
Synthetic Domain Theory in Type Theory :

Another Logic of Computable Functions

Bernhard Reus

Ludwig-Maximilians-Universität
Munich, GERMANY

reus@informatik.uni-muenchen.de

Abstract. We will present a Logic of Computable Functions based on
the idea of Synthetic Domain Theory such that all functions are auto-

matically continuous. Its implementation in the Lego proof-checker –
the logic is formalized on top of the Extended Calculus of Construc-
tions – has two main advantages. First, one gets machine checked proofs
verifying that the chosen logical presentation of Synthetic Domain The-
ory is correct. Second, it gives rise to a LCF-like theory for verification
of functional programs where continuity proofs are obsolete. Because of
the powerful type theory even modular programs and specifications can
be coded such that one gets a prototype setting for modular software
verification and development.

1 Introduction

There exist several theorem provers and proof checkers supporting a logic of
domains like the LCF system [Pau87], and higher-order versions like HOLCF
[Reg94] or HOL-CPO [Age94]. All these systems provide a (higher-order) logic
for classical domain theory and differ substantially in the way they treat domains
or cpo-s as types. In HOL-CPO a cpo is described as a carrier set together with
an order relation on it, so there is no proper type of cpo-s. HOLCF uses type
classes, such that cpo-s and domains form a class. However, there is no proper
type of domains in any approach. Of course, only fixpoints ofcontinuous functions
can be built.

Synthetic Domain Theory provides a setting for denotational semantics in
which all functions are continuous. This is due to Dana Scott’s slogan “domains
as sets”. Several approaches can be found in the literature [FMRS92,Hyl91,Tay91,LS95].
These approaches make heavy use of category and topos theory without conse-
quently the internal language or they simply work in a PER-model. By contrast,
in [RS93a,Reu95] we presented a model-free axiomatization of the complete Ex-
PERs, called Σ-cpo-s, in a higher-order intuitionistic logic with additional ax-
ioms. This gives rise to a Σ-cpo-theory which can be extended to Σ-domains
(Σ-cpos with least element). Domain constructors like −→, −→⊥, ×, ()⊥, +,
⊗, ⊕ can be defined as functors on the category of Σ-domains and strict maps.
These functors must be automatically locally continuous. Additionally, one can
prove that recursive domain equations given by internal mixed-variant functors

can be solved in the category of Σ-domains with strict maps. By contrast to LCF,
admissibility can be expressed inside the logic, so we have all the necessary tools
for program verification.

Through this logical approach we also gain access to formalization. The whole
theory can be implemented in an appropriate interpreter for type theory, Lego

[LP92], where one can also build a type of all domains. In this paper we shall
explain how this can be done. As we will have dependent products and sums, it is
even possible to build modules, i.e. program modules as well as specification mod-
ules. For type theoretical specifications the deliverables-approach [BM92,RS93b]
is particularly useful, so the resulting language provides a good playground for
deriving modular programs together with formal correctness proofs.

More details as well as all proofs omitted in this paper can be found in
[Reu95].

The paper is organized as follows. Section 2 introduces the ECC and the
extension by an additional impredicative universe Set that contains the proposi-
tions. In the next section we add several non-logical axioms on top of ECC. The
ideas of Synthetic Domain Theory are briefly discussed in Section 4 followed by
the SDT-Axioms (Sect. 5). Then we browse through the core theory: Σ-posets,
Σ-cpos and Σ-domains (Sect. 6). We will discuss the solution of recursive domain
equations in Sect. 7. The last section is devoted to a short review of a sample
correctness proof. Finally, the conclusions will point out some loose ends.

2 Extending the Extended Calculus of Constructions

2.1 Extended Calculus of Constructions (ECC)

The type theory we use is the Extended Calculus of Constructions (ECC) [Luo94]
which combines an impredicative universe with predicative Martin-Löf type the-
ory.

Informally, the hierarchy of predicative universes Typej is ordered by a sub-
type relation �, that is appropriately extended on Π and Σ-types. Moreover,
any Typej is an element of Typej+1. The impredicative universe Prop of propo-
sitions is an element of Type0 and also a subtype of Type0. The subtype relation
is transitive and closed under conversion, i.e. if A ≃ B then A is a subtype of B

and vice versa. In the next section this is extended by a new universe.
Naive set theoretic models exist neither for System F nor for CC because of

impredicativity. Fortunately, the partial equivalence relations (PERs) provide an
adequate semantics for System F, CC, and ECC (e.g. [Str91,Luo94]). A PER-
model for the “extended” ECC will be discussed briefly in Section 2.3.

2.2 Adding new universes to ECC

The systems CC and ECC provide just one impredicative universe Prop. For
SDT, however, it is convenient to have a second universe Set of sets. Therefore,
we have to extend ECC by an additional impredicative universe. One must be

careful, since Coquand has shown that adding impredicative universes can lead
to inconsistencies [Coq86]. This is, however, only true for cumulative hierarchies
of impredicative universes. Since Prop is not an element of our new universe Set,
in our case there is no danger of inconsistency. This can be proved by providing
a (realizability) model. Henceforth the extension of ECC by Set will be called
ECC∗.

Recall the following type formation rules in ECC. Note that we use a more
informal calculus (á la Tarski) where one does not distinguish whether a type is
considered as a type or an object. A more accurate description following Streicher
[Str91] can be found in [Reu95].

