captures a notion of logical consequence between propositions.
e.g.

$$\{(p \to q), \neg q\} \models \neg p$$

The statement $\neg p$ is a consequence of the set of statements $\{(p \rightarrow q), \neg q\}$

i.e. Any valuation that makes both $p \rightarrow q$ and $\neg q$ **true**, also makes $\neg p$ **true**.

p	q	$\neg p$	$\neg q$	$p \rightarrow q$
t	t	f	f	${f t}$
t	f	f	t	f
f	t	t	f	\mathbf{t}
f	f	\mathbf{t}	\mathbf{t}	\mathbf{t}

- We have looked at purely *formal* techniques for 'calculating' with (sets of) statements.
 - The classical axiomatic presentation –
 logic as a formal, deductive system;
 - The method of Semantic Tableaux;
 - The system of Natural Deduction.

Example (Tableaux Method)

$$\{(p \to q), \neg q\} \models \neg p$$

$$(p \to q)$$

$$\neg q$$

$$\neg \neg p$$

$$\underline{\neg p} \quad \underline{q}$$

• Tableaux is closed, so entailment holds.

Example (Natural Deduction)

$$\{(p \to q), \neg q\} \vdash \neg p$$

$$\frac{p \to q \quad \not p}{q} \to E \quad \neg q \\ \frac{\perp}{\neg p} \ RAA \to E$$

- The relation \vdash captures a notion of deduction or proof.
- It is the syntactic (formal) counterpart of the semantic relation \models .
- Consequently, we should expect that:

$$G \models A \text{ if and only if } G \vdash A$$

Limitations of the Propositional Calculus

• Consider the following argument:

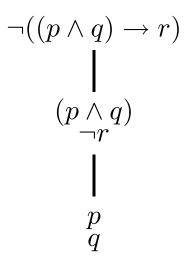
All lecturers are happy.
Bill is a lecturer
So, Bill is happy.

Question: Is the reasoning here sound (i.e. does the conclusion follow from the premises)?

Question: How might the argument be represented in propositional logic?

• testing validity using a semantic tableau

$$(p \land q) \to r$$



- The tableaux for $\neg((p \land q) \rightarrow r)$ does not close.
- That means that $(p \land q) \rightarrow r$ is not a tautology.
- That in turn means that the argument is *not* valid!

The Structure of Propositions

• Consider the argument again:

All lecturers are happy.
Bill is a lecturer
So, Bill is happy.

- **Insight:** We need some way of representing the *structure* of the elementary propositions.
- Propositions involve:
 - named individuals that the propositions are 'about':
 - e.g. Bill, Brighton, Logic,...
 - **properties** of these individuals:
 - e.g. is_happy , is_a_city , $is_a_lecturer$,
 - relations between individuals:
 - e.g. teaches, lives_in,....

Question: Is there anything else involved?

• Consider the premise

Bill is a lecturer

- This statement:
 - 1. expresses a proposition 'about' the individual *Bill*'; and
 - 2. asserts that the individual has the property *is_a_lecturer*
- Rather than use a simple propositional variable (p say), we might represent this by:

b has the property L

In fact, we are going to write:

L(b)

where:

- b stands for the individual called "Bill";
 and
- L stands for the property expressed by " $is_a_lecturer$ ".

• Likewise, we might represent the conclusion of the argument

Bill is happy

as follows:

H(b)

• But what about the first premise?

All lecturers are happy

- Note that:
 - this is a generalization;
 - it is not about a particular individual, but a whole group.

How can we represent general statements of this kind?

• Paraphrasing a little:

For all individuals, if he/she is a lecturer, then he/she is happy

• Or perhaps:

For all x, if x is a lecturer, then x is happy.

• This might be written more succinctly as:

For all
$$x$$
, $(L(x) \to H(x))$

In fact, we are going to write:

$$\forall x.(L(x) \to H(x))$$

• Here, the symbol \forall is know as the **universal** quantifier and can be read as "for all".

• So now the whole argument can be notated:

$$\frac{\forall x. (L(x) \to H(x))}{L(b)}$$

$$\frac{L(b)}{H(b)}$$

- The notation introduced informally here is the **First Order Predicate Calculus** (**FOPC**).
- Predicate Logic is more expressive than simple Propositional Logic.
- We will explore this new logic in the remainder of this course.

Summary

- Propositional logic allows us to represent simple propositions/arguments.
- We have explored the language from the point of view of its meaning and form.
- Propositional logic has limitations there are some valid arguments that we cannot represent.
- There is more to the structure of propositions than simple boolean combinations of 'atomic' propositions.
- Propositions are about individuals (or sets thereof) and their properties.
- We need a new language for representing this structure: the language of predicate logic.