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Abstract  
Intelligent Tutoring systems (ITSs) and Intelligent Learning Environments (ILEs) have been 
developed and evaluated over the last 40 years.  Recent meta-analyses show that they 
perform well enough to act as effective classroom assistants under the guidance of a human 
teacher.  Despite this success, they have been criticised as embodying a retrograde 
behaviourist technology.  They have also been caught up in broader controversies about the 
role of Artificial Intelligence (AI) in society and about the entry of big data companies into 
the education market and the harvesting of learner data.  This paper concentrates on rebutting 
the criticisms of the pedagogy of ITSs and ILEs.  It offers examples of how a much wider 
range of pedagogies are available than their critics claim.  These wider pedagogies operate at 
both the screen level of individual systems, as well as at the classroom level within which the 
systems are orchestrated by the teacher.  It argues that there are many ways that such systems 
can be integrated by the teacher into the overall experience of a class. Taken together, the 
screen-level and orchestration-level dramatically enlarge the range of pedagogies beyond 
what was possible with the “Skinner Box”. 
 
Practitioner Notes 
What is already known about this topic 

• A variety of ITSs and ILEs exist and are commercially successful, particularly in 
the USA. 

• ITSs and ILEs have typically been used one-to-one with a single student. 
• Early ITSs and ILEs had a reputation for promoting passive learning. 

 
What this paper adds 

• ITSs and ILEs have been evaluated to give better post-test learning outcomes than 
a single teacher in a conventional classroom or lecture theatre, but not as good as 
a skilled human teacher working one-to-one. 

• Support tools for teachers are now available to help them manage a class of 
students using ITSs and ILEs 

• ITSs and ILEs are not limited to isolated use by individual students. 
• The pedagogy at screen-level should be distinguished from the pedagogy deriving 

from the way the system(s) are orchestrated in the classroom. 
 
Implications for practice and/or policy 

• The best results are obtained by involving and training teachers in the effective 
orchestration of the ITSs and ILEs in their classroom. 

• Paying attention to effective orchestration has positive benefits in terms of 
learning behaviours and outcomes. 

• ITSs and ILEs can now perform as effective classroom assistants. 
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Introduction 
From their earliest days, Intelligent Tutoring Systems (ITSs) and Intelligent Learning 
Environments (ILEs) have been concerned to mimic expert human teaching and to develop 
novel pedagogies that exploit the specific affordances of these environments (see, e.g. Burton 
& Brown, 1979, page 14; Clancey, 1979; O’Shea, 1979).  Since then, the pedagogies have 
developed from the one-to-one, skill-focused tutoring of some early intelligent tutoring 
systems through to dialogue-based conceptual interactions that may take the learner’s 
affective state in account, and on to an explicit expectation that these systems will typically 
be used in a blended fashion, and that the teachers who deploy them need to be supported to 
orchestrate their use. 
 
ITSs and ILEs use artificial intelligence techniques to adapt and scaffold the experience of 
the individual learner in ways that attempt to maximise the quality of their learning and/or 
minimise their learning time.  For example, a recent evaluation of the Assistments system 
found that “the use of Assistments caused 75% more learning than in a typical year”  
(Roschelle, Feng, Murphy, & Mason, 2016).  Such AI-based systems achieve this by building 
a model of the learner based on their interaction with the system in conjunction with a model 
of the domain.  For the sake of simplicity, the rest of the paper will refer to all such systems 
under the generic term “Intelligent Learning Environments” (ILEs).   
 
Within the context of formal education, seven  meta-reviews have compared the quality of 
the learning outcomes with ILES as compared to using more traditional methods (Kulik & 
Fletcher, 2016; Ma, Adesope, Nesbit, & Liu, 2014; Nesbit, Adesope, Liu, & Ma, 2014; 
Steenbergen-Hu & Cooper, 2013, 2014; VanLehn, 2011).  Ma et al. (2014), for example, in 
their meta-analysis report:  
 

“The use of ITS was associated with greater achievement in comparison with teacher- 
led, large-group instruction (g = .42), non-ITS computer-based instruction (g = .57), 
and textbooks or workbooks (g = .35). There was no significant difference between 
learning from ITS and learning from individualized human tutoring (g = –.11) or small-
group instruction (g = .05). Significant, positive mean effect sizes were found 
regardless of whether the ITS was used as the principal means of instruction, a 
supplement to teacher-led instruction, an integral component of teacher-led instruction, 
or an aid to homework.” (Ma et al., 2014, page 901)  

 
Taken together, these seven meta-reviews involved more than 180 comparative studies, 
though there may be some double counting.  Overall they show that such systems performed 
better with an effect size of 0.47, in the narrow sense of learning outcomes, than a teacher or 
lecturer working with a whole class, but not as well as a skilled human tutor working one-to-
one with an individual learner with an effect size of -0.19 (for a summary of these meta-
reviews, see du Boulay, 2016).  
 
Despite these positive results, ILE’s have come under a number of criticisms.  These fall into 
three general types.  First, there are criticisms of their inherent pedagogy and a believed lack 
of solid evaluation of effectiveness.  Second, there are criticisms of the way ILEs are 
currently being deployed in some educational environments.  Third, there are concerns about 
the role of AI and big companies in education and the harvesting of learner data.  For 
example, Herold (2017) has criticised personalised learning in general, and ILEs in particular, 
on a number of grounds. These include, inclarity about the meaning of the term “personalised 
learning”, a weak evidence base for their effectiveness, attempts by some proponents to fill 
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the whole of the student’s day with screen-based activity, and the argument that the pedagogy 
within these systems is inadequate and redolent of earlier, discredited, behaviourist traditions. 
 