⊢Prop:Type0 ⊢Typej :Typej+1

Γ,x:A⊢P :Prop
Γ⊢Πx:A.P :Prop

Γ⊢A:Typej Γ,x:A⊢B:Typej

Γ⊢Πx:A.B:Typej

Γ⊢A:Typej Γ,x:A⊢B:Typej

Γ⊢

∑
x:A.B:Typej

Γ⊢M :A Γ⊢A′:Typej

Γ⊢M :A′ (A � A′)

Moreover, Prop � Type0 � Type1 . . . as described above.

Definition 1 In order to get ECC∗ we add some similar rules for Set:

⊢Set:Type0
Prop � Set � Type0

Γ⊢A:Typei Γ,x:A⊢B:Set

Γ⊢Πx:A.B:Set
Γ⊢A:Set Γ,x:A⊢B:Set

Γ⊢

∑
x:A.B:Set

So Set is an impredicative universe being an element and a subset of Type0,
closed under set-indexed sums.

These rules together with the rules of ECC form the extended system ECC∗.
We have coded them in the Lego-interpreter. The new resulting system, called
SDT-Lego, is the one we will use in the following. But first we argue that this
extension is logically sound by providing a model.

2.3 Extending the realizability-model for ECC

We change and extend the realizability model for ECC [Luo94,Str91].

Definition 2 The interpretation of the type universe Type remains unchanged,
namely

[[Γ ⊢ Typej : Typej+1]](γ) = ∇ (ω-Set(j)obj),

where ω-Set(j) is the category of ω-sets whose carrier sets are in the universe
Vκj

of the cumulative hierarchy of sets [Luo94] and ∇M denotes the ω-Set with
carrier M and full (i.e. trivial) realizability relation.

In order to give a nice interpretation to Set we must change the interpretation
of Prop. In fact, Prop will become proof-irrelevant:

[[Γ ⊢ Prop : Type0]](γ) = ∇ (PERobj
1),

where PER1 is the full subcategory of ω-Set which is isomorphic to the category
of partial equivalence relations with at most one equivalence class. It is easy to
see that PER1 is closed under arbitrary products.

Now we can use the category of partial equivalence relations to interpret Set:

[[Γ ⊢ Set : Type0]](γ) = ∇ (PERobj),

where PER is the full subcategory of ω-Set which is isomorphic to the category
of partial equivalence relations. In [Luo94,Str91] it is shown that ∇ (PERobj)
has the required closure properties and that it lives in Type0 since there it is
used to interpret Prop.

It is obvious that PERobj
1 ⊆ PERobj.

3 The logic

The logic we use is the one we get from ECC by the Curry-Howard-Isomorphism,
i.e. higher-order intuitionistic logic.1 In order to mimic a topos logic one needs
some more principles. Sometimes we shall present axioms and definitions also in
Lego-syntax to give a “look-and-feel” of the theory. For the reader not familiar
with Lego we refer to [LP92] but shortly recall the most important tokens:
curly brackets denote Π-types or ∀ (in case of propositions), -> denotes (non-
dependent) function space or implication (in case of propositions), angle brackets
denote

∑
-types, square brackets denote extension of the current context, x ==

t denotes the definition of a macro x for t, [x:A]t denotes λx:A. t. Our notion
of equality is Leibniz equality Q. The abbreviations Ex, ExU, and, or, neg, iff
stand for the logical connectives ∃, ∃!, ∧, ∨, ¬, ⇔, respectively. In function
or type definitions we sometimes write x|A instead of x:A which means that
the corresponding argument can be left out in applications. Tuples are written
in round brackets and first and second projections are written x.1 and x.2,
respectively. Application is denoted f x or f(x) and sometimes we also use x.f.
We will write Type for Type(0) – anyway Lego will compute the correct level
of the universe.

We assume that extensionality for functions and the Axiom of Unique Choice
hold. Moreover, we assume to have natural numbers N (in Lego: N) and Booleans
B (B) as inductive types with correpsonding induction principles. Note that the
Axiom of Unique Choice is formulated with a sum rather than an existential
quantifier in the conclusion, such that one gets a function by first projection i.e.

[ACu_dep : {A : Type}{C : A->Set}{P : {a:A}(C a)->Prop}

({x:A} ExU (P x)) -> < f:{a:A}C a > {a:A} P a (f a)];

1 SDT is not consistent with classical logic.

3.1 Subset types

There is no standard higher-order intuitionistic logic with subset types. We there-
fore model subset types – as usual – by sums, e.g. {x∈A | p(x)} as

∑
x:A. p(x),

in Lego we write <x:A>P x. Because of the coding we must use coercion maps,
i.e. if y ∈

∑
x:A. p(x), then π1(y) ∈ A. Thus

∑
x:A. p(x) must live in Set again.

Since we know that Set is closed under dependent sums (of families of sets in-
dexed by sets) and that Prop � Set, the “Σ-coded subsets” of a type A ∈ Set

indeed live again in Set.
Any mono m : X æ Y describes a subset via {y∈Y | ∃x:X. m(x) = y}.

