Modular Semantics and Logics of Classes

Bernhard Reus*

School of Cognitive and Computing Sciences
University of Sussex
bernhard@cogs.susx.ac.uk

Abstract. The semantics of class-based languages can be defined in
terms of objects only [8,7,1] if classes are viewed as objects with a con-
structor method. One obtains a store in which method closures are held
together with field values. Such a store is also called “higher-order” and
does not come for free [13]. It is much harder to prove properties of
such stores and as a consequence (soundness of) programming logics can
become rather contrived (see [2]).

A simpler semantics separates methods from the object store [4,12]. But
again, there is a drawback. Once the semantics of a package of classes is
computed it is impossible to add other classes in a compositional way.
Modular reasoning principles are therefore not obtainable either.

In this paper we improve a simple class-based semantics to deal with
extensions compositionally and derive modular reasoning principles for
a logic of classes. The domain theoretic reasoning principle behind this
is fixpoint induction.

Modularity is obtained by endowing the denotations of classes with an
additional parameter that accounts for those classes added “later at link-
age time.”

Local class definitions (inner classes) are possible but for dynamic class-
loading one cannot do without higher-order store.

1 Introduction and Motivation

In our quest for a complete denotational understanding of the semantics and
logics of object-oriented programming languages we have treated object-based
languages [13] in terms of Abadi and Cardelli’s object calculus [1] and class-based
languages [12] in terms of a simple sublanguage of sequential Java.

Class-based languages use the class concept to describe a collection of objects
that are the instances of the class. In [8] two denotational models for various
languages (including classes and inheritance) are given. One uses fixpoint clo-
sures, the other one self-application but in both models objects contain fields and
methods (method closures). This leads to what is called “higher-order store”,
the domain of which is defined by a mixed variant equation similar to the one
below:

St = Recioc(RecrVal) x Recaq(St—Val x St) .

* partially supported by the EPSRC under grant GR/R65190/01 and by the Nuffield
Foundation under grant NAL/00244/A

For such stores invariance properties are hard to show.

A simpler approach aims at separating methods from objects. Methods do
not have to be stored in the heap but are gathered in an environment that
contains a method suite for each class. The class name acts as a link between
the objects in the store and the method suites and is used for method dispatch.
There are several variations of such a denotational semantics in the literature,
[3,4,12], but in all of them only a fized set of classes can be interpreted. Logics
based on operational semantics which address these problems were presented in
[11,14]. A denotational semantics, however, provides easier handling of mutual
recursive modules as well as better tools for analysing and extending the language
and logic. It also allows us to study the differences between logics for languages
with higher-order store (object-based languages) and class-based languages more
thoroughly.

In this paper we introduce a denotational semantics that is “open” with
respect to extensions of classes and thus allows for a modular programming
logic. The main contributions are:

— modular (compositional) denotational semantics for classes without higher-
order store

— modular logic for classes (in terms of denotations)

— semantics for local classes

— explanation of modularity in class-based languages and relationship w.r.t.
object-based languages.

Correctness of programs is usually shown using Hoare-like calculi. But it is the
design, analysis, and soundness proof of these calculi that can be simplified using
denotational semantics.

In the next section we briefly present the syntax of a simple class-based lan-
guage. Then a (standard) denotational semantics is provided. Section 4 improves
this semantics to obtain modularity and compositionality. Finally, modular proof
rules are discussed. The paper end with a short summary and outlook (Section 6).

2 Syntax

The syntax and semantics of the class-based language is a refinement of the one
n [12]. Let F be the set of field names, M the set of method names, and C the
set of class names. Usually, f stands for a field name, m, n stand for method
names, and C, D for class names.

a,bi==x variables
| new CO object creation
| af field selection
| af=0 field update
| a.m() method call
|

letz=ainb local def.