Pedagogy and evaluation 
In terms of their pedagogy, ILEs have been labelled as the “new behaviourism”, offering a 
contemporary version of Skinner Boxes (Watters, 2015, 2017; Wilson & Scott, 2017).  A 
“Skinner box”(Skinner, 1968) was an electro-mechanical teaching system embodying the 
following principles:  
 

“In acquiring complex behavior the student must pass through a carefully 
designed sequence of steps, often of considerable length. Each step must be so 
small that it can always be taken, yet in taking it the student moves somewhat 
closer to fully competent behavior. The machine must make sure that these steps 
are taken in a carefully prescribed order” (Watters, 2015).   

 
Watters (2015) argues that: 
 

“[It’s] not to say that the influence of Skinner and behaviorism are gone. Far from 
it. Behaviorism has persisted - although often unnamed and un-theorized - in 
much of the technology industry, as well as in education technology – in Turing 
machines not simply in teaching machines.”    

 
Wilson and Scott (2017) state that “most ITSs basically follow one pedagogical method in 
which the learner passively accepts the information given by the teacher or instructional 
media”.  They also claim that: 
 

"ITSs by their nature follow “instructional” paradigms, where the logical 
constraints of the procedural knowledge to be mastered demand rigid imposition 
of sequences of didactic demonstration and associated equally constrained 
assessed tasks." (Wilson & Scott, 2017, page 14) 

 
This is wrong on two counts.  First, as I shall show, ILEs can teach both conceptual as well as 
procedural knowledge.  Second, as I shall also show, they do not necessarily demand rigid 
sequences of didactic demonstration.  Wilson and Scott, in turn, cite Bloom (1995), who 
identifies as one of three key problems with ITS: "The users are not willing to accept the ITS, 
because of the limited pedagogy that is available, for example, there may not be enough 
feedback from the “teacher” in the ITS.” 
 
This notion of limited pedagogy and lack of feedback had some truth in terms of the very 
early days of Intelligent Tutoring Systems (ITSs), a sub-category of ILEs, but later systems, 
as explained later in this paper, offer many different kinds of feedback both at the domain 
level as well as at the metacognitive and affective levels. 
 
Even earlier than C. P. Bloom (1995), Rosenberg (1987) criticised the ILEs of that time as 
not well grounded in theories of learning and not having been evaluated via convincing 
control group studies.  Again, allowing for these criticisms to be partially correct in 1987, 
they no longer hold more than 30 years later, see the earlier remarks about detailed 
evaluations.  The main thrust of the criticisms about pedagogy is that the learner has little 
agency and is coerced along a particular, though individualised, learning path.  While this 
may have been true of some specific kinds of ILE, it is not a general feature.  In the first 
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place, some contemporary ILEs leave the agency about what to do next with the learner, and 
in the second place, some ILEs deliberately involve the human teacher in the way that the 
ILE is managed and used in the classroom.  Other systems are adaptive not just to the degree 
of understanding and skill development of the learner, but also to their affective disposition 
and motivation.  Finally, ILEs typically provide (and adapt) feedback at different levels of 
granularity, as well as offering both domain-level and metacognitive help when learners get 
stuck or are not going about their learning in an effective manner.  The body of this paper 
provides details of such systems. 
 
Methods of deployment 
The second kind of criticism is the way that some organisations have chosen to deploy ILEs.  
In the worst cases, student sit all day at lap-tops, albeit using adaptive systems, but with 
insufficient involvement of human teachers, insufficient meaningful interactions with their 
peers, and insufficient time away from their screens. 
 
This dystopian vision, is a legitimate criticism of the way that some ILEs are deployed, but 
not of the qualities of the ILEs themselves.  It implies a future where learners are trapped for 
many hours a day at screens, offering an impoverished and dehumanised interaction to the 
benefit of big tech companies.  This vision is not always shared by learners, for instance, 
when there were demonstrations by students about the Summit Learning Program: 

 
"Unfortunately we didn’t have a good experience using the program, which 
requires hours of classroom time sitting in front of computers. Not all students 
would receive computers, the assignments are boring, and it’s too easy to pass 
and even cheat on the assessments. Students feel as if they are not learning 
anything and that the program isn’t preparing them for the Regents exams they 
need to pass to graduate. Most importantly, the entire program eliminates much 
of the human interaction, teacher support, and discussion and debate with our 
peers that we need in order to improve our critical thinking." (Tabor, 2018) 
 

This paper argues for a different vision: one where education is still human-centred, where 
human teachers support the general direction of learning, including helping learners “learn 
how to learn”, and are confident that they can offload some of their work to ILEs operating as 
classroom assistants, making use of varied pedagogies.   