The mono m is called ¬¬-closed if ∃x:X. m(x) = y is ¬¬-closed2 for all y, i.e.
¬¬(∃x:X. m(x) = y) ⇒ (∃x:X. m(x) = y). Note that for ¬¬-closed propositions
P the proof rule A⇒P ¬¬A

P
is valid. This rule is often used with A ≡ ¬B ∨ B

which does not hold intuitionistically, but ¬¬(¬B∨B) holds for any B. In order
to prove P ≡ ∃x:X. m(x) = y (i.e. “y ∈ X”) using the rule above, one needs
that m : X → Y is ¬¬-closed. The predicate “x ∈ X ⊆ Y ” is mirrored by image

x m as outlined below. Here the mono m:X->Y codes the set X as a subset of Y .
Consequently, one can define what a ¬¬-closed map (mapDnclo) and a ¬¬-closed
mono (dnclo mono) is.

dnclo == [p: Prop] (not(not(p))) -> p;

image == [X,Y|Type][f:X->Y] [y:Y] Ex [x:X] Q (f x) y;

mapDnclo == [X,Y|Type][f:X->Y] {y:Y} dnclo (image f y);

mono == [X,Y|Type][m:X->Y] {x,y:X} (Q (m x)(m y)) -> Q x y;

dnclo_mono == [X,Y|Type][m:X->Y] and (mono m) (mapDnclo m);

The equality on a subset should, of course, coincide with the equality on the
superset. This can be achieved by stipulating the follwoing two axioms:

[proof_irrelevance: {P|Prop}{p,q:P} Q p q];

[surj_pair: {X|Type}{A|X->Type}{u:<x:X>A x} Q (u.1, u.2: <x:X>A x) u]

The first axioms says that all proofs of one and the same proposition P are equal.
The second is necessary, since in Lego the sums are not inductively defined, but
built-in in a somehow ad hoc way.

The coding for subsets sometimes gets clumsy so it would be much more
convenient to work with a system that supports subtypes in a nice and easy
fashion. Up to now, unfortunately, there is no such system available.

4 Synthetic Domain Theory – Ideas and Motivation

In this section we will briefly present the ideas of SDT. The analytical method
in domain theory is well-known. It describes domains as ideal completions of
some bases. Compound domains are constructed usually by patching together

2 A proposition φ is ¬¬-closed if ¬¬φ ⇒ φ, a predicate p ∈ X → Prop is ¬¬-closed if
p(x) is ¬¬-closed for any x ∈ X.

partial orders [Pau87] or using Scott’s neighbourhood systems. The synthetic
approach treats domains as sets with special properties. Compound domains
can be put together by set constructions. Of course, one must prove that the
“special properties” are preserved by these constructions. This axiomatic setting
is formally analogous to SDG, Synthetic Differential Geometry (cf. [Koc81]),
where the name “synthetic” stems from.

So the starting point of Synthetic Domain Theory is to assume a distinguished
domain Σ (the simplest non-trivial one) which is described axiomatically and to
associate with an arbitrary set X its “natural topology” by defining the open sets
of X as the functions from X to Σ. The computational intuition behind these
“open sets” is that they correspond to semi-decidable predicates which constitute
the most general form of experiment which can be applied to a computational
object. The objects ⊤ and ⊥ of Σ correspond to the propositions expressing
termination and nontermination, respectively. Thus Σ is considered as the subset
of the set Prop of propositions that intuitively corresponds to Σ0

1 -sentences. So
we will have to stipulate that Σ is closed under conjunction, disjunction, and
existential quantification over N.

It is known that a function is Scott-continuous, if (and only if) the inverse
image of a Scott-open set is Scott-open. It is even simpler: Scott-continuity
already follows from the fact that the “open sets” of the form X −→ Σ (or
shorter ΣX) are Scott-open3. So one has to assure that any “open set” P satisfies

x ∈ P ∧ x ⊑ y ⇒ y ∈ P

and for any ascending chain (xn)n∈N

sup
n

xn ∈ P ⇒ ∃n:N. (xn ∈ P).

The first condition suggests to define x ⊑ y as ∀P :D → Σ. x ∈ P ⇒ y ∈ P

(cf. Definition 4). To satisfy the second condition we simply define sup by the
condition supn xn ∈ P ⇐⇒ ∃n:N. (xn ∈ P) (cf. Definition 7). Without further
requirements this supremum is not necessarily unique unless any object of a
domain is determined by the results of all possible experiments applied to it (i.e.
its observational behaviour). This will be ensured by the definition 9 of Σ-posets.

By definition we get that all functions f : D −→ E are monotone and
continuous (provided unique suprema exist).

5 The SDT-Axioms

We shortly discuss the SDT-axioms and refer to [Reu95] for an exact treatment.

5.1 The set of r.e. propositions Σ

Definition 3 Let Σ ∈ Set be a distinguished set with the following properties:

3 In [Pho90] this is proved in the PER-model.

I Σ ⊆ Prop

I ⊤,⊥ ∈ Σ with ¬(⊥ = ⊤)
I If p, q ∈ Σ then p ∧ q, p ∨ q ∈ Σ

I If f ∈ N −→ Σ then ∃n:N.fn ∈ Σ

I ∀x, y:Σ. ((x = ⊤) ⇔ (y = ⊤)) ⇔ x = y.

This means that Σ is a Set having the closure properties of r.e. propositions. In
Lego the above requirements are expressed as follows:

[Sig : Set]

[top,bot : Sig] ;

def == [x : Sig] Q x top ; (* embedding Sig->Prop *)

[Prf_botF : not (def bot)] ; (* bot <> top *)

[extSig : {p,q : Sig} iff (iff (def p)(def q)) (Q p q)];

[Or,And : Sig->Sig->Sig] [Join : (N->Sig) -> Sig] ;

[Or_pr : {x,y : Sig} iff (def (Or x y)) (or (def x) (def y))] ;

[And_pr : {x,y : Sig} iff (def (And x y)) (and (def x) (def y))] ;

[Join_pr : {p : N->Sig} iff (def (Join p)) (Ex ([n:N] def (p n)))] ;

Remark: One has to use the mono def in order to represent the subobject
Σ ⊆ Prop. Note that in the premiss of the Axiom extSig we use equivalence
rather than equality, since we do not require that equivalent propositions are
equal. Actually, we cannot claim that because we do not know whether there
exist non-trivial impredicative universes in toposes. So there is a rather subtle
difference between type theory and the internal language of a topos: in type
theory we do not require that equivalent propositions are equal, therefore the
subobject classifier is not strong.