The “self” reference this is just considered a special (predefined) variable name,

therefore this € Var. Note that we do not distinguish between expressions and

statements (like in the object calculus). There is no extra operator for sequential

composition as it can be expressed using let, i.e. a;b = let x = a in b where x

does not occur freely in a and b. Methods always have to return a result.
Additionally, there is a syntax for class definitions:

¢ = class C {[inherits D] f; =1-n
m; = bj j=1...,m
CO=b

}

cu=e€lcd

A class definition is similar to one in Java with all type declarations omitted. It
contains a list of field declarations, a list of method declarations and a construc-
tor. For the sake of simplicity all functions and the constructor are nullary and
shadowing of field variables by inheritance is disallowed, ie. it is not possible to
declare a field in a subclass that was already declared in a superclass®.

3 Denotational Semantics

The denotational semantics is supposed to live in the category of predomains
— ie. complete partially ordered sets — and continuous maps. Equivalently one
can work in a category with domains (that have a least element) and strict,
continuous maps. Note that the fixpoint operator fix is only defined on domains
with least element.

Indexed collections, like stores and method suites, can be nicely modelled as
records.

3.1 Record types

Let L be a (countable) set of labels and A a predomain then the type of records
with entries from A and labels from L is defined as follows:

Recr, (A) =27 €Prsin (L) Ar

where A" is the set of all total functions from L to A. It is easily seen that
Recy, is a locally continuous functor on PreDom. A record with labels I; and
corresponding entries v; (1 <14 < k) is written {|l; = vy,. ..l = vi[}. Notice that
Recy,(A) is always non—empty as it contains the element (), 0).

Records are ordered as follows:

(L1, f1) ©T (Lo, fa) & L1 =Ly AN VL€ L. f1(£) Ca fao(0)

1 A more sophisticated treatment shadowing the duplicate fields of the superclass
as used in Java can be modelled by adding the duplicate fields with appropriately
changed field names.

Therefore, a record and its extension are incomparable. Note that records do
not have a least element, only minimal ones. This can be remedied by lifting
the record type to attach a new least element, usually called L: Recp(4) is a
complete poset if A is so, thus the lifted Recy,(A4), is always a domain.

Basic record operations like selection, update, extension, and deletion are
defined below.

Definition 1. Let r € Recy(A) such that r = (L, f) with L C L and f € AL.
Definedness of label | in record r is as follows: | € domr <[€ L.
Selection of a label | € L in record r, short r.l, is defined if | € domr and yields
f({) e A.

An update function for records is define in Table 1. It is undefined for labels
which do not appear in the argument record.

s ni=l..np._ g _ J undefined if [& dom{|li=f;[}'=""
Uil nsmg) = {0

Table 1. Definition of record update

If r1 = (L1, f1) and ro = (La, f2) are two records in Recy,(A) then the exten-
sion r1 + 12 s defined as follows:

(L1, f1) + (L2, f2) = (L1 U Lo, Al if L € Ly then f1(1) else f2(1))

Note that in r1 + 2 the values of the fields in ro which are also used in ry are
lost.

Finally, if r = (L, f) and | € L then the deletion operation which erasesl in
r, r\ 1, is defined as follows:

_r if | € domr
r\l= { (L\1, f) otherwise

For a nested record r € Recy, (Recp,(A)) we abbreviate r[l; := r.ly[lz := a]
by the simpler and more intuitive r[l;.l2 := a].

3.2 Semantic Domains

We assume flat predomains for basic values (like booleans or integers) Val and
a flat predomain of locations Loc.

The class-based language introduced above finds its interpretation within the
following non-recursive system of domains:

Definition 2. Let the semantic counterparts of objects (1), stores (2), closures
(8), method suites (4), and class descriptors (5) be defined as below.

