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Abstract. This work explores the differences in novice users experiences when learning a simplified
variant of the Ruby programming language for the first time. Sonic Pi and Kids Ruby both aim
to teach users via a media-oriented set of programming exercises and environment, on the premise
that this accessible domain will motivate novice learners. Users retention of the language and
interaction style with each environment were measured and the results indicate that Sonic Pi
facilitates a greater level of user experimentation and concept retention.

1 Introduction

This study explores the differences in learning motivation and effectiveness between the pro-
gramming environments of Sonic Pi and Kids Ruby. Both are a simplified version of Ruby, a
language which was designed in 1994 with the intention of being easy and enjoyable to use, yet
still having powerful performance[11].

Kids Ruby uses turtle graphics as part of their lesson plans[6], following in the footsteps
of LOGO, one of the first widely adopted educational languages in schools[9]. Like Logo, one
of the aims of Sonic Pi is that learners have permission to explore using their own individual
styles whilst creating something concrete[1]. However in its case this is done through allowing
the learner to create their own sounds, emphasising the importance of creativity in the learning
process and allowing learners immediate concrete feedback during the implementation of their
ideas. The element of immediate feedback as applies to live-coding has been discussed as one
attractive feature of Sonic Pi in terms of maintaining student engagement[2], however this study
focuses more on the effects that learning programming through making music have on students.

There has been a lot of work on developing programming languages which lower the barrier
to gaining programming proficiency, so there are various theories about the best types of lan-
guage to do so, a taxonomy of which has been made for some of the better known educational
languages[8]. The main point of agreement and conclusion in the hunt for a more accessible
entry point into programming that can be drawn from that study is that a social barrier is
in finding a real reason to program, and that the ideal educational language would (domain
specific or not) have an application with a broad appeal for the more under-represented groups
in computer science.

Even within the current novice programmer demographic, there is no single programmer
archetype. The links between different programmer types and the environment that they are
working in is an interesting one. It has been shown that in some environments, that levels of
tinkering, the trial and error of new interactions with a computer interface, shown by the subject
can have an effect on their performance on completing tasks[4]. Elsewhere it has been observed
in a larger-scale study of novice computer science students that there are three distinct types
of programmer, namely stoppers, movers and extreme movers[7]. Although in these studies a
slightly different vocabulary is used to describe programmer behaviour, the underlying thought
remains the same; that too much “brainless” interaction with the code produces negative effects



on performance, yet that a certain level is required in order for the subject to learn.

I believe that with Sonic Pi, the simplified syntax and broad appeal of the musical domain
are very well-suited for the novice programmer. The interface of Sonic Pi has been specifically
designed to make it simple and uncluttered, allowing the user to interact with it using only
simple commands, directly linked to a response, removing the need for the normal wrapper
commands needed within a typical coding interface. This is so as to allow novices to focus on
key concepts for which they can see results initially rather than have to wade through many
commands to create something simple. I would like to therefore explore whether the positive
effects of this motivation help it achieve its more pedagogic goals, doing so via the teaching
and examination of the core principles learned in combination with subject feedback and the
tracking of interaction patterns whilst completing tasks.

Both languages are taught through a media-oriented environment, both encouraging learners
to learn through exploring their creativity in order to complete the lesson material. It has been
widely discussed that there should be more emphasis on the benefits of creativity in learning in
schools [3] and it would be interesting to find out whether this is the case for these languages
and whether the retention of the concepts learnt was more pronounced in those students who
learned them in a more creative manner.

2 Research Questions

The aim of this research is to explore the effects the two learning environments have on the novice
programmer in terms of motivation and assimilation and retention of information. The main
research question is whether there is a significant improvement in the learning of programming
concepts when Sonic Pi, rather than Kids Ruby is the teaching environment. This will be
explored through the following questions:

– Is there a significant improvement in the learning of programming concepts when Sonic Pi
is the teaching environment?
- The hypothesis being that since the concept of music being “encoded” (notated) is already
so normal that the jump to programming it will be less than for example images. This should
be explored in terms of measuring the confidence and interaction style with the enviroment
of participants whilst performing programming tasks.

– Is there a link between the amount of tinkering or tweaking of code a novice does whilst
learning and their retention of concepts? And is there a higher retention of concepts when
learning with Sonic Pi?
In terms of the percentage of concepts retained approximately 3 weeks after initial tuition.
Each environment will have its own set of keywords, in addition to those common to both;
in the delayed recall of the concepts these will be measured and compared through keywords
retained.