5.2 The other axioms

Phoa’s Axioms are an equivalent formulation of the “Phoa Principle” which
states that ΣΣ ∼= {(p, q) ∈ Σ × Σ | p ⇒ q} [Tay91]. They imply that on Σ the
observational order leq defined in the next section coincides with implication.

The continuity axiom states that the canonical limit process, i.e. the ascend-
ing chain of natural numbers (1, 2, 3, . . .) in the domain ω – i.e. ω with a maximal
element ∞ – has a supremum, which is important for characterizing suprema.
The axiom ensures continuity on the model level (it is a kind of Rice-Shapiro-
Theorem) to prove characterization theorems for Σ-cpos. Scott-continuity in our
approach follows directly from the definition of supremum which is inspired by
the ExPERs rather than Phoa’s Σ-spaces.

For the axiomatization of the “ExPER-approach” we need another axiom
not used in [Tay91] stating that Σ-propositions are ¬¬-closed (stable). It is a
kind of Markov’s Principle 4 as Σ corresponds to the Σ0

1-sentences. It also al-
lows one to use “classical case analysis” for proving Σ-propositions and later for

4 In different axiomatizations, where Σ does not correspond to the Σ0

1-sentences, it
might be better to call this axiom “Σ-propositions are ¬¬-closed”.

proving equality on domains. In fact, one can show that this axiom is equiva-
lent to the statement that equality on domains (cpo-s) is ¬¬-closed. One more
axiom would be needed for dealing with partial map classifiers and lifting, the
Dominance Axiom (cf. [Ros86]) but we don’t go into the details here and refer
to [Ros86,Reu95] instead.

6 Σ-posets, Σ-cpos and Σ-domains

6.1 Preorders and suprema

We define the observational preorder ⊑ (leq) as introduced in Section 4.

Definition 4 (Phoa)

leq == [X|Type][x,y:X] {p:X->Sig} (def (p x)) -> def (p y) ;

eq == [X|Type][x,y:X] and (leq x y)(leq y x);

Proposition 5 The following proposition (in Lego syntax) can be proved:

{X|Type}{f,g:X->Sig} iff (leq f g) ({x:X} (def (f x)) -> def (g x));

stating that the the leq and the inclusion order are equivalent on powers of Σ.
This property also implies that the order of products of our domains is pointwise.
As we argued in Section 4 just by definition of leq we get:

Proposition 6 (monotonicity) Any function is monotonic:

{X,Y|Type} {f:X->Y} {x,y:X} (leq x y) -> leq (f x)(f y);

In LCF a poset must be introduced by a carrier and an ordering (there is no
“natural order”). Consequently, in LCF there exist also non-monotonic functions.

In order to achieve that ΣX are the Scott-open sets on X (cf. Sect. 4) one
simply defines the supremum implicitly by

∀P :ΣX .
⊔

n

xn ∈ P⇐⇒∃n:N. (xn ∈ P)

(cf. Definition 7). This is a difference w.r.t. [Pho90] where the order-theoretic
suprema are used. Without further requirements this supremum is not necessar-
ily unique. It will be unique if every object x in X is determined by the set of
predicates which hold for x. This will be ensured by Definition 9 of Σ-posets. So
the considerations above lead to the following definitions:

Definition 7 Define the type of ascending chains AC and the binary predicate
supr as follows:

AC == [X:Type] <f: N->X> {n:N} leq (f n) (f (succ n));

supr == [X|Type][a:AC(X)][x:X]

{P:X->Sig} iff (def(P x)) (Ex [n:N] def(P(a.1 n)));

It is easy to see that this notion of supremum – provided it exists – is also the
usual order-theoretic supremum w.r.t. leq. From the definition of suprema it
follows immediately that all functions preserve existing suprema.

Theorem 8 (Scott-continuity) Any function is Scott-continuous:

{X,Y|Type}{f:X->Y} {a:AC(X)}{x:X} (supr a x) -> supr f_o_a (f x) ;

where f o a = ((compose f a.1), P) represents the chain f ◦ a which is as-
cending in Y as f is monotone (stated by a term P we do not look into).

Proof: Suppose x∈A and x is the supremum of a, i.e. for any P∈ΣA it holds
that P (x) ⇔ ∃n:N. P (a n) (*). So for any Q∈ΣB by substituting Q ◦ f for P in
(*) we conclude that Q(f(x)) ⇔ ∃n:N. Q(f(a n)), i.e. f(x) is the supremum of
f ◦ a. Λ

Note that in LCF the type AC cannot be formed (but in HOLCF). We are ready
now to proceed to the definition of Σ-posets, where objects are characterized
uniquely by their Σ-properties.

6.2 Σ-posets

Definition 9 A set X ∈ Set is called a Σ-poset iff the map ηX :X −→ ΣΣX

with ηX(x) = λp:ΣX .p x is a ¬¬-closed mono. In Lego we can define this as a
predicate on sets:

eta == [X:Type] [x:X][p:X->Sig] p x

poset == [X:Set] and (mono (eta X)) (mapDnclo (eta X));

In contrast to [Pho90] the mono is required to be ¬¬-closed. This has the ad-
vantage that the observational order on any Σ-poset is pointwise automatically.
Such a definition has been already mentioned in [Pho90, p.196]: “we could call a

Σ-space X extensional if X æ ΣΣX

were ¬¬-closed; . . .The idea doesn’t seem
to have been further developed in print.” and is tributed to Hyland5. The name
“extensional” indicates the relationship with ExPERs [FMRS92].

