Introduction to Logic 11

Last time:

- Un-natural Deduction
- Natural Deduction
- Introduction Rules
- Examples

This time:

- Natural Deduction Proof Rules
- Introduction Rules
- Elimination Rules
- Proof by Contradiction

Natural Deduction Proof Rules

- The system of Natural Deduction is a proof method that has some advantages over the axiomatic system and the tableaux method for propositional logic.
 - proofs are relatively easy to construct;
 - the proofs that result consist of a fairly natural sequence of steps
- The Natural Deduction inference rules attempt to capture frequently used patterns of reasoning or 'logical laws'.
- Broadly, the rules fall into two groups:
 - 1. **Introduction Rules:** i.e. rules that *introduce* connectives;
 - 2. Elimination Rules: i.e. rules that eliminate connectives.

Introduction Rules

$$\frac{A}{(A \wedge B)} \wedge I$$

$$\frac{A}{(A \vee B)} \vee I \qquad \qquad \frac{B}{(A \vee B)} \vee I$$

A

•

$$\frac{B}{(A \to B)} \to I$$

$$\frac{\perp}{A}$$
 \perp

Note:

$$(A \leftrightarrow B) \equiv ((A \to B) \land (B \to A))$$

 $\neg A \equiv (A \to \bot)$

Elimination Rules

• Let us consider now the rules for eliminating connectives.

Conjunction Elimination (\wedge E):

• Consider the following pattern of reasoning:

Suppose that you know that $(A \wedge B)$ is **true**, then it is safe to infer that A (or B) must be true.

• Expressing this is the notation of the system of Natural Deduction, gives the following *two* rules of inference:

$$\frac{(A \wedge B)}{A} \wedge E \qquad \qquad \frac{(A \wedge B)}{B} \wedge E$$

Implication Elimination (\rightarrow E):

• Consider the following pattern of reasoning

Suppose you know that $(A \rightarrow B)$ is **true** and also that A is **true**. In this case, it is safe to infer that B is **true**.

• In the system of natural deduction, this may be notated as:

$$\frac{(A \to B) \quad A}{B} \to E$$

Question: Where have we seen this rule before?

Example: $\{(p \rightarrow q), (q \rightarrow r)\} \vdash (p \rightarrow r)$

$$\frac{\frac{(p \to q) \quad p}{q} \to E \quad (q \to r)}{\frac{r}{(p \to r)} \to I} \to E$$

Disjunction Elimination $(\lor E)$

• The rule for eliminating a disjunction (\vee) is a little trickier to understand.

Suppose you know that $(A \vee B)$ is **true**. Suppose also that from the assumption that A is **true** you can reach a conclusion that C is **true**; and from the assumption that B is **true**, you can reach that same conclusion, that C is **true**In this case, it is safe to infer that C is **true**.

- The rule is essentially that of analysis by cases:
 - whichever case we consider (A or B) we can show that C must be **true**;
 - so we can conclude that C follows from $(A \vee B)$
- Like implication introduction, this rule is not straightforward to represent.

• Diagrammatically, the rule of Disjunction Elimination appears as follows:

$$\begin{array}{cccc}
A & B \\
\vdots & \vdots \\
(A \lor B) & C & C \\
\hline
C & & & & & & \\
\hline
C & & & & & & \\
\end{array}$$

• Here is an example of its use:

$$\frac{\frac{(p \wedge q)}{p} \wedge E}{(p \vee q) \vee q)} \frac{\frac{p}{p} \wedge E}{(p \vee q)} \frac{\not q}{(p \vee q)} \vee I$$

$$\frac{(p \wedge q) \vee q)}{(p \vee q)} \vee E$$

• So:

$$\{((p \land q) \lor q)\} \vdash (p \lor q)$$

Proof By Contradiction (reduction ad absurdum)

- We now have introduction and elimination rules for each of the binary connectives: \land , \lor and \rightarrow .
- We have not yet considered negation: \neg .
- Consider the following method of reasoning:

Suppose that we wish to prove that some statement A holds. Assume rather that $\neg A$ holds. If we can now show that this assumption leads to a contradiction, then it is safe to conclude that $\neg A$ cannot hold. In other words, A must hold.

• This proof method is know as **Proof by**Contradiction, or reductio ad absurdum

(RAA).

• As a diagram, this proof rule **RAA** may be represented as follows:

• The following example illustrates the use of RAA. We show:

$$\{\neg(\neg p\vee q)\}\vdash p$$

$$\frac{\frac{\neg p}{(\neg p \lor q)} \lor I}{\frac{\bot}{p} RAA} \to E$$

• **NB:** This proof also makes use of the fact that in this system, $\neg A$ is simply an abbreviation for $(A \to \bot)$.

Elimination Rules

$$\frac{(A \wedge B)}{A} \wedge E \qquad \qquad \frac{(A \wedge B)}{B} \wedge E$$

$$\frac{(A \to B) \quad A}{B} \to E$$

$$\begin{array}{cccc}
A & B \\
\vdots & \vdots \\
(A \lor B) & C & C \\
\hline
C & & \lor E
\end{array}$$

Example

• We show that

$$\vdash (p \lor \neg p)$$

• The proof proceeds as follows:

$$\frac{\neg p^{(1)}}{(p \vee \neg p)} \vee I_{\neg(p \not \vee \neg p)^{(2)}} \to E$$

$$\frac{\frac{\bot}{p} RAA}{(p \vee \neg p)} \vee I \qquad \neg(p \not \vee \neg p)^{(2)}$$

$$\frac{\bot}{(p \vee \neg p)} RAA$$

Remarks

- \bullet There are just two assumption introduced in this proof
- In the end, the proof is perhaps not quite as 'natural' as we would like!

Summary

- The system of Natural Deduction has introduction and elimination rules for connectives.
- Elimination rules for conjunction and implication are straightforward. Implication elimination, in particular, is familiar as the rule Modus Ponens.
- The elimination rule for disjunction corresponds to a method of 'reasoning by cases'
- The system also has a rule formalizing the famous proof by contradiction or reductio ad absurdum.