– In terms of the motivation whilst learning and engagement with the task, are there interesting
traits we can observe in learners of Sonic Pi?
This was be measured in terms of the correlation between the users own self efficacy reporting
before and after the session, and in their level of interaction (in terms of prolificacy and
tinkering) with the code

3 Experimental Method

This study took place in the form of a controlled experiment, where novice programmers were
taught and made to perform programming exercises with either Sonic Pi or Kids Ruby. The



analysis made is a between-subject comparison of the two environments, as educational pro-
gramming tools. The participants were selected to represent an equal distribution of half male,
half female and of that half science and half arts first year undergraduate students. 12 unpaid
volunteers were used, a number a little under that of the initial study of Logo by Seymour
Papert[9]. Ideally a subsequent study would analyse the performance of school children in the
same manner as here, since this is the target student of both packages, and could follow from
both this study and the testing and material developed during the development of Sonic Pi.
Although both the programming environments involved in this study are aimed at school chil-
dren, the concepts and teaching are still applicable to these older equally inexperienced users,
as they are very recent school leavers and are new to programming.

Tasks

The participants were initially asked to fill out a questionnaire, which aims to measure how
confident they felt about learning a programming language. This questionnaire was a modified
replication of the one proposed by Compeau and Higgins 1991 to measure self-efficacy [5]. The
questionnaire was presented alongside an explanation of its origin, and the instruction to treat
the questions of everyday life like the technology discussed was modern. Only the scale of the
original questionnaire was changed, to make it from 1 to 5 rather than 1 to 10 to tie in with
the scale on the other questionnaire participants received.

The participants then followed a tutorial sheet (see Appendix A and Appendix B) for a
timed period of half an hour before being asked to then carry out a loosely constrained set
of tasks in ten minutes, meant to assess their understanding of what they had learnt. These
sessions were individually supervised, with the participant aware they could ask for help with
any of the tasks. The tutorials consisted of a selection of relevant material from both languages’
lesson guides, aimed to teach the concepts of conditionals, random numbers, and iteration. The
tutorials were written in the same format, covering the same sets of pedagogic tasks; only the
keywords and the descriptions of shape vs. sound differed. The tasks which followed were writ-
ten and delivered in the same style as the tutorial sheet, and the participants interactions with
the software were recorded through capturing the screen using CamStudio1. The video of their
interaction with the software was then analysed and details such as the number of lines of code
typed and alterations made were recorded.

After the participants’ interactions with the software were complete, they filled out a sec-
ond questionnaire about how interesting they found the lessons, how well they felt they had
understood the concepts covered in the session and how well they might remember them. They
were also asked if they had any creative hobbies, how much programming or mathematical
experience they had, and whether they would view what they had just done as creative rather
than following a set of instructions.

The participants were asked to provide contact details in case of any questions which might
come up about the study, and were contacted approximately three weeks later and were asked
to freely try to recall and list any of the commands they had learnt from their programming
session. They had no expectation of this second test, which was done in the manner of the
Rundus, Loftus and Atkinson[10] in their paper exploring the differing effects of immediate and
free recall. The number of keywords recalled were then compared with the total number each
participant had been exposed to. Of the 12 students used in the initial study, for this follow-up
free recall test, only 10 participated.

1 http://camstudio.org/



4 Results and Analysis

On the examination of the screen recordings from the experiment, the number of lines of code
written in total by each participant were counted, as well as how much they were prone to tinker
with their code. The criteria used to qualify an action as tinkering used here are:

– Tweaking a line already written
These tweaks or modifications, if on the same line would be separated by the participant
running the program, or changing another line before coming back to the tweaked line to
perform a secondary modification.