As a consequence the observational preorder for Σ-posets is indeed an order
and observational equality eq coincides with Leibniz equality Q. In consequence,
the equality for Σ-posets is ¬¬-closed. Moreover, for Σ-posets the supremum is
unique, so by the Axiom of Unique Choice we get a supremum operator sup :

{ C | CPO } (AC C.1) -> C.1.

6.3 Σ-cpos

Definition 10 A set X is a Σ-cpo (or an extensional predomain) iff X is a
chain complete Σ-poset or, more formally, iff X is a Σ-poset and it holds that
∀a:AC(X). ∃x:X.

⊔
(a, x). In Lego:

5 There is also a short remark in [Hyl91].

cpo == [A:Set] and (poset A) ({a:AC X} Ex [x:A] supr a x);

The Σ-cpo-s, which will turn out to be a good class of predomains, can be
represented by a type in our logic, i.e. we can define the type of Σ-cpo-s.

Definition 11 The type of all X ∈ Set that are Σ-cpo-s, i.e. {X :Set | cpo(X)},
is called CPO. In Lego we write: CPO == <X:Set> cpo X;

6.4 Admissibility

Admissibility is a concept needed for induction.

Definition 12 For any Σ-cpo C a predicate P ∈ C −→ Prop is called admissi-
ble iff for any ascending chain a∈AC(C) the implication (∀n:N. P (a n)) ⇒ P (

⊔
a)

holds. In Lego we write:

admissible == [D|CPO] [P: D.1 -> Prop] {f:AC D.1}

({n:N} P (f.1 n)) -> P (sup_C D f);

In LCF admissibility can only be proved syntactically by propagating admissi-
bility accordingly to the construction of a formula and applying the appropri-
ate closure properties. Admissibility is not expressible internally and therefore
remains an external concept. Contrary to LCF, the notion of admissibility is
expressible in our setting, as we can define the type of ascending chains (like in
[Reg94]).

For the admissibility of predicates with negative occurrences of the argument
(implications), we need an additional notion. Classically, one uses the following
sufficient condition to prove admissibility of implication: if ¬P and Q are admis-
sible, then ¬P ∨ Q, that is P ⇒ Q, is admissible too.

This is indeed true in LCF as admissible predicates are closed under dis-
junction. Unfortunately, in our intuitionistic setting closure under disjunction is
not derivable even for classical disjunction ∨c (i.e. A ∨c B ⇔ ¬¬(A ∨ B)) as it
seems that the proof requires non-constructive choice principles. So we have to
use some other sufficient conditions for proving admissibility of implications:

Definition 13 For any Σ-cpo C a predicate P ∈ C −→ Prop is called suf-
ficiently co-admissible iff for any ascending chain a ∈ AC(C) the implication
P (

⊔
a) ⇒ ∃m:N. ∀n ≥ m. P (a n) holds.

For simplicity we omit the corresponding Lego code due to lack of space.

Proposition 14 Let C be a Σ-cpo and P, R ∈ C → Prop. Then the following
propositions hold:

(i) If P is sufficiently co-admissible then the predicate λx:X.¬P (x) is admissi-
ble.

(ii) If P is sufficiently co-admissible and R is admissible then λx:C. P (x) ⇒ R(x)
is admissible.

Yet, it might be better to look for other definitions of “admissible” that are more
adequate in the intuitionistic setting. The notion of “co-admissibility”, however,
was sufficient for the correctness proof of Section 9.

6.5 Σ-domains

The Σ-cpos with least element are the natural choice for Σ-domains.

Definition 15 A Σ-domain is a Σ-cpo with a least element w.r.t. the leq
order. In Lego:

least == [A:Set][m:A] {a:A} leq m a;

dom == [A:Set] and (cpo A)(Ex [bottom: A] least A bottom);

For any Σ-domain D we denote the projection on the carrier set by D.c and for
the least element ⊥D one can define a function bot D of type : { D:Dom } D.c

using the Axiom of Unique Choice.

Of course, Σ-domains can also be internalized into a type Dom as in Def. 11,
i.e. Dom == <X:Set> dom X. Note that in LCF there is no type of domains (or
posets or cpo-s).

We get the following closure properties for Σ-domains.

Theorem 16 Closure properties:

(1) Let D be a Σ-domain. If P is a ¬¬-closed admissible predicate such that
P (⊥D), then {d ∈ D |P (d)} is a Σ-domain with ⊥D as the least element.

(2) If X is a Σ-cpo, E a Σ-domain and f, g ∈ D −→ X are such that f(⊥) =
g(⊥) then the equalizer of f and g is a Σ-domain with ⊥D as the least
element.

(3) Let X be a type and A : X −→ Set such that for any x∈X we have that
A(x) is a Σ-domain. Then Πx:X. A(x) is a Σ-domain, and the least element
is ⊥Πx:X. A(x) = λx:X.⊥A(x).

(4) Let D and E be Σ-domains then D ×E is a Σ-domain where ⊥ is given by
(⊥D,⊥E).

(5) Let D and E be Σ-domains then D −→ E is a Σ-domain where ⊥ is given
by λx:D.⊥E .

(6) Let D and E be Σ-domains then the strict functions from D to E, short
D −→⊥ E, form a Σ-domain where ⊥ is given by λx:D.⊥E which is strict.