 
The role of AI companies 
A different kind of criticism arises from the increasing, and scary, use of AI in many areas of 
life and has led to major concerns such as (i) the dehumanisation of teaching and the sacking 
of teachers and (ii) the potential take-over of the educational system by corporate interests in 
order to harvest the data generated by learners – taking them a further step along the already 
well developed path from “learner” to “customer” to themselves being the “product” via the 
harvesting of their data (see the chater by Williamson in this special issue, as well as 
Williamson, 2018a, 2018b; Williamson, 2018c).  Protests by parents, teachers  and students 
in the UK and the USA have highlighted these concerns (see for example, 
https://twitter.com/AGavrielatos/status/1121704316069236739 and  
https://twitter.com/hashtag/TellPearson?src=hash ). 
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The issues of the corporate takeover of education and data harvesting are not addressed here, 
but are amply covered by Petr & Thille  and Kitto & Knight in their chapters in this special 
issue.  
 
This paper’s defence of the richness of ILE pedagogy is conducted by illustrating a number 
of pedagogies incorporated into ILEs directly, or indirectly via the way they are deployed, 
that go far beyond behaviourist principles.  These include (i) adaptively assisting the learner 
to work through examples rather than solving problems, (ii) adaptively assisting the learner to 
learn by teaching, (iii) conducting a dialogue with the learner about the concepts to be 
learned, (iv) cultivating metacognitive reflection about their learning strategies, (v) 
adaptively helping learners to work in pairs. 
 
A number of mainstream examples of ILEs are described briefly to illustrate the main and 
varied thrusts of their pedagogy.  In general, these systems use AI to create a model of the 
learner in order to choose what best next task to present and/or how to frame feedback and 
advice at various levels of granularity.  Some also use AI to conduct a dialogue in either 
written or spoken English, and possibly to infer something of the learner’s affective state. 
Many involve the use of one or more pedagogical agents, as described by Richards & 
Dignum in this special issue.   Some evaluative studies of the systems’ learning outcomes are 
also included in this paper.  Sometimes the results were not as positive as the overall meta-
analyses described above have found.  For the purpose of illustrating the breadth of ILE 
pedagogies, this is not an issue.  For a more systematic review of adaptive educational 
technology, see Aleven, McLaughlin, Glenn, and Koedinger (2017). 
  
This paper is organised in a further four sections.   In order to illustrate the breadth of the 
pedagogies now available, the first part distinguishes the screen-level pedagogy of how 
individual systems work with a single student, from the orchestration-level pedagogy 
whereby such systems are deployed in the bigger temporal and spatial context of a whole 
class.  “Orchestration” covers a range of issues including tutoring more than one student at a 
time, and the integration of the system into other classroom activities. 
 
The next two sections look at examples of screen-level and orchestration-level pedagogies, 
chosen to illustrate the wide range of pedagogies and deployment methods now in use.  One 
thread that links these examples is the extent to which the different pedagogies promote 
active learning, rather than the passive learning associated with Skinner (see for example, 
Skinner, 1968).  As the main focus is on the broad nature of the pedagogies of these systems, 
there is no attempt to explain how these pedagogies are achieved technically.  Finally, the 
fourth section indicates some directions in which pedagogy might develop.   

Screen-level and Orchestration-level 
Researchers distinguish two levels of pedagogy for ILEs operating in formal and semi-formal 
education. The first is the screen-level pedagogy, determining the interaction of the learner 
with the system.  Issues here include who “drives” the interaction (the learner or the system), 
who chooses what tasks to address (the learner or the system), what kinds of help and 
feedback are offered (or provided) and when, and in what ways the system adapts these and 
other factors to the individual learner or group of learners.   
 
Adapting to the learner is a central feature of this screen-level pedagogy. This feature is 
based, in part, on the finding that the most effective tutoring is provided one-to-one by a 
skilled-human tutor who tailors the interaction to the specific capabilities, progress and needs 
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of the tutee in order to achieve mastery at each stage (B. S. Bloom, 1984).  Adaptation can be 
achieved along different learner dimensions such as their prior knowledge and skill, their 
knowledge and skill growth, their path through the material, their learning strategies and 
metacognition, their effort and their learning style (for a detailed discussion, including 
evidence of effectiveness of each of these kinds of adaptivity, see Aleven et al., 2017).   
 
There is also interest in the “non-cognitive” aspects of adaptivity, where in addition to 
adapting to the cognitive state of the learner, ILEs take account of, and adapt to, the learner’s 
affective and motivational state (for  a review, see e.g., du Boulay, 2018).  This kind of 
adaptivity helps with student engagement by keeping the learner interested in what is being 
learned and able to deal with the inevitable setbacks caused by confusion, frustration, anxiety 
and boredom that are commonplace experiences of learners.  For an example of such a 
successful, multi-faceted pedagogy, see Arroyo et al. (2014).  They developed pedagogic 
tactics to deal with a range of inferred student states, such as achieving mastery but with high 
effort.  For each student state they devised a cognitive decision, such as to maintain problem 
difficulty, as well as separate affective and motivational decisions, such as to praise the effort 
that the student had shown. 
 
The second level of pedagogy is the orchestration of the ILE.  This addresses the issue of 
how the learners’ work with the system(s) is organised within the wider context of other 
learners, of their other activities and of the course they are undertaking, i.e. in formal 
educational settings (Dillenbourg, 2013).  Dillenbourg emphasises the fact that the human 
teacher has a much richer set of possible actions and adaptations available than can be 
designed into an ILE, and so can also exploit unexpected classroom events to enrich the 
learner’s activities with that ILE.  Moreover, the teacher is likely to have a better sense than 
the system of the learner as a person and of their overall personal context.   
 