– The deletion of a line of code
– The addition of a single line of code within a block
– The movement of a chunk of code (either the copying and pasting, or deletion and re-

insertion)

Since the amount of tinkering will be dependent on the amount of code written and the two have
a correlation coefficient of greater than 0.5 when compared, the value used to measure it is that
of the percentage of lines tinkered with. There is a positive correlation between the quantity of
tinkering and the number of lines typed, which was expected, from what intuitively you could
expect, and the self-efficacy results discussed in the previously mentioned paper on tinkering
[4]. To measure the participants’ retention of the concepts learnt, the percentage of keywords
recalled was measured. Each correctly remembered keyword was tallied and the inability to
remember the specific name, but the convincing description of the function and how it was used
would count as half a point.
The results of the experiment are displayed in the table below:

Table 1. Participant Results

Participant Lines Written Code Changes Environment % Tinkered % Retained

1 73 19 S 26.03 56.25
2 33 9 R 27.27 27.27
3 43 8 S 18.60 81.25
4 44 7 S 15.90 85.50
5 53 14 S 26.41 -
6 47 14 S 29.78 75.00
7 35 9 R 25.71 63.63
8 53 32 S 60.37 87.50
9 32 18 R 56.25 -
10 38 6 R 15.79 54.54
11 33 3 R 9.09 63.63
12 63 15 R 23.80 72.72

Table 2. Where the Environment is either SonicPi or KidsRuby, %Tinkered is the percentage of lines tweaked
out of the number written and %Retained is the percentage of commands or codewords retained after a period
of approximately 3 weeks after the tutorial

From the data collected from the experiment, it is shown that those who learned with Sonic
Pi not only typed more, but remember a significantly higher percentage of the commands used,
with a p-value of 0.039 in comparison to KidsRuby.

When a comparison of lines of code vs. concepts retained is compared, there is no significant
correlation, which cannot confirm the original second hypothesis mentioned in section 2.

Within the media-oriented languages considered here, there was no significant difference
in motivation between learners between the two, however within the comments section of the



Fig. 1. The boxplots show the differences in distribution of lines of code written and percentage of codewords
recalled between the two environments; both differences between the performances are significant with p-values
of 0.043 for the quantity of code written and 0.039 for the percentage of code words recalled.

questionnaires, a qualitative conclusion which can be drawn is that the motivation levels for
these sorts of creative, media-oriented methods of learning programming are much higher than
other methods the participants could think of, however since this was not one of the hypotheses,
there is no data to support this conjecture, and it would be an interesting parameter to explore
in any follow-up experiments.

5 Discussion

The results indicate that using the environment of Sonic Pi is preferable to using Kids Ruby
due to both a significantly greater (p < 0.05) number of codewords retained and lines written
by students learning with Sonic Pi. The benefit of more codewords being retained long term is
an obvious one. That of quantity of code typed less so, however, intuitively the more a learner
is encouraged to interact constructively with a new environment the more they are expected to
become familiar with its working.

There was no significant correlation (using Spearman’s p correlation coefficient) between
tinkering/lines of code written and concept retention; this was one of the hypotheses of the
experiment, and it is surprising that there is no link. However, there is a greater level of code
written, code tinkered with, and concepts retained in users of Sonic Pi.

There is a significant correlation between the quantity of code written (not just how many
lines the resulting program is) and the level of tinkering (number of times code is tweaked
over the course of its creation) with Spearman’s p correlation coefficient greater than 0.5. This
suggests that the fact Sonic Pi promotes more prolific code writing will also encourage greater
levels of tinkering (it is also shown in the data that users of Sonic Pi have a significantly
higher percentage of tinkering to code written) and this, if considered as in Beckwith et al.[4]
as a valuable activity in user interaction with code when used constructively and not to the
extreme2, means the interactions recorded within the Sonic Pi environment can be said to be
more beneficial to learning than that of Kids Ruby.

2 Learners exhibiting this problem are referred to as extreme movers in this paper.



The data collected from the questionnaires was disappointing, as the responses were so
similar as to be uninteresting (The average level of motivation being 4 on a scale of 1 to 5 with
standard deviation of 0.43, with that of confidence being 3.92, s.d. 0.66), however on the whole
the responses were that the participants were relatively confident and that the fact that they
were learning programming in a creative manner increased their motivation. The other form
of feedback which was not measured in this study was the questions participants asked about
wanting more programming techniques to allow them to achieve what they wanted to create,
both visually and aurally. This would have been interesting to have thought of and tried to
measure or record, as during the tutorials I observed that many of the more creatively inclined
students wanted to and were guessing how to program these more complicated structures.

