
The effects of graphical and textual visualisations in multi-representational
debugging environments

PabloRomero,BenedictduBoulay, Rudi Lutz, andRichardCox
HumanCentredTechnologyGroup,

Schoolof Cognitive& ComputingSciences
Universityof Sussex, Falmer, Brighton,

EastSussex, BN1 9QH,UK.
juanr@cogs.susx.ac.uk

Abstract

The effects of graphical and textual visualisations in a
multi-representational debugging environment were investi-
gated in computing students who used a software debugging
environment (SDE) that allowed them to view the execution
of programs in steps and that provided them with concur-
rently displayed, adjacent, multiple and linked representa-
tions.

The experimental results are in agreement with research
in the area that suggests that good debugging performance
is associated with a balanced use of the available represen-
tations. Additionally, these results raise the issue of whether
graphical visualisations promote a more judicious repre-
sentation use than textual ones for program debugging in
multi-representational environments.

1. Introduction

Only a limited numberof studieshave lookedat the is-
sueof representationcoordinationin multi-representational
programmingenvironmentsandhow perceptualproperties
of therepresentationsemployedcanaffectboththewayand
thesuccesswith whichthey areused.It hasbeensuggested,
for example,that the higherthe debuggingability, the less
frequentthechangesof focusin thesourcesof information
provided for the task [6]; that debugging strategy choice
is affectedby