(7) Σ-domains are closed under isomorphism.

The proof uses a Representation Theorem that can be found in [Reu95].
Note that, in order to form the dependent product {x:X} (A x) one must

know that Set is closed under dependent products i.e. Set is an impredicative uni-
verse. This means that – compared to LCF – polymorphic domains as {X:Dom}
X belong to Dom again.

For any Σ-domain D one certainly expects to have fixpoints of arbitrary end-
ofunctions D −→ D. By the properties we have proved so far about Σ-domains,
we are able to perform the “classical” Kleene-construction to get fixpoints.

Proposition 17 Let D be a Σ-domain. Any endofunction f ∈ D −→ D has a
least fixpoint.

By virtue of the Axiom of Unique Choice – analogously to the bottom-case – we
get a least fixpoint operator: fix: { D:Dom } (D.c -> D.c) -> D.c. Now we
can also prove fixpoint induction as usual:

Theorem 18 (Fixpoint Induction)
Let D be a Σ-domain, P ∈ D −→ Prop an admissible predicate on D, and
f ∈ D −→ D an endofunction on D. If P (⊥D) and ∀d:D. P (d) ⇒ P (f(d)) then
also P (fix f). In Lego:

{D|Dom} {P:D.c->Prop} (admissible P) -> {f:D.c->D.c}

(P (bot_D D)) -> ({d:D.c} (P d) -> P (f d)) -> P(fix D f);

In LCF the fixpoint operator is introduced axiomatically. Fixpoint induction is
an axiom and not a theorem.

7 Recursive domains

Domain equations are elegantly expressed by mixed-variant functors. To build
useful equations, the interesting domain constructors like −→, ×, ⊗, ⊕, ()⊥ etc.
must be defined on Σ-domains.

7.1 Domain constructors

Most of the constructions follow already from the closure properties of The-
orem 16. The strict constructors like ⊗ and ⊕ are more difficult. They must
be defined by their universal properties, i.e. as left adjoints to the strict func-
tion space and to the diagonal functor in the category of Σ-domains with strict
maps, respectively. Otherwise the tupling function and the injection functions,
respectively, would not be definable.

Note that for the smash product the projection maps still cannot be defined
in general unlike in classical domain theory because they cannot be derived from
the universal property. As Hyland puts it “The smash product is there, but the
projections are not in general - they just are not part of the universal structure.
. . . In classical domain theory how do you tell what is uniformly there from what
is accidental??”[SDT-mailing-list, Wed, 13 Jul 1994]

For the strict constructors defined by the universal properties (which re-
sembles the second order encoding of logical connectives), however, it is not
possible to prove the so-called exhaustion axiom [Pau87] stating e.g. for ⊕ that
any x ∈ A ⊕ B is obtained by a left or right injection6. It is not clear at the
moment how severe this drawback is. For proving equality of functions defined
on A ⊕ B one can use the universal property of the strict sum. General case
analysis, however, seems to be impossible.

6 With “or” we mean classical disjunction.

7.2 Categories and functors

Definition 19 The type of categories can be written in Lego as follows:

Cat == <X:Type(0)> <Hom: X->X->Set>

<o: {A,B,C|X} (Hom B C)->(Hom A B)->Hom A C> <id: {A|X} Hom A A>

and3 ({A,B|X} {f:Hom A B} Q (o (id|B) f) f)

({A,B|X} {f:Hom A B} Q (o f (id|A)) f)

({A,B,C,D|X} {h:Hom A B} {g:Hom B C} {f: Hom C D}

Q (o (o f g) h) (o f (o g h)));

ob == [C:Cat] C.1; hom == [C:Cat] C.2.1;

o == [C:Cat] C.2.2.1; id == [C:Cat] C.2.2.2.1;

Note that these are locally small categories as homsets live in Set. In the same
line one can define the type of covariant and mixed variant functors. Note
that any functor is automatically locally continuous as all functions between
Σ-domains are continuous in our setting. It can be easily shown that Σ-domains
with strict functions form a category (called DomS) in this (internal) sense.

In LCF (and HOLCF) one cannot define categories or functors without de-
pendent types, so one separates the morphism part from the object part. By
contrast to LCF, in the SDT-approach all functors are automatically locally
continuous.

Theorem 20 In the category DomS of Σ-domains with strict maps all the follow-
ing domain constructors are definable as functors: −→, −→⊥, ×, ⊗, +, ⊕, ()⊥.
Moreover, the lifted natural numbers N⊥ and the Booleans B⊥ are Σ-domains
with flat ordering.

7.3 Minimal solutions of domain equations

As we have dependent products, it is possible to do the Smyth & Plotkin inverse
limit construction for solving domain equations. In fact, Σ-domains are closed
under equalizers of strict maps and arbitrary products, so one can define the
inverse limit. Moreover, one can show that the solutions are minimal in Freyd’s
sense [Fre91] (i.e. that the fixpoint of the copy functional equals the identity
function). Mixed variance functors are coded as functors with two arguments
(bifunctors).

Theorem 21 Let F be a mixed variant endofunctor in DomS. Then there exists
a Σ-domain A and a morphism α from F AA to A which is an iso, such that

fix (λh:(Hom AA). α ◦ F h h ◦ α−1) = idA ,

i.e. A is the so-called minimal solution of F . In Lego:

{F:Functor DomS DomS}

<D:Dom> <alpha: DomS.hom (F.1 D D) D> <alpha_1: DomS.hom D (F.1 D D)>

and (isopair alpha alpha_1)

(lfix ([h: DomS.hom D D] o_strict alpha (o_strict (F.2.1 h h) alpha_1))

(id_strict|D)) ;

where lfix denotes the predicate stating that its second argument is the least
fixpoint of the first and o strict, id strict denote the composition and iden-
tity in DomS.