6 Concluding Remarks

In conclusion, the results indicate that Sonic Pi is the slightly more favourable environment for
a novice programmer to learn in as it both encourages more prolific code writing, and tinkering.
These in turn promote a better retention of the concepts learnt; and this is shown by the Sonic
Pi learners’ far better scores in the delayed free recall test. Future experiments might want to
measure the difference between Sonic Pi and a non-media-oriented environment, and have a
different metric for measuring motivation, as these would be interesting aspects to consider,
which were not addressed in this study. It would also be interesting to perform the experiment
with a larger group of participants, to explore more subtle correlations, which was not possible
within this study.
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A KidsRuby Tutorial

In this tutorial, you will learn to program through writing code which makes simple computer
graphics in the KidsRuby environment. KidsRuby is a language which is based on the computer
programming language Ruby, but has been made simpler for novice learners.

Please complete the various exercises, giving yourself time between each to fiddle around
and experiment with the new concepts youve learnt

1. Instructions
Programs operate because they carry out the sequence of instructions they are given in the code
which makes up a program.
To set things up for creating computer graphics, KidsRuby needs to be told that this is what
the set of instructions are supposed to do. In order to do this, you type the following instructions:

Turtle.start do

|

end

All the code that you type from now on should be inside the first line and the end keywords.
The package used to make the graphics is called Turtle graphics, which is why the keyword
turtle is needed.

Now, within the do and the end keywords, add the following command:

Turtle.start do

background yellow

end

When you now click the [start/play] button to run (or execute) the code youve written, you
should see the colour change.

Try swapping or adding to the lines of code with the following:

background black

pencolor white

...blue...green...red\newline

2. Syntax and order matter
The order and way you write instructions in the code is very important, like words in any
language: if you wrote a set of instructions such as a recipe for someone, the order would be
important. The spelling is also important; your program needs to give the computer instructions
in a language it understands, and it only understands a small, precisely defined set of words.

Try copying this set of commands:

Turtle.start do

background yellow

turnright 90

forward 50

turnright 90



forward 50

turnright 90

forward 50

turnright 90

forward 50

end

The commands tell the pen what lines to draw on the background: the numbers specify
either how many pixels (the unit which your screen resolution is measured in) the length of the
line should be, or by how many degrees the direction of where the line is drawn should change.

Try drawing changing the order of some of the commands to see the different shapes you
can make, then try misspelling a word or forgetting the space between the numbers and the
words, and see what happens.

3. Loops
A useful thing to be able to do is tell computers to carry out a sequence of instructions multi-
ple times. This saves writing out the same commands a lot of times, like in the previous code
example. Programmers do a lot of reading of code, and it is neater to say “do something ten
times” than to say “do something” followed by “do something” etc. ten times.

Type the following code and run it, it produces exactly the same thing as in the previous
example.

Turtle.start do

background yellow

4.times do

turnright 90

forward 50

end

end

The highlighted part is the part which defines the loop: you need the do and end in much
the same way that you need capital letters and full stops, or that you use parentheses, they
show the computer the start and the end of the loop, and therefore which instructions to carry
out 4 times. Try changing the number 4 to other numbers, and changing the commands within
the loop.

4. Random numbers
Computers can generate random numbers, through the following command:

rand(10)

This particular command will generate a number which is zero or larger, but less than ten.
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
Try putting some random numbers into your loop:

Turtle.start do

background yellow

4.times do



turnright rand(90)

forward 50 + rand(10)

end

end\newline

This will result in the degree being some random number under 90, and the length of the
lines drawn to vary between 50 and 59 (because each time we are adding 0 to 9 on to 50)

5. Conditionals
Sometimes in a program you will not want all of the instructions to be carried out (executed
by the computer) you will only want some of them to be, and only in certain situations. This
is handled by conditionals, or if-statements.

An if statement looks like this:

if A

do instruction B

else

do instruction C

end\newline

The A here is the condition which will determine which of either B or C will be carried out
(performed)
To make an example using something you just learnt, lets make it random. Type the following
code and run it:

Turtle.start do

if rand(10) < 5

turnright 90

forward 40

turnright 90

forward 40

turnright 90

forward 40

turnright 90

forward 40

else

turnright 90

forward 50

turnright 60

forward 50

turnright 60

forward 50

end

end\newline

This program is equivalent to saying: if a randomly generated number between zero and ten is
less than 5, then draw a square, if it is not, then draw a triangle

Try changing the program a bit, and make some other conditional statements.



