
A deeper understanding of the deep frame
axiom (extended abstract)

Nathaniel Charlton and Bernhard Reus

University of Sussex, Brighton

Abstract. Separation logic [7] is well known to provide a local reasoning
principle for local store, the frame rule. Local reasoning is extended to
programs with modules and higher-order functions respectively by the
hypothetical frame rule [4] and higher-order frame rule [2]. This means,
for instance, that the private state of a library module can be hidden, so
that clients do not need to know or worry about the private state; this
leads to modular proofs.

Higher-order functions can be expressed in low level languages using
code pointers and recursion through the store, as in [1, 8]. However, local
reasoning for such languages is surprisingly tricky: in [8], a version of the
(higher-order) deep frame rule is observed to hold only as a rule and not
as an axiom. This means one can only apply the rule to the top level triple
under consideration, but not to nested triples appearing inside assertions.
Assuming the axiom version allows one to “launder” specifications [6, 8]
and thus derive memory-safety of programs that actually crash. On the
other hand, it appears that without a reasoning principle resembling
the axiom version, there are safe programs whose correctness cannot be
shown.

In this paper we investigate and analyse the technique of “laundering”
in more detail and propose a remedy, an idiom for writing specifications
(Hoare triples) that “promise” that applications of the deep frame axiom
are sound. This is done with the help of second order logic (quantification
over assertions). We demonstrate the utility of this technique for proving
real programs by means of an example: a generic memoiser for recursive
functions.

1 Introduction and motivation

In low level languages one uses code pointers to simulate the effect of higher-
order procedures, with the additional complication that updating code pointers
can lead to recursion through the store. In this paper we study local reasoning
for one such language with immutable ML-like variables and value parameters;
see [3] for the programming language and logic we work with.

To illustrate the issues mentioned in the abstract suppose there is a proce-
dure C that, maybe among other things, frees a specified cell on the heap. The
procedure has two arguments: a, the address of the cell and f , the pointer to a
procedure that performs concrete low level deallocation, maybe with some addi-
tional administration and bookkeeping. Abstracting the concrete deallocation in

parameter f allows C to be reusable. According to the above, the specification
for such a procedure C is as follows:

∀f, a.
{
f 7→ DeleteArg()
? a 7→

}
C(f, a)

{
f 7→ DeleteArg()

}
(1)

where
DeleteArg(P) := ∀x. {x 7→ }P (x) {emp}

Now suppose C uses f that contains code which also increments a counter
whenever it is used to free a cell; is it safe to use such code with C? Formally,
does (1) imply the following?

∀f, a, cnt .f 7→ DeleteArg()⊗ cnt 7→
? a 7→
? cnt 7→

 C(f, a)

{
f 7→ DeleteArg()⊗ cnt 7→
cnt 7→

}
(2)

Here Φ⊗Θ adds the invariant Θ to the pre- and post-conditions of all triples in
Φ (at all nesting levels, see e.g. [8]). Intuitively one might think this implication
holds: C does not know about the counter cell at all, and the code in f leaves
that cell in place; therefore, the counter cell will be in place throughout the
execution of C. The implication does indeed hold if we consider the above triple
on the “top level”, due to what is called the deep frame rule (dfr) which has
been shown sound in [8]:

Φ

Φ⊗Θ
If we interpret this implication in a stronger sense, namely as instance of the
deep frame axiom (dfa)

Φ ⇒ Φ⊗Θ
then things are very different: it was discovered that this axiom is not sound for
higher-order store if the invariant Θ contains code pointers (see [8]). Yet, if we
store C on the heap and call it from the main program, the rule version is of
no help, and the axiom version seems to be exactly what we need. To see this
in more detail consider the program Prog in Figure 1 which calls the procedure
C twice with different deallocation procedures f1 and f2, respectively. Prog uses
variable c to store a pointer to such a procedure Ci (shortly we will give three
concrete versions of this procedure). The pointer variables f1 and f2 point to
procedures that are supposed to perform the low level deallocation as explained
earlier; f1 does some extra bookkeeping in the form of counting the deleted cells
in cnt . Pointers a1 and a2 refer to the cells to be deleted. We consider three
possibilities for the code Ci:

C1 := ‘λf, a. eval [h](a) ; [h] := [f]’

C2 := ‘λf, a. eval [f](a)’

C3 := ‘λf, a. eval [h](a)’

2

let h = new ‘λx. free x’ in

let c = new Ci in

let a1 = new 0 in

let a2 = new 0 in

let cnt = new 0 in

let f1 = ‘λx. free x ; [cnt] := [cnt] + 1’ in

let f2 = ‘λx. free x’ in

eval [c](f1, a1) ;

free cnt ;

eval [c](f2, a2)

Fig. 1. Main program Prog .