Various “orchestration systems” have been developed to help the teacher manage the 
competing demands on their time to assist individuals and subgroups making use of 
educational technology within a class (see for example, Martinez-Maldonado, Dimitriadis, 
Kay, Yacef, & Edbauer, 2013; Prieto, Rodríguez-Triana, Martínez-Maldonado, Dimitriadis, 
& Gašević, 2019).  One of the primary aims of such systems is to provide the teacher with an 
indication of who, or which subgroup, needs their attention most at a given moment.  
Reasoning about these competing needs involves some of the same student modelling 
techniques that also underpin ILEs.  For example, an orchestration system, such as FACT,  
changes the classroom dynamics and augments the pedagogy as it offers an extra private 
channel of feedback and communication between each learner and the teacher, as well as 
between the learners themselves (Cheema, VanLehn, Burkhardt, Pead, & Schoenfeld, 2016). 
 
A recent study has illustrated the importance of the teacher complementing the scaffolding 
available in the system with further scaffolding that better respects the needs of the individual 
learner, rather than simply extending the kind of scaffolding already provided by the system 
(Martin, Tissenbaum, Gnesdilow, & Puntambekar, 2018).  Note the finding from (Ma et al., 
2014), described in the Introduction, that “Significant, positive mean effect sizes were found 
regardless of whether the ILE was used as the principal means of instruction, a supplement to 
teacher-led instruction, an integral component of teacher-led instruction . . .[my emphasis].” 
 
 
 
We turn now to several exemplars of screen-level and orchestration-level pedagogy. 
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Screen-level pedagogy: Example Systems 
This section describes a number of ILEs.  There is no attempt to cover the whole field, so 
examples have been chosen to give a broad sense of what has been developed. The main aim 
is to demonstrate that these systems offer educational interactions that go far beyond “the 
Skinner Box”.  Each subsection focuses on a particular pedagogy. 
 
Worked Examples vs. Problems 
The Cognitive Tutors are probably the most well-known form of ILE for teaching skills 
(Anderson, Corbett, Koedinger, & Pelletier, 1995).  In their classic form they are used to 
teach problem-solving, based on an extensive empirical investigation by the developers to 
determine the skills and subskills involved (e.g. algebra, geometry, statistics, chemistry, 
physics, medicine, programming). The systems present a sequence of problems, adjusted to 
the progress of the particular learner.  They ensure mastery learning by ensuring that sub-
skills are mastered before main skills, and provide detailed feedback on every step taken by 
the learner (Block & Burns, 1976; B. S. Bloom, 1968, 1971).  These systems have 
concentrated on STEM subjects because it is relatively straightforward to build student and 
domain models; later sections give examples of ILEs in non-STEM areas. 
   
Many ILEs present an adaptive sequence of problem-statements and then help the learner to 
solve them, based on an AI-based analysis of what ought to be the next most useful problem 
for that particular student to solve (Anderson et al., 1995).  A different approach is to present 
a problem-statement and an example-solution to that problem, and then have the learner work 
through the solution to gain an understanding of how and why it is a solution to the given 
problem-statement.  Again AI-based analyses are used to identify which problem statement 
and example-solution to present next. This is called learning with worked-examples. A 
variant on this is learning via erroneous worked-examples.  Here the learner is expected to 
identify, fix and explain both the error and the correction for it in the erroneous example.   
 
In one experiment, using an ILE which compared problem-solving, worked-examples and 
erroneous examples in the domain of chemistry, learning gains were identical across the three 
conditions, but the time taken to learn was fastest with the worked examples and required the 
least mental effort (McLaren, van Gog, Ganoe, Karabinos, & Yaron, 2016).  In another 
experiment that compared problem-solving with learner-explanation of erroneous examples 
for decimals, there was no difference in terms of immediate post-test results, but a significant 
difference in terms of a delayed post-test in favour of the erroneous examples group (Adams 
et al., 2014).  These researchers also found that the problem-solving group reported greater 
satisfaction with their interaction than the erroneous examples group, despite it being less 
effective.  Such a result clearly has interesting implications for a pedagogy that adapts to 
learner motivation and affect. In a related experiment, a fixed alternating sequence of 
problem-solving and worked-examples for an ILE teaching the database language SQL was 
compared with an adaptive sequence in which the system chose whether to offer a problem, a 
worked-example or a faded-example.  In a faded-example, one or two steps are omitted and 
the learner is expected to complete them.  Learners using the adaptive sequence learned both 
more and faster than the group using the fixed sequence (Najar, Mitrovic, & McLaren, 2016). 
 
Learning by Teaching 
Betty’s Brain is a system used in formal educational settings to help learners build up a 
conceptual understanding of a domain rather than develop a skill as in the algebra tutor 
mentioned above (Leelawong & Biswas, 2008). The core pedagogy is learning by teaching.  
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This involves either two learners taking it in turns to teach each other, or a learner and a 
system where the learner teaches the system (see for example, Chou & Chan, 2016; Matsuda, 
Cohen, & Koedinger, 2015; Palincsar & Brown, 1984; Pareto, 2014). The system is called 
Betty’s Brain because the narrative supporting the interaction is that the learner is building up 
the conceptual understanding of the character in the system (Betty) and the concept map 
being built is thus the contents of her brain.  This subterfuge aims to reduce the learner’s 
potential affective discomfort when her creation fails the test: it is not she who failed but 
Betty. 
 