6. Nesting commands
To make more complicated programs, a lot of these commands will have to be executed in
different combinations. Putting different commands inside other commands is called nesting
commands. For example, a loop inside a loop, or a conditional within a loop. The fact that you
have been typing all of your commands within the Turtle.start do . end commands is nesting.

Try typing and running the following:

Turtle.start do

background yellow

pencolor red

8.times do

forward 50

if rand(2) < 1

turnright rand(90)

else

turnleft rand(90)

end

end

end

This makes use of all three more complicated programming concepts covered in this tutorial.

Try experimenting and making more crazy shapes with different combinations.



B Sonic Pi Tutorial

In this tutorial, you will learn to program through writing code which makes simple electronic
music in the SonicPi environment. SonicPi is a language which is based on the computer pro-
gramming language Ruby, but has been made simpler for novice learners.

Please complete the various exercises, giving yourself time between each to fiddle around and
experiment with the new concepts youve learnt

1. Instructions
Programs operate because they carry out the sequence of instructions they are given in the code
which makes up a program.

Type the following commands into SonicPi:

play 50

sleep 1

play 60

When you now click the green button to run (or execute) the code youve written, you should
hear the noises which correspond to the numbers 50 and 60. the sleep command tells the com-
puter to wait for 1 second between carrying out the next play instruction, otherwise theyll be
played really close together.

Try changing the numbers to hear the different notes which you can play, and changing or
removing the sleep command.

2. Syntax and order matter
The order and way you write instructions in the code is very important, like words in any
language: if you wrote a set of instructions such as a recipe for someone, the order would be
important. The spelling is also important; your program needs to give the computer instructions
in a language it understands, and it only understands a small, precisely defined set of words.

Try typing in some of the following individually and running the program:

pllay 50

play50

sleep

Now try this longer set of instructions (or commands)

play 50

sleep 0.5

play 51

sleep 0.5

play 50

sleep 0.5

play 51

sleep 0.5

play 50

sleep 0.5



play 51

sleep 0.5

3. Loops
A useful thing to be able to do is tell computers to carry out a sequence of instructions multiple
times. This saves writing out the same commands a lot of times, like in the previous code ex-
ample. Programmers do a lot of reading of code, and it is neater to say do something ten times
than to say do something followed by do something etc. ten times.

Type the following code and run it, it produces exactly the same thing as in the previous
example.

3.times do

play 50

sleep 0.5

play 51

sleep 0.5

end

The highlighted part is the part which defines the loop: you need the do and end in much the
same way that you need capital letters and full stops, or that you use parentheses, they show the
computer the start and the end of the loop, and therefore which instructions to carry out 3 times.

Try changing the number 3 to other numbers, and changing the commands within the loop.

4. Random numbers
Computers can generate random numbers, through the following command:

rand(10)

This particular command will generate a number which is zero or larger, but less than ten.
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
Try putting some random numbers into your loop:

3.times do

play 50

sleep 0.5

play 50 + rand(10)

sleep 0.5

play 50

sleep 1

end

This will result in the first play playing a number which is equal to 50 plus a random number
of less than 10.

5. Conditionals
Sometimes in a program you will not want all of the instructions to be carried out (executed
by the computer) you will only want some of them to be, and only in certain situations. This
is handled by conditionals, or if-statements.

An if statement looks like this:



if A

do instruction B

else

do instruction C

end

The A here is the condition which will determine which of either B or C will be carried out
(performed)
To make an example using something you just learnt, lets make it random. Type the following
code and run it:

if rand(10) < 5

play 50

sleep 0.5

play 50

play 52

sleep 0.5

play 50

else

play 60

sleep 1

play 55

sleep 0.1

play 55

end

This program is equivalent to saying: if a randomly generated number between zero and ten
is less than 5, then play one sequence of notes, and if not, then play a different one.

Try changing the program a bit, and make some other conditional statements.

6. Nesting commands
To make more complicated programs, a lot of these commands will have to be executed in
different combinations. Putting different commands inside other commands is called nesting
commands. For example, a loop inside a loop, or a conditional within a loop.

Try typing and running the following:

3.times do

play 50

sleep 0.5

if rand(10) < 5

play 50

sleep 0.1

play 50

else

play 57

sleep 0.5

play 50

end

sleep 0.5



play 60

sleep 0.5

play 50

sleep 1

end

This makes use of all three more complicated programming concepts covered in this tutorial.

Try experimenting and making more crazy sounds with different combinations.