Now for which Cis does Prog run without memory fault?

If C1 is used, the program faults: when the code in C1 (stored in c) is run
a second time, the code in cell h still needs to access the counter cnt, but this
has been freed meanwhile. Yet, using the dfa, one can prove Prog safe, that is,
prove that it satisfies {emp} · {true}. Oddly, on the other hand, with C2 and C3

the program runs safely; yet without something like the dfa, we have no way to
prove this modularly.

The problem with C1 is that it misbehaves by privately copying the “out-
side” code in f into h, rather than running it. This gives rise to a phenomenon
that Pottier called “laundering” [6]. When running Prog, more precisely the
statement eval [c](f1, a1), the procedure f1 for which one assumes

(f1 7→ DeleteArg()⊗ cnt 7→)⊗ h 7→ . . .

will be saved away in h for which in the postcondition only a specification

h 7→ DeleteArg()⊗ h 7→ . . .

is required; this does not mention cnt any longer. This means that f1 has been
laundered of the invariant cnt 7→ .

This copying of code provided by the outside world into hidden state seems
to be exactly the problem with the deep frame axiom. Procedures C2, C3 do not
perform such copying. C2 does not use hidden state at all. C3 does use the cell
h to store code, but outside code never flows into h.

In this paper we propose a sound replacement for the dfa, so that one can
prove the program safe with C2 and C3, but not with C1.

3

2 Laundering: how to prove a faulty program with the
deep frame axiom

In this section we explain how one can use the dfa to prove that program Prog
with C1 is safe, when in fact it crashes. We define H, the invariant describing
the cell h as a recursive assertion

H ⇔ h 7→ DeleteArg()⊗H

the existence of which follows from e.g. [8]. We can then prove that C1 satisfies (1)
in the presence of H, that is,(

∀f, a.
{
f 7→ DeleteArg()
? a 7→

}
C1(f, a)

{
f 7→ DeleteArg()

})
⊗H

One then applies the dfr to hide H and thus the cell h1; it remains to prove{
c 7→ ∀f, a.

{
f 7→ DeleteArg()
? a 7→

}
(f, a)

{
f 7→ DeleteArg()

}}
let a1 = new 0 in
let a2 = new 0 in
let cnt = new 0 in
let f1 = ‘λx. free x ; [cnt] := [cnt] + 1’ in
let f2 = ‘λx. free x’ in

eval [c](f1, a1) ;
free cnt ;
eval [c](f2, a2) {

true
}

Here the dfa is needed to reason about the first eval statement for which we
need to prove the triple

c 7→ ∀f, a.
{
f 7→ DeleteArg()
? a 7→

}
(f, a)

{
f 7→ DeleteArg()

}
∗ a1 7→ ∗ a2 7→ ∗ cnt 7→
∗ f1 7→ DeleteArg()⊗ (cnt 7→) ∗ f2 7→ DeleteArg()


eval [c](f1, a1)

c 7→ ∀f, a.
{
f 7→ DeleteArg()
? a 7→

}
(f, a)

{
f 7→ DeleteArg()

}
∗ a2 7→ ∗ cnt 7→
∗ f1 7→ DeleteArg()⊗ (cnt 7→) ∗ f2 7→ DeleteArg()


1 Note that once we have applied the dfr, in the code for C1 we must assume the

code in f has specification DeleteArg()⊗H rather than DeleteArg(); in Pottier’s
terminology [5] the dfr is “paranoid” and (for good reason) assumes that functions
obtained from “outside” might also depend on the added invariant H. Thus, the code
in h must also be specified with ⊗H added; this explains the need for a recursively
defined predicate.