The minimality condition is in fact important for deriving induction principles.
Structural induction can be derived from the minimality condition via the inital
F -algebra characterization.

Note that sums are used instead of existential quantifiers. This is convenient
since one can extract the corresponding objects and does not have to treat
them indirectly via elimination/introduction rules for the existential quantifier.
It should be also mentioned that we need (Martin-Löf) identity types for the
inverse limit construction that uses dependent families. This is a well-known
problem of intensional type theory (see also [Reu95,RS93b]).

Observe that any recursive domain can be derived uniformly just by in-
stantiating the right functor coding the intended domain equation. This is an
advantage w.r.t. (HO)LCF where for any recursive type a special theory must
be designed with adequate axioms: any recursive type A must be introduced
together with a so-called representation type, i.e. F AA, a pair (α : F AA →
A, α−1 : A → F AA), and two axioms: one to assure that this is a pair of isomor-
phisms and one stating that the fixpoint of the copy functional is the identity.
Structural induction must be derived from fixpoint induction for every type,
whereas in our approach it can be obtained by instantiating a general theorem.

8 The Sieve of Eratosthenes – An Example

SDT is appropriate for program verification. This is demonstrated by an exam-
ple. We prove that the Sieve of Eratosthenes formulated in our setting is correct.
The proof follows a rather traditional LCF-style.

The domain of streams over natural numbers (Stream) is obtained by in-
stantiating Theorem 21 with the domain equation S = (N × S)⊥ and taking
the first projection. With the help of the isomorphism (obtained by some more
projections) one can define all the basic familiar stream operations, e.g. hd, tl,
append, ()n (nth-element). Using the isomorphims one can also derive the usual
characterization of the stream-order, i.e.

Proposition 22 ∀s, t:Stream. s ⊑ t iff ¬¬((s = ⊥) ∨
(∃n:N. ∃s′, t′:Stream. (s = append n s′) ∧ (t = appendn t′) ∧ s′ ⊑ t′).

For the correctness proof structural induction on streams is not sufficient, we
also need induction on the length of the streams7:

Theorem 23 (Induction on length) Let P ∈ Stream −→ Prop be an admissible
and ¬¬-closed predicate. Then the following induction principle is valid:

∀n:N. ∀s:Stream. (length s n) ⇒ P (s) implies ∀s:Stream. P (s).

7 The predicate length states whether the stream in its first argument has the length
given by the second argument.

Proof: First, note that the compact streams are generated by the Kleene chain
associated to the copy functional (for streams). By the minimality of the domain
Stream one gets immediately its “algebraicity”, i.e. – given that compact n s

yields the prefix of s of length n – supn compactn is the identity on streams.
Thus, in order to prove P (s) for an arbitrary stream s one just has to prove
∀n:N. P (compactn s) which follows by assumption and the fact that compact
elements have a length, i.e. ∀n:N. ∀s:Stream.¬¬∃k:N. length (compactn s) k8. Λ

The functions filter (of type N → Stream → Stream) and sieve (of type Stream →
Stream) are defined recursively using the fix operator. Note that no proof of con-
tinuity is required, as fixpoints exist for arbitrary maps in SDT. The definitions
are standard such that the following crucial properties hold:

1. (divn a) = true ⇒ filtern (append a s) = filtern s.

2. (divn a) = false ⇒ filtern (appenda s) = append a (filtern s).
3. (length s n) ⇒ ∃k:N. (length (filtera s) k) ∧ k ≤ n.

4. sieve(append n s) = append n (sieve(filtern s)).

Definition 24 Define (recursively) enum n as the stream of natural numbers
in ascending order starting with n and define

(n ε s) :⇔ (∃k:N. (s)k = n) ∧ (n 6= ⊥N⊥
).

Then the correctness theorem looks as follows:

Theorem 25 For all x ∈ N⊥ it holds that

x ε sieve(enum 2) iff is prime(x).

Proof: The proposition is a consequence of the following lemma9:

∀s:Stream. s 6= ⊥Stream ∧ repitition free(s) ⇒
(∀n:N. (s)n ε sieve(s) ⇔ ∀k < n.¬div (s)k (s)n)

where repitition free(s) states whether a stream is injective. The lemma is proved
by induction on the length of s. In the induction step we need the following
additional lemma: let s ∈ Stream, n, a ∈ N.

n ε sieve(filter a s) iff ¬(div a n) ∧ n ε sieve(s).

Note that the two previous lemmas hold for any binary boolean predicate div as
long as it is transitive. Λ

8 The double negation is necessary as we are working in intuitionistic logic; this is why
P must be ¬¬-closed.

9 Note that we are sloppy and sometimes confuse elements of N and N⊥ omitting the
unit up. It is also clear, how to extend operations on N in a strict fashion to N⊥.

Whenever we do induction on streams we must prove admissibility of the pred-
icate under investigation. The lemmas above, however, do contain positive exis-
tential quantifiers (see the definition of ε), so the syntactic requirements of LCF
are useless10. By contrast, in our setting one can even prove admissibility in the
logic. Note that the implication in the first lemma causes problems in the way
indicated in Sect. 6.4.

A detailed presentation of the proof (using also Lego syntax) may appear
elsewhere.