The learners are offered a range of multimedia descriptive materials about a small eco-system 
and are expected to formalise their understanding of it by building up a concept map of the 
various processes that take place within that eco-system, such as the creation of carbon 
dioxide. The learner draws the map as a network by selecting named nodes and links.  The 
learner can use the network to check Betty’s understanding of the biological processes by 
reasoning via chaining along links from one node to another. She can also ask the system to 
make the same kind of check, as the concept map is a “shared resource” between the learner 
and the system. The system itself can use an AI-based analysis to check the overall accuracy 
of the concept map by submitting it to a range of test questions (quizzes) and seeing how well 
it answers them.    
 
The system has a pedagogical agent (see Richards & Dignum, this special issue) in the form 
of a teacher who not only sets and marks the tests about the eco-system and can offer advice 
about how to proceed but, importantly, monitors the learner’s use of the multimedia materials 
and of the concept map testing facility.  This teacher can then offer metacognitive advice 
about the way the learner is going about her concept learning, such as not making good use of 
the online materials or retesting the concept map without changing it.  While the overall task 
is set by the system, the order and manner for building the concept map is the learner’s 
responsibility.  This is an active rather than a passive learning process, and the process itself, 
as well as its outcome, is monitored and scaffolded. 
 
In one evaluation three groups of fifth grade school children were compared.  One group 
(SRL) used the system as described above, involving both metacognitive prompts to promote 
self-regulated learning, as well as learning by teaching.  A second group (LBT) undertook 
learning by teaching but without metacognitive prompts.  The third group (ITS) were taught 
the concepts directly, did not carry out learning by teaching and did not receive 
metacognitive prompts.  The authors summarised the results as follows:  
 

“The directed feedback in the ITS and LBT systems enhanced student learning 
performance in the early sessions of the main study. This advantage disappeared in later 
sessions as the students in the SRL group learnt to use strategies demonstrated by the 
guided metacognitive feedback in their learning and self-monitoring tasks. In the transfer 
test, the benefits of the guided learning became even more visible as the SRL students 
were able to transfer their metacognitive strategies to a new learning environment, where 
most of the scaffolds to aid the learning task were removed.” (Leelawong & Biswas, 
2008, page 205). 

 
However, it was also found that some students lacked some of the pre-requisite skills and 
their wider rationale, e.g. about reasoning along causal chains, so as to learn about the 
specific causal relationships in the eco-system to be modelled (Biswas, Segedy, & 
Bunchongchit, 2016).  In order to improve the system’s effectiveness, the introductory 
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narrative was augmented to explain the nature of this reasoning and to make it clearer that 
this kind of reasoning would have many other applications.   
 
Learning through Dialogue 
Many of the examples of systems so far cited have been designed to tutor relatively closed 
rather than more open-ended tasks, and the communication between learner and system has 
not involved natural language.  By contrast, ReportTutor aimed to help trainee pathologists 
learn how to write a diagnostic pathology report following a biopsy for melanoma (Saadawi 
et al., 2008).  It presented images of pathology slides and then invited the learner to write a 
report on what the slides revealed, and possible diagnoses.  This report was to be written in 
free prose.  The learner reports were compared against a reference standard report for each 
case produced by an expert Dermatopathologist who “indicated the features, attribute names, 
and attribute values that ReportTutor is designed to detect”.  The system read the report and 
offered comments and criticisms of what had been written, also in free prose.  The roles of AI 
in this system were to understand the text that the learner had written and then identify ways 
in which the learner’s diagnostic report was either inaccurate or missing features.  In terms of 
pedagogy, ReportTutor could operate in two modes.  In one the feedback from the system 
was provided once the draft report was finished; in the other mode it could provide feedback 
immediately while the report was being written.  In a comparative experiment it was found 
that both modes of feedback produced similar improvements in pathological report writing. 
 
In a 17 year research program based at University of Memphis, a range of dialogue-based 
tutors have been developed under the generic title, AutoTutor (Nye, Graesser, & Hu, 2014).  
AutoTutor typically engages with the learner by questioning them about a topic, e.g. 
computer literacy or critical thinking, and then analysing and reacting to the adequacy of the 
learner’s free-form answer in English.  The researchers express the pedagogical argument for 
this approach as follows: 
 

“Discourse with the student opens up a range of new learning activities related to 
expressing and communicating knowledge (e.g., self-reflection, answering deep 
questions, generating questions, resolving conflicting statements). The strengths 
of natural language tutoring complement a wide range of domains, including 
traditional problem-solving . . . . these activities emphasize comprehending, 
analyzing, synthesizing, and evaluating knowledge . . . . Dialog-based tutoring 
helps integrate concepts and problem-solving with domain principles, scaffold 
domain-specific language, implement abstract strategies, and generate qualitative 
inferences.” (Nye et al., 2014, page 430) 

 
The quote above emphasises their interest in active modes of learning.  The design of 
AutoTutor is based on extensive empirical research into student-teacher dialogues, including 
those that involve the co-creation of explanations and understanding.  As a result, this 
research enabled the designers to incorporate a rich AI-based repertoire of conversational 
tutorial gambits designed to detect the learner’s state of understanding and develop it as much 
as possible.  In addition, some versions of the system detect and respond to the learner’s 
motivational and affective state as well as to the quality of their answers (see, e.g. D'Mello et 
al., 2008).  A later evaluation of the tutor found that “An experiment comparing the affect-
sensitive and non-affective tutors indicated that the affective tutor improved learning for low- 
domain knowledge students, particularly at deeper levels of comprehension.” (D’Mello et al., 
2011). 
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An earlier subsection described systems that made use of erroneous or faded worked-
examples.  A related technique in concept learning involves presenting the learner with 
contradictory material in order to induce confusion, followed, one hopes, by the impulse to 
investigate and resolve the contradiction.  This was a technique adopted by Lehman et al. 
(2013) in a system involving more than one pedagogical agent, which provided contradictory 
information to the student.  They found that the method worked and produced better learning 
than in a no-confusion control condition. 
 