Ob = Recx(Val)xC

St = Recioc(Ob)

Cl = Loc x St — Val x St

Ms = Recaq(Cl) x (Loc x St—St) x C
Mss = Recc(Ms) (5

—~ o~ —~
=~ W
D D O —

An object consists of a record of field values plus the name of its class type. This
information is stored in order to be able to do the dynamic dispatch for method
calls (due to subtype polymorphism). A store is a record of objects indexed by
locations. A closure is a partial function mapping a location, representing the
callee object, and (the old) store to a value, the result of the method, and a
new store which accounts for the side effects during execution of the method in
question. A method suite (Ms) is a record Recp(Cl) x (Loc x St—St) x C which
contains all methods of a class, the initialisation code for the constructor, and
the name of the superclass. We assume that there is always a superclass, ie.
there is a root class Root that all classes inherit from?. The constructor takes a
location in which to create the object. This reference is created freshly by the
semantics of new and then passed to the constructors of the superclass. A class
descriptor (Mss) is the collection of method suites for all declared classes. The
function type : Ob — C returns an object’s class, ie. type(o) = 0.2, which is the
object’s dynamic type. For interpreting variables we need an environment Env
which maps variables to values, ie. Env = Var—Val.

3.3 Semantic Equations
The interpretation of the syntax is given by the following semantic equations:

Definition 3. Given an environment p € Env, an environment of method suites
€ Mss and an expression a, its interpretation [a]p : Mss — St—ValxSt is
defined in Table 2 (page 6). Note that the semantic let on the right hand side
of the definitions is strict in its first argument.

Given an environment of method suites p € Mss a class definition c is defined

via [c] : Mss — Ms in Table 3 (page 6).

The methods of the superclass are copied into the method suite of the subclass.
It is more memory efficient not to copy them and use a more sophisticated
method dispatch instead that searches in super classes. Finally, since we work
in an untyped setting, it is legitimate to initialize any field with zero. In a typed
setting zero would be replaced by a default value for the type of the field. It is no
contradiction to the untypedness of our semantics to have classes (class names)
stored in objects as these classes represent runtime types needed for dynamic
dispatch. There are no static types in use.

2 In Java this would be Object.

[l ppo = (p(z),0)
[this] puo = (p(this), o)
[new C()] ppo = (¢, n.C2(¢,0)[£.2 =(C]) where ¢ ¢ domo
[aflppo =let (¢{,0')=[a] ppoin (o' L.1.f o)
[af=b]ppo =let (¢,0')=[a] ppoin

let (v,0")=[b] ppp o’ in {v,o" [(.1.f :=])
[a.m(O)] ppo =let (¢,0')=[a] ppoin p.type(c’.£).1.m(¢,o")

[Let z=ainb] ppo = let (¢,0")=[a] ppoin [b] p[t/x] po’ .

Table 2. Denotational semantics of expressions

class C inherits D {
f. i=1..n
7

{m;=A(¢, o). [b;] (this—£) o}’ =" ™ + p.D.1,

m;=b; I=1-™ u= <,\<e, o). ([b] (this—£) p (n.D.2(¢, 0))).2[f; := 0], >
c() =b D

Table 3. Denotational semantics of class definitions

The semantics of a module class C ... could be defined as
fix o : Mssy . {|C = [class C...] u[}
Fixpoint induction would then provide the corresponding proof principle. But

this definition does not give the desired result if classes depend on other classes.
An example is used below to emphasize the problem:

class Top = {

£

m() = this.f.n()

n() =0

Top() = this.f = this

}

class C inherits Top {

n() =1

C() = this = this /* skip */
}

The semantics of these two classes according to the above are:

[class Top...] = fix u.{Top = ({ m z)\)\<<;, U>>.un.,type(o.(U.ﬂ.f)).l.n(a.f.f, o),
£, 0). ol¢ := ({if = £}, Top)], Root) |

[class C inherits Top...] =
fix p. {|C = ({Im = X{¢, o). p.type(o.(0.L.f)).1.n(c.L.f,),
n=X¢{o0). 1},
At 0). o[l := ({If = £[},C)], Top) [}