4

Note that, informally, we need to perform deep framing on the nested triple
for c, and not at the top level, so the dfr cannot be used.

3 A remedy: a specification idiom to support deep
framing

We have seen that not all commands behave in a way which admits the deep
frame axiom; but some commands do. Therefore, whether or not a particular
command C supports the dfa is a matter that must be agreed in the “contract”
between C and its clients. We thus suggest a specification idiom which allows
a command C to promise to its clients to behave in a way which supports the
dfa; in particular, such a promise means that C cannot copy outside code to its
hidden cells, as in the laundering example.

Concretely, we specify a command with

∀X.∀x. {P} (p) {Q} ⊗X

to say, intuitively, that the command behaves as

∀x. {P} (p) {Q}

and also admits application of the dfa. Here we are using a second order logic,
with the variable X ranging over assertions. Then the dfa is simulated simply
by

∀X.(Φ⊗X) ⇒ ∀X.((Φ⊗Θ)⊗X)

which can be derived from the usual ∀-instantiation axiom

∀X.Φ ⇒ Φ[X\Θ]

3.1 Observation 1: We can now prove our program with C2

Using our specification idiom, we can show that C2 supports the dfa. We need
to prove:(
∀X.∀f, a.

{
f 7→ DeleteArg()
? a 7→

}
C2(f, a)

{
f 7→ DeleteArg()

}
⊗X

)
⊗H

But C2 makes no use of h, so we simply show

∀f, a.
{
f 7→ DeleteArg()
? a 7→

}
C2(f, a)

{
f 7→ DeleteArg()

}
and then use the dfr to successively add invariants X and H. This works in
general: for code that makes no use of hidden state, the ∀X. · · · ⊗X to support
the dfa comes for free.

5

3.2 Observation 2: We can now prove our program with C3

C3 does use hidden state, so we cannot use the dfr to get the ∀X. · · · ⊗X for
free. (One can certainly use the dfr to add an arbitrary X as an invariant, but
this gives ⊗X outside of ⊗H, and not inside it as we need.) However, we can
prove(
∀X.∀f, a.

{
f 7→ DeleteArg()
? a 7→

}
C3(f, a)

{
f 7→ DeleteArg()

}
⊗X

)
⊗H

“on foot” by using distribution axioms for ⊗.

3.3 Observation 3: We cannot prove our program with (faulty) C1

We cannot prove(
∀X.∀f, a.

{
f 7→ DeleteArg()
? a 7→

}
C1(f, a)

{
f 7→ DeleteArg()

}
⊗X

)
⊗H

Because C1 uses H, it is not possible to use the dfr to add the ∀X. · · ·⊗X. But
we cannot prove this “on foot” either: one gets stuck needing to show

f 7→ (DeleteArg()⊗X)⊗H
? a 7→
? (X ⊗H)
? H

 C1(f, a)

f 7→ (DeleteArg()⊗X)⊗H
∗ (X ⊗H)
? H


The reason is that the statement [h] := [f], which copies the “outside” procedure
in f into the cell h, does not respect the invariant H: the procedure in f has
specification

∀x. {x 7→ } (x) {emp} ⊗X ⊗H
which depends on an extra unknown invariant X, whereas to maintain H we
would need the specification

∀x. {x 7→ } (x) {emp} ⊗H

4 Application: proving safety of generic memoisation for
recursive functions

We have used our specification idiom to prove safety of a generic memoiser for
recursive functions, as we now describe. Our memoiser works with recursively
defined functions f : Z→ Z such as the factorial function, which we implement
as follows.

FACT :=

λ n, res .

if n = 0 then [res] := 1

else

let a = [A] in eval [a](n− 1, res) ;

let m = [res] in [res] := m× n

6

Note that we do not use an explicit fixpoint operator since in the low level
language we work with all recursion is through the higher order heap. This
code makes its recursive call through the pointer found in cell A. Thus to use a
function like FACT, one writes it into a heap cell f , and then sets [A] := f to
set up the recursion, as in:

let A = new 0 in

let f = new FACT in

let result = new 0 in

[A] := f ;

eval[f](3, result)

One can specify such a function with

RecFunc(F) := ∀X.∀n, r, a. {Ψ(a) ? r 7→ }F (n, r) {Ψ(a) ? r 7→ } ⊗X

where Ψ(a) is a recursively defined predicate with argument as in [3]:

Ψ(a) :=

µ R(a) . A 7→ a ? a 7→ ∀n, r, a.