Learning about Learning 
One of the major goals of education is to help learners learn better how to learn.  One facet of 
this major goal is helping learners develop their own metacognitive monitoring and self-
regulated learning (SRL) skills.  The systems we have already described have tackled this 
issue to some extent.  So, for example, in Betty’s Brain, the teacher pedagogical agent 
monitors and advises the learner about the way they are going about learning, and in the ILEs 
for mathematics or programming, the use of faded or erroneous worked examples requires 
learners to generate explanations for the nature of missing or incorrect steps.  
 
Azevedo coined the term “computers as MetaCognitive tools” [my emphasis] as a natural 
development of educational technology systems that act simply as cognitive tools (Azevedo, 
Witherspoon, Chauncey, Burkett, & Fike, 2009).  One characteristic of such a tool is that by 
using AI, “it models, prompts, and supports learners (to some degree) to engage or participate  
(alone, with a peer, or within a group) in using task-, domain-, or activity-specific learning 
skills”. Azevedo et al. (2009) describe MetaTutor, a non-adaptive hypermedia system for 
learning about body systems such as the nervous system. One of their evaluations showed 
that typical high school and college level students “have little declarative knowledge of key 
SRL processes” and learned significantly more when assisted by MetaTutor.  
 
A later, adaptive version of MetaTutor was used to develop and evaluate the note-
taking behaviour of college level students learning about the human circulatory system 
(Trevors, Duffy, & Azevedo, 2014).  The goal was to tackle a particular aspect of self-
regulation in learning, namely, to reduce the extent to which learners undertook shallow 
note taking: essentially just reproducing the source material, rather than elaborating it.  
The system had four AI-based pedagogical agents – a guide, a planner, a monitor and a 
strategiser – that were designed to assist with different aspects of the learners’ 
monitoring and regulation of their learning.  These agents offered hints to learners in 
the experimental condition of the evaluation, but were silent in the control condition.  
The results were mixed, indicating the complexity of the interactions between learning, 
self-regulation of learning, and hints and advice about the latter.  For example, learners 
with low prior knowledge of the circulatory system produced fewer notes as a result of 
the advice of the system, but these notes did not show evidence of high-level 
elaboration.  Learners with high prior knowledge did not change their note taking 
behaviour.  
 

Deployment-level Pedagogy: Example Systems 
This section describes a range of pedagogies that go beyond simply a single learner working 
at a single screen.  As in the previous section, there is no attempt to provide a comprehensive 
review.  The examples are again chosen to offer a sense of how far beyond the Skinner Box 
paradigm ILEs have developed.  The following subsections cover different methods of 
orchestration such as working in pairs and flipped learning. 
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The purveyors of the Cognitive Tutors, mentioned earlier, take a lot of trouble to educate 
teachers about how to make the best use of their intelligent tutoring systems as part of their 
classroom teaching (Koedinger & Aleven, 2016; Koedinger, Anderson, Hadley, & Mark, 
1997).  In other words, the orchestration-level is carefully managed. This means helping 
teachers think about which learners in a class might, in principle, benefit from the extra one-
to-one adaptive tuition and about how to prepare those learners to work with the systems.  It 
also means helping the teacher think about the effect on those learners not using the system.   
 
A multi-school USA-based evaluation of the Algebra Cognitive Tutor compared learning 
outcomes in matched schools (both middle and high) where the experimental schools 
deployed the tutor as they saw fit within the context of their existing mathematics teaching 
(Pane, Griffin, McCaffrey, & Karam, 2014).  Importantly, the careful orchestration-level 
pedagogy described above was not offered to the experimental schools. The control schools 
carried on teaching in whatever way they normally did.  The evaluation was carried out over 
two years and produced mixed evaluation results, but with the experimental high schools 
producing better learning outcomes than the control schools in the second year. The fact that 
the results in the second year of the evaluation were better than in the first year implies that 
the teachers in the experimental high schools had started to improve their own orchestration-
level pedagogy for this system.  This further emphasises the importance of considering the 
orchestration-level pedagogy in evaluating ILEs. 
 