9 Conclusions

We have presented a Synthetic Domain Theory, based on a few axioms, that has
been completely formalized in type theory. The theory has been shown to be
consistent by verifiying that the axioms of Sect. 3 and 5 hold in the realizability
model of Sect. 2. (cf. [Reu95]) Our setting can be considered a step towards
LCF+, i.e. an enhancement of LCF, which is more expressive and permits the
treatmeant of domains as sets. Moreover, many principles that are introduced
axiomatically in LCF are theorems in LCF+ such that one obtains (more) in-
formation not only about the “how-s” but also about the “why-s”. Of course,
if one is not interested in the core theory, one could simply forget it and work
with the main theorems as if they were axioms.

Working in a type theoretical setting has another advantage. One can express
modules by

∑
-types. On top of the presented core theory, one could imagine a

theory of program modules and modular specifications. Also co-induction prin-
ciples are still to be implemented. More case studies should be carried out to
test how far one can get doing denotational semantics in SDT.

Unfortunately, Lego is only a proof checker so it does not provide the user
comfort of Isabelle or LCF. A theorem prover for ECC (ECC∗) could be a
future goal. Due to our experiences with this rather big SDT-theory (487 kB)
we consider it an important task to develop tools that support modular theories.

Finally, many theoretical questions are still open. Generalizing SDT from
Scott domain theory to stable domain theory seems to be a major research
topic. But also investigations about admissibility seem to be appropriate.

Acknowledgements

I wish to thank Thomas Streicher for his collaboration on the right axiomatization of

Σ-cpos and for his comments on a draft. Thanks to Randy Pollack for hints about the

SML-code of the Lego-system and to everyone on the SDT-mailing-list for discussions

and comments. This work was partially sponsored by the DAAD-program VIGONI. I’m

grateful to our partners Eugenio Moggi and Pino Rosolini from Genoa for stimulating

discussions and suggestions.

10 In this special case, however, one could rewrite the definition of ε as a complicated
equalizer on Σ since Σ is closed under countable joins.

References

[Age94] S. Agerholm. A HOL Basis for Reasoning about Functional Programs. PhD
thesis, BRICS, University of Aarhus, 1994. Also available as BRICS report
RS-94-44.

[BM92] R. Burstall and J. McKinna. Deliverables: a categorical approach to program
development in type theory. Technical Report ECS-LFCS-92-242, Edinburgh
University, 1992.

[Coq86] Th. Coquand. An analysis of Girard’s paradox. In Proc. 1st Symp. on Logic

in Computer Science, pages 227–236. IEEE Computer Soc. Press, 1986.
[FMRS92] P. Freyd, P. Mulry, G. Rosolini, and D. Scott. Extensional PERs. Infor-

mation and Computation, 98:211–227, 1992.
[Fre91] P. Freyd. Algebraically complete categories. In A. Carboni, M.C. Pedicchio,

and G. Rosolini, editors, Proceedings of the 1990 Como Category Theory

Conference, volume 1488 of Lecture Notes in Mathematics, pages 95–104,
Berlin, 1991. Springer.

[Hyl91] J.M.E. Hyland. First steps in synthetic domain theory. In A. Carboni, M.C.
Pedicchio, and G. Rosolini, editors, Proceedings of the 1990 Como Category

Theory Conference, volume 1488 of Lecture Notes in Mathematics, pages
131–156, Berlin, 1991. Springer.

[Koc81] A. Kock. Synthetic Differential Geometry. Cambridge University Press,
1981.

[LP92] Z. Luo and R. Pollack. Lego proof development system: User’s manual.
Technical Report ECS-LFCS-92-211, Edinburgh University, 1992.

[LS95] J.R. Longley and A.K. Simpson. A uniform account of domain theory in
realizability models. To be submitted to special edition of MSCS for the
Workshop on Logic, Domains and Programming Languages, Darmstadt,
Germany, 1995.

[Luo94] Z. Luo. Computation and Reasoning – A Type Theory for Computer Science,
volume 11 of Monographs on Computer Science. Oxford University Press,
1994.

[Pau87] L.C. Paulson. Logic and Computation, volume 2 of Cambridge Tracts in

Theoretical Computer Science. Cambridge University Press, 1987.
[Pho90] W.K. Phoa. Domain Theory in Realizability Toposes. PhD thesis, University

of Cambridge, 1990. Also available as report ECS-LFCS-91-171, University
of Edinburgh.

[Reg94] F. Regensburger. HOLCF: Eine konservative Erweiterung von HOL um

LCF. PhD thesis, Technische Universität München, November 1994.
[Reu95] B. Reus. Program Verification in Synthetic Domain Theory. PhD thesis,

Ludwig-Maximilians-Universität München, 1995.
[Ros86] G. Rosolini. Continuity and effectiveness in topoi. PhD thesis, University

of Oxford, 1986.
[RS93a] B. Reus and T. Streicher. Naive Synthetic Domain Theory – a logical ap-

proach. Draft, September 1993.
[RS93b] B. Reus and T. Streicher. Verifying properties of module construction in

type theory. In A.M. Borzyszkowski and S. Soko lowski, editors, MFCS’93,
volume 711 of Lecture Notes in Computer Science, pages 660–670. Springer,
1993.

[Str91] T. Streicher. Semantics of Type Theory, Correctness, Completeness and

Independence Results. Birkhäuser, 1991.

[Tay91] P. Taylor. The fixed point property in synthetic domain theory. In 6th

Symp. on Logic in Computer Science, pages 152–160, Washington, 1991.
IEEE Computer Soc. Press.