{
R(a) ? r 7→

}
(n, r){

R(a) ? r 7→
}
 (a)

Here the pre- and post-condition of the specification RecFunc(F) describe one
function on the heap, used for the recursive call, which will in fact be the same
function F again.

Now, by making the pointer in A point to a different piece of code, one can
“trap” the internal recursive calls made by functions such as factorial. The code
in Figure 2 uses this mechanism to implement a memoiser which also memoises
internal calls, so that for example evaluating 10! will make use of a cached
result for 9!. This memoiser is generic in that it works with any similar recursive
function Z→ Z. To specify functions for use with the memoiser, one can write

RecFuncmem(F) := ∀n, r, a. {Ψmem(a) ? r 7→ }F (n, r) {Ψmem(a) ? r 7→ }

where

Ψmem(a) :=
µ R(a) .
A 7→ a

? f 7→ ∀n, r, a. {R(a) ? r 7→ } (n, r) {R(a) ? r 7→ }
? a 7→ ∀n, r, a. {R(a) ? r 7→ } (n, r) {R(a) ? r 7→ }

 (a)

This time, the pre- and post-condition of the specification RecFuncmem(F) de-
scribe two functions on the heap in cells f and a: one will be the function F
again, and the other will be the memoiser code.

7

let A = new 0 in

let f = new FACT in

let table = new {} in
let mem = new

‘λ n, res .

let t = [table] in

if n ∈ dom(t) then

[res] := t(n)

else

(eval [f](n, res) ;

let x = [res] in

[table] := t⊕ {n 7→ x})
’

in

let result = new 0 in

[A] := mem ;

eval [f](9, result) ;

eval [f](10, result)

Fig. 2. Code for a generic memoiser for recursively defined functions Z→ Z.

For reasons of modularity, we do not want to have to prove RecFuncmem(F) in
addition to RecFunc(F) for every function we may want to memoise; rather, one
would like to have RecFunc(F)⇒ RecFuncmem(F). This entailment can indeed
be shown, but this is only possible because our specification idiom ∀X. · · · ⊗X
in RecFunc(F) allows us to do dfa-like reasoning.

5 Conclusions and Further Work

In the full version of this work we will provide detailed proofs as well as a sound-
ness argument for the extension of the logic in [3] with second order assertions
and some other minor additions. Moreover, we would like to investigate a simi-
lar extension to the logic with an anti-frame rule [6, 9] as this allows for a more
natural treatment of hidden state in programs.

Acknowledgement This work has been supported by EPSRC grant EP/G003173/1.
This material is as yet unpublished.

8

References

1. N. Benton and N. Tabareau. Compiling functional types to relational specifications
for low level imperative code. In TLDI, pages 3–14, 2009.

2. L. Birkedal, N. Torp-Smith, and H. Yang. Semantics of separation-logic typing and
higher-order frame rules for Algol-like languages. LMCS, 2(5), 2006.

3. N. Charlton and B. Reus. Specification patterns and proofs for recursion through
the store. Submitted, Apr. 2010.

4. P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and information hiding.
In POPL, pages 268–280, 2004.

5. F. Pottier. Hiding local state in direct style: a higher-order anti-frame rule. In LICS,
pages 331–340, Pittsburgh, Pennsylvania, June 2008.

6. F. Pottier. Three comments on the anti-frame rule. Unpublished, July 2009.
7. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In

LICS, pages 55–74, 2002.
8. J. Schwinghammer, L. Birkedal, B. Reus, and H. Yang. Nested Hoare triples and

frame rules for higher-order store. In CSL, pages 440–454, 2009.
9. J. Schwinghammer, H. Yang, L. Birkedal, F. Pottier, and B. Reus. A semantic

foundation for hidden state. In FOSSACS, pages 2–17, 2010.

9