Working in Pairs 
Tutors such as the Cognitive Tutor for Algebra do not have to be used one-to-one with a 
single student.  One possible orchestration-level strategy is to assign the tutor to work with 
pairs or groups of students.  For example, Walker, Rummel, and Koedinger (2009) explored 
how the algebra tutor could be augmented to work with pairs of students engaging in peer 
tutoring.   In this case the tutoring system had the dual role of both teaching algebra as well 
as supporting the mutual peer tutoring activity of the two students.  The experiment compared 
three groups.  One group involved pairs of students who received algebra tuition and AI-
based adaptive support for their peer tutoring activity.  Another group involved pairs of 
students who received algebra tuition and fixed support for their peer tutoring activity.  The 
third group consisted of students who received individual algebra tutoring only.  There were 
no significant differences in learning outcomes, but there were strong differences in learning 
behaviours: for example, the number of problems solved.  A similar experiment, with similar 
results, was performed by Harsley, Di Eugenio, Green, and Fossati (2017) using an ILE for 
programming, where the pairs of students collaborated rather than engaging in peer tutoring.  
There were two conditions: one where there was no feedback on the quality of the pair’s 
collaboration and another where there was.  The issue for the current paper is not whether 
working in pairs was better or worse than working individually, but the fact that ILEs can be 
orchestrated to work with and support pairs of learners. 
 
Flipped Learning 
As a further orchestration pedagogy, ILEs can be used to help with homework rather than as 
classroom assistants.  The Andes system for undergraduate physics was used in such a way 
(VanLehn et al., 2005).  Like the Cognitive Tutors it analysed each step that the learner made 
in solving a multi-step physics problem and provided immediate feedback and hints.  Using 
AI, it also engaged learners in a dialogue both about the approach to solving a particular 
problem, i.e. which physics principle should be used to solve the problem, as well as helping 
them to conceptualise the problem.  The authors of the system evaluated it each academic 
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year over 5 years, comparing cohorts of students who used the Andes system to help with 
their homework compared to those that did not.  There were consistently significantly better 
scores in the exam results for those who used Andes every year with an overall effect size of 
0.61. Clearly there may be some selection bias in such a result, but this does not undermine 
the fact of this use of an ILE in a flipped fashion. 
 
Classroom Orchestration Systems 
In terms of maximising the effectiveness of the scarce resource of the teacher’s time and 
attention, training and support is also needed to help the teacher decide when to intervene and 
mediate the interaction between a learner, or a group of learners, and the intelligent tutoring 
system.  Support is also needed to help the teacher ensure that the learners reflect effectively 
on their experience of the interaction with the system, e.g. via conversations both with other 
learners who have also used the systems and potentially also with those who have not.  So, 
the implicit educational ethos is that the combination of the screen level pedagogy of the 
system together with orchestration-level pedagogy of the teacher offers an effective learning 
experience and guards against learner passivity and other mal-adaptive learner behaviours. 
The specific details of the orchestration of a system comes into even sharper focus when the 
educational, cultural context in which it is to be used differs from that in which it was 
developed (Casas, Fernandez, Barrera, & Ogan, 2015). 
 
Holstein, McLaren, and Aleven (2018) have developed an augmented reality orchestration 
system, Lumilo, for a teacher managing a class of students using an intelligent tutoring 
system for mathematics.   This is similar to the FACT system mentioned earlier (Cheema et 
al., 2016), based on tablet technology, but in this case the teacher’s system provides 
“spectacles” that allow the teacher to observe an augmented reality view of a class of students 
using the intelligent tutoring system.  The AI-based augmented view includes an overall 
listing of the common difficulties across the whole group, as well as virtual symbols hovering 
above each learner indicating individual levels of progress and non-progress as well as 
requests for help.  These symbols include idle, rapid attempts, hint abuse or gaming the 
system, high error after hints, hint avoidance, and unproductive persistence.  The system is 
designed to help the teacher make best use of her time to identify which issues might need 
more of her input when she is teaching the whole class, as well as identifying which learners 
might need more immediate, individual help than the system is able to provide on its own. 

Developing New Pedagogy 
This paper has argued that one needs to consider both the pedagogy of the system itself, as 
well as the pedagogy of the way the teacher makes use of the system.  Indeed, one of the 
future directions of the development of pedagogy involves extending the capability of 
orchestration systems such as FACT and Lumilo.  These expansions might include, for 
example, giving the teacher more scope to choose which learner behaviours the system flags 
up as needing their intervention as the teacher, assisting the teacher in forming subgroups 
within a class with a view to fostering collaborative learning, each group with their most 
appropriate tasks to work on, or pairing up and assisting students to engage in peer tutoring. 
The design of adaptive systems is now being augmented to take account of, and adapt the 
social relationships between learners, between groups and between learners and teachers 
(Walker & Ogan, 2016).  
 
The idea that the pedagogy of orchestration is as important as the pedagogy of the systems 
being orchestrated is not always understood.  For example, the guidance on implementing 
adaptive courseware from the American Association of Public and Land-grant Universities 
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does not mention the issue (see https://www.aplu.org/news-and-media/News/aplu-releases-
first-of-its-kind-guide-for-implementing-adaptive-courseware ). 
 
One of the weaknesses of ILEs is that they have little understanding of the context within 
which they are being used, and although they track the learner’s actions with the system in 
great detail, they do not really know much about the learners as people, in the way that a 
human teacher usually does.  So, if an intelligent learning environment for algebra (say) or 
ecosystems (say) is introduced into a classroom, it is currently the teacher’s job as part of 
orchestration to contextualise the experience, skills and concepts that the learners will 
encounter.   
 
It is also the teacher’s job to make the case as to why it is worth the learner putting some 
effort into the interaction, rather than just idly pressing the buttons, misusing the help, or 
gaming the system (R. Baker et al., 2008).  This goes beyond simply dealing with issues 
around the learner misunderstanding the relation between effort and learning and the 
importance of resilience (Yeager & Dweck, 2012) or developing self-regulation capability 
(Azevedo & Aleven, 2013), but focuses on what the value of this learning might be for that 
learner which might make the effort worthwhile.   
 