If we join the two classes into one class descriptor p defined as follows
p = {Top = [class Top...J[} + {|C = [class C inherits Top...][}

and interpret the following expression ¢

let o = new Top()
in let _ = o.f = new C()
in o.m()

w.r.t. p we obtain:

[t]10 o =1let o1 = o[l := ({If = £}, Top)] in
let o2 = p.Top.2(¢',01)[¢'.2 :=C] in
let 03 = o3[¢.f :={'] in
w.type(os.£).1.m(¢, o3)

where £ is fresh in o and ¢ is fresh in 0. This simplifies to
let 04 = o[l := ({f = '}, Top), ¢’ := ({f := ¢'[},C)] in pu.Top.1.m(¢, 04)
which by the semantics of class Top simplifies to
w.type(oy.(04.£.f)).1.n(04.L.f,04)
which in turn evaluates to
wu.C.L.n(l' o4)

Obviously, the result depends on the semantics of the method n in C, ie. u.C.1.n.
But the fixpoint operation yields no defined result for p.C, just one for u.Top
and thus the result is undefined whereas it should be 1. The reason for this
unexpected behaviour is that the fixpoint has closed the method suites available.
It cannot be updated to contain the methods of other classes added later.

To avoid this problem we define the semantics of classes slightly differently,
in a parameterized way.

4 A modular semantics for classes

Modules depend on a context of class declarations unknown at the time of defini-
tion. Later they may be linked together with this context changing the semantics
of the original modules. This effect will be modelled by (mutual) fixpoints. Recall
that records defined by fixpoints can not get bigger (because of their invariance
under extensions) but the values of their fields can become more defined. This is
enough for our purposes, since in module or package definitions the number of
methods and fields is fixed. Nevertheless, the record extension operator is needed
to express a temporarily growing number of classes.

Definition 4. We define a polymorphic operator maprec that applies a function
to all components of a record: mapreca: (A — B) — Recp(A) — Recp(B) as
follows:

maprec f (D, g) = (D, f o g)

which is in analogy with map for lists.

A modular class definition has the following semantics taking into account
further packaging with other classes:

Definition 5. The semantics [-]™ : Mss — Ms is defined as
[classC...]™ = A\ : Mss.fixT : Ms . [classC ...] ({{C=1[} + p)

where the parameter | represents the possible additional classes C may depend
on.

Even if C is not intended to refer to any other class, in an open world it must
reserve the right to refer to future subclasses of itself.

A “package” or “linkage” operator is needed that links a module with a
given package, ie. a list of linked (or packed) modules. Like modules packages
have an additional parameter in order to be open to future extensions. In order
to accomplish this, we define the type

CTs = Rece(Mss — Ms)

which represents collections of class transformers of type Mss — Ms that describe
the semantics of a class depending on a class descriptor for the context.

Definition 6. The package operator
packc : (Mss — Ms) x CTs — CTs .
1s defined as follows:

packc (M, P) =fix 6 : CTs,.
{C=Au:Mss. M(6(u) \ C+ p)lt +
maprec (Az : Mss — Ms. Ay : Mss. z(6(p).C+ p)) P .

Definition 7. The semantics of a package of class definitions can be defined as
follows:

[class C{...} cI] = packc([class C{...}]™, [<])
and [€] = {|f}-
Lemma 1. Packaging with nothing does not have any effect, ie.

pack([class C=...]",0) = {|C = [class C=...]"|}

Proof. Let M = [class C = ...]™ and assume § = {|{C = M|} (1). If we can
show that

{C =M : Mss. [class C=...]"(6(u) \C+ p)[} = {C= M|}
then by fixpoint induction we have shown
fixd : CTs . {{IC= A : Mss. [elass C=...]"(0(p) \C+ p)} ={C= M|}
which implies the claim.