While progress has been made in developing an affective and motivational pedagogy (for a 
review, see du Boulay, 2018), the main pedagogical strategy is still largely reactive to the 
learner’s affective and motivational state by providing tactics to deal with difficulties as they 
arise, rather than proactive, anticipating and ameliorating affective and motivational 
problems before they occur (see for example, Rosiek, 2003). 
 
We can anticipate that one line of development of ILEs would involve paying more intention 
to understanding and scaffolding the learner’s initial volition – the will to learn (Keller, 2008) 
– and to the longer-term goal of much education, which is to inculcate a love of learning in 
general (Maehr, 2012).  To achieve this will require systems to be able to adapt the manner in 
which they represent what the learner is about to experience to suit different learners.  They 
will also need to assist the learner, at various points to understand the relevance of their 
learning effort to their longer-term goals (see, for example, the "Relevance Enhancing 
Strategies" in Song & Keller, 2001).  Finally, they will need to help the learner engage in a 
post-learning reflective analysis of “how it went” for them and how future learning might be 
affected. 
 
Stimulating Initial Interest 
An example of stimulating initial interest comes from Coach Mike, a system deployed in a 
museum setting rather than a classroom.  Coach Mike is a pedagogical agent deployed in a 
science and technology museum whose aim is to entice visitors to pay attention to, and then 
engage with, an interactive exhibit about programming (Lane et al., 2013).  We can regard it 
as a system playing a role in a semi-formal educational environment.  Such systems:  

 
“. . . go beyond simply focuses [sic] on knowledge outcomes. They must take 
seriously goals such as convincing a visitor to engage, promoting curiosity and 
interest, and ensuring that a visitor has a positive learning experience. In other 
words, pedagogical agents for informal learning need to not only act as coach (or 
teacher), but also as advocate (or salesperson)” (Lane et al., 2013, page 310).   
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This system operates in two modes.  First it is a “salesman” to persuade a visitor to pay some 
attention to the interactive exhibit.  Then it is a “cheerleader” as it enthusiastically helps the 
visitor learn to program a moveable robot, using physical blocks where each block 
corresponds to a command, such as LEFT, FORWARD, and SPIN.  In such an environment 
the visitor can move away from the exhibit at any time, so one of the goals of Coach Mike is 
persuade the visit to stay and remain interested. 
 
Adjusting the Way Things are to be Learned 
Although there are several examples of language based tutors (see e.g., Nye et al., 2014), we 
are a long way from systems being able to have natural language dialogues with learners 
about their interest in a topic and their potential willingness to put effort in that day. 
However, a “personalisation” menu-based interaction together with data about other students’ 
preferences might establish the values of a number of parameters that could be used to 
recommend which learning objects to use: see for example systems such as Century 
(www.century.tech) and Sana Labs (www.sanalabs.com).  There is still much scope for 
systems to adjust the way that the topic is introduced, to provide compelling examples of the 
relationships of the topic to other things that the learner is interested in, and to manage the 
order and manner in which different parts of the topic are dealt with.  These examples might 
be repeated in some form when the system detects that the learner’s interest is flagging, e.g. 
as evidenced by gaming the system, abusing the help system or not making much progress. 
 
An early example of the above was a study advisor, SOLA* (Arshad & Kelleher, 1993).  This 
system was aimed at students who were proposing to engage in self-directed study in 
statistics, but it could be adapted to other domains and other learning situations.  The system 
conducted an initial interaction with the student to determine their “background knowledge, 
the relevance of the course to their degree and the time which they have available in which to 
learn”.  The system also ascertained “their levels of confidence, degree of support required 
(e.g. directed, exploratory) and whether they want passive/active learning methods.”   
 
R. S. Baker (2016) argues that the cost and time needed to develop ILEs has meant that the 
most widely-adopted systems have not incorporated some of the best features developed and 
evaluated in research labs.  He also argues that there is a parallel and necessary development 
in the use of data analytics to develop pedagogy.  He points to such systems as Course 
Signals (Arnold & Pistilli, 2012) that assist human teachers manage whole cohorts of 
students, e.g. to spot potential drop outs, as opposed to whole classes of students managed by 
orchestration systems.  He also praises systems such as ASSISTments, mentioned earlier, for 
their capability of running educational experiments and thus collecting valuable data to assist 
pedagogic development (Heffernan & Heffernan, 2014). 

Conclusion 
This paper has challenged the comment in the call for papers in this special issue that “. . . 
analytics and AI equate to adopting a retrograde pedagogy from the industrial era. . .”  by 
exploring the ongoing developments in pedagogy embodied in ILEs and anticipated some 
future directions.  It has distinguished between screen-level pedagogy and orchestration-level 
pedagogy as each contribute to the breadth of the learning experience.  The paper has argued 
that ILEs have embraced many ways to support active learning at screen-level as well as via 
careful orchestration of screen-level work in the wider context of the classroom. 
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The paper has sketched some possible future directions involving taking better account of 
fostering the learner’s volition and making more dramatic efforts to present and organise the 
material to be learned in a way that is more adaptive to the interests of the learner.   It has 
also outlined possibilities for supporting the teacher better in terms of managing the many 
demands on their time when learners are using ITSs and ILEs as well as other resources.   
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