{C=Ap: Mss. [class C=...["(0(u) \ C+ p)[} =)
={C=Au:Mss. [class C=...]*({{C=Mp)}\C+p)} =
={{C=Ap:Mss. [class C=...]™ ul} =

={lC= M

One can always “close” a package or module by just applying it to the empty
environment.

4.1 Inner Classes

Inner classes are classes defined “on-the-fly” inside classes or methods. Simple
class descriptors are not sufficient as argument to the interpretation function
since packaging needs transformers. The type of the interpretation function thus
changes to

[Mp: CTs — St—Val x St

If “let class C ...in s” denotes the syntax for local inner class declarations
the interpretation is as follows:

[let class C ... in s] pdo = [s] p packc([class C ...], 6) o

Whenever the interpretation really needs the method environment — ie. when
evaluating a method call or creating an object — the environment can be closed
for this moment of time to find the right closure:

[new C()]pdo = (¢, (6.C{}).2(¢,0)[L.2 :=C])
where ¢ ¢ domo
[a.m(O)]pdo =let (¢,0')=[a] pdoin (6.type(c’.£){[}).1.m(¢,o")

The corresponding change to method store transformers means that we have to
change the semantics of the class modules slightly:

[classC ...]J™ = Au : Mss. fix7T : Ms . [classC ...]
{IC = A_: Mss. 7} + maprec (Az : Ms. A_: Mss. z)

5 Logics of Programs

Having fixed the denotational semantics of classes we can start reasoning about
denotations. This is in analogy with the LCF (Logic of Computable Functions)
project (see e.g. [10]) for the functional paradigm.

5.1 Specifications

First we have to define an appropriate notion of specification for classes following
[6,11,14]. Compare also with [12].

As every class contains a number of methods, some common structures in
specifications can be singled out: for every method there is a result specification
and a transition specification.

B, € p(Val x St) result specification for me M
Tm € p(Loc x St x Val x St) transition specification for m € M

Taking into account that we are only interested in partial correctness (at least
for the considerations of this paper) the meaning of the specifications can be
described informally as follows:

By, : “If method m terminates its result fulfils the result specification.”
T @ “If method m terminates its effect fulfils the transition specification.”

A modular specification may depend on the specification of some other classes.
The existence of other classes in the environment may indeed be part of the
specification itself.

Definition 8. Specification building operators for methods (mth), classes (cls),
and packages (pck) are defined below. For the sake of readability we abbreviate
the type of result specifications RSpec = p(Val x St) and transition specifications
TSpec = p(Loc x St x Val x St).

mth : RSpec x TSpec — p(C x Cl)
cls : Recp(RSpec x TSpec) — p(C x Ms)
pck : Recc(Recaq(RSpec x TSpec)) — p(Mss)

(C, f) € mth(B,T) iff V£ € Loc. Vv € Val.Vo,0’ € St.
(type(o-t) = C A [(E.0) = (0,0"))
= B(v,0')NT(l,0,v,0")

(Copy € cls(R) iff YmeM. medom R = medompu A (C, u.m) € mth(R.m)
0 € pck(R) iffvCeC. Cedom R = Cedomd A (C,4.C) € cls(R.C)

The following abbreviation will be used repeatedly:
v € C— Riff Ceédomy A (C,~.C) € cls(R)
Proposition 1. The specifications above are admissible predicates.

Proof. For example,

(C, f) € mth(B,T) iff V¢ € Loc.Vv € Val.Vo, 0’ € St.
(type(o.£) # CV f(£,0)1 V (B(f(£,0)) AT (L, 0, f(£,0)))

10

As C is a flat predomain admissibility must only be shown with respect to the sec-
ond component f. Since admissible predicates are closed under universal quan-
tification, disjunction, conjunction, and composition with continuous maps (and
function application is continuous) it only remains to show that T, B, and T are
admissible. The former is by definition, the latter are because they are predi-
cates on a flat predomain. One can show similarly that the other predicates are
admissible. Note that C € dom~ is admissible in 7 due to the non-extension
order on records.

Specifications for class description transformers can also be defined in the
logical relations style:

Definition 9. Given predicates P € p(A) and Q € p(B), a predicate P — Q €
p(A — B) is defined as follows:

feP—-Qiff YVvacA aeP= fla)eQ .
Corollary 1. If Q is admissible so is P — Q.

5.2 Modular Proof Rules

As the semantics of classes and packages is defined via fixpoints it seems adequate
to use fixpoint induction. Fortuitously, as shown above, the specifications in use
are admissible such that fixpoint induction is applicable.

A spatial conjunction operator, *, for records (of method suites) will be used
below. It is defined in analogy with separation logic [9,5] where the operator
works on heaps. It is more appropriate than normal conjunction A due to the
modularity of class definitions.

Definition 10. Let P,Q € p(Mss), then P x Q € p(Mss) is defined as follows:
v € P*Q iff Iy1,72 : Mss. domy; Ndom~ye =0 A v =71 +792 A 11EP A12€Q .

We assume that * has higher precedence than —.

Admissibility of P * @) is a more delicate matter but fortunately it is not
required for the rules below since * always appears on the left hand side of an
implication —.

The rules below show which assumptions can be used when in order to prove
packages which are broken down into classes. The correctness of classes under
certain context assumptions can the be proved using standard techniques not
discussed in this paper.

Theorem 1. The following proof rules are correct:

[class C ...] € (C+— R)*I' — cls(R)
[class C ...]m e ' — cls(R)

(1)

M e I xpck(R’) — cls(R) Pe(C— R)xI' — pck(R/)

) packc(M,P) e I' — pck({{C = R[} + R")

11

[c] € (C— R) *xpck(R') x I" — cls(R) [cl] € (C— R)*xI" — pck(R’)
[ec] el —pck({C=R[}+ R’

(3)

Proof. Since the predicates in use are admissible one obtains correctness by
fixpoint induction.

For rule (1) assume (i) that 4 € I" and (induction hyp) that 7 € pck(R). We
have to show that [class C...]J({{C = 7} + p) € pck(R). But this holds by the
premise of rule (1) since {|C =7} +p € C— R« I by (i) and (ind.hyp.).
Rules (2) and (3) can be shown similarly with (3) using (2).

The following predicate states that a certain class in a class descriptor is a
subclass of another. The predicate is well-defined since the subtype hierarchy is
not circular.

Definition 11. Let C,D € C and v € Mss:

D<,CifyD3=CV(y.D3=D'AD'<,C).

5.3 Method Invocation and Inheritance

The semantics of method invocation depends on the (dynamic) class type of the
callee object. The class is only known, however, for this, it is not known for
arbitrary objects on the heap. To verify a property of the method it could be
necessary to stipulate that the method behaves identically in all classes. This
is unrealistic. It is more convenient to assume that it behaves identically for a
certain branch of the class hierarchy. If it is known that the maximal class type
of an object is C, then the possible methods to be taken into account can be
reduced to those in the hierarchy below C. For all of those one could stipulate
that they share some behaviour sufficient to prove the given specification. This
can be done using the spatial implication operator > (see also [9]):

Definition 12. For any v € Mss and P, Q € p(Mss) we have
yeP>Q iff V8:Mss. e P=>~+08€Q .

With the help of > one can now express that no extension of a context may
contain a subclass of C that does not fulfill ¢, briefly Sub(C,) > false where
Sub(C, @) is defined as shown below:

~v € Sub(C,¢) iff ID:C.D €domy A v.D¢ ¢ AD <, C.

Thus, for a proof of § € I' x Sub(C, ¢) > false — A one can assume that the
input g € I' x Sub(C, ¢) > false does not contain any subclasses of C that do not
fulfill ¢. In order to employ behavioural subtyping for C one chooses ¢ to be the
specification of C.

12

6 Conclusion

We have presented a modular denotational semantics for a class-based language
and sound proof rules for managing the modules. No recursive domains are
necessary as long as persistent classes are not loaded at run time. To achieve
the latter one could resort to the approach presented in [13] for object-based
languages, paying however the price of a much more involved semantics and
logics with more severe restrictions.

The advantage of the semantics presented in this paper is that fixpoint in-
duction is sufficient to derive useful proof rules for modular specifications, the
only restriction being that specifications are admissible. Furthermore, the deno-
tational approach does not commit itself to a particular logic so the techniques
are applicable to all kinds of languages.

Future work comprises the integration of data abstraction such that accessi-
bility restrictions can be modelled. The applicability of the presented technique
to separation logic needs to be investigated as much as the benefit of using
separation logic for the records of class definitions.

Acknowledgements: The idea of this paper emerged in discussion with Peter
O’Hearn and Uday Reddy about the alleged limitations of a simple denotational
semantics for classes. Thanks to Thomas Streicher and Hubert Baumeister for
useful remarks and pointers.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Springer Verlag, 1996.

2. M. Abadi and K.R.M. Leino. A logic of object-oriented programs. In Michel Bidoit
and Max Dauchet, editors, Theory and Practice of Software Development: Proceed-
ings / TAPSOFT ’97, 7th International Joint Conference CAAP/FASE, volume
1214 of Lecture Notes in Computer Science, pages 682—696. Springer-Verlag, 1997.

3. P. America and F.S. de Boer. A proof theory for a sequential version of POOL.
Technical Report http://www.cs.uu.nl/people/frankb/Available-papers/spool.dvi,
University of Utrecht, 1999.

4. Anindya Banerjee and David Naumann. Representation independence, confine-
ment, and access control. In Proceedings of ACM Principles of Programming Lan-
guages POPL, volume 164, pages 166-177. ACM press, 2002.

5. Cristiano Calcagno and Peter W. O’Hearn. On garbage and program logic. In
FoSSaCS, volume 2030 of LNCS, pages 137-151, Berlin, 2001. Springer.

6. F.S. de Boer. A WP-calculus for OO. In W. Thomas, editor, Foundations of
Software Science and Computations Structures, volume 1578 of Lecture Notes in
Computer Science. Springer-Verlag, 1999.

7. Andreas V. Hense. Wrapper semantics of an object-oriented programming language
with state. In Proceedings Theoretical Aspects of Computer Software, volume 526
of Lecture Notes in Computer Science, pages 548-568. Springer-Verlag, 1991.

8. S.N. Kamin and U.S. Reddy. Two semantic models of object-oriented languages.
In Carl A. Gunter and John C. Mitchell, editors, Theoretical Aspects of Object-
Oriented Programming: Types, Semantics, and Language Design, pages 464—495.
The MIT Press, 1994.

13

10.

11.

12.

13.

14.

Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning about
programs that alter data structures. In CSL, volume 2142 of LNCS, pages 1-19,
Berlin, 2001. Springer.

L.C. Paulson. Logic and Computation, volume 2 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1987.

A. Poetzsch-Heffter and P. Miiller. Logical foundations for typed object-oriented
languages. In D. Gries and W. De Roever, editors, Programming Concepts and
Methods, 1998.

B. Reus. Class based vs. object based: A denotational comparison. In Algebraic
Methodology And Software Technology, volume 2422 of Lecture Notes in Computer
Science, pages 473-488, Berlin, 2002. Springer Verlag.

B. Reus and Th. Streicher. Semantics and logics of objects. In Proceedings of the
17th Symp. Logic in Computer Science, pages 113-122, 2002.

B. Reus, M. Wirsing, and R. Hennicker. A Hoare-Calculus for Verifying Java
Realizations of OCL-Constrained Design Models. In FASE 2001, volume 2029 of
Lecture Notes in Computer Science, pages 300-317, Berlin, 2001. Springer.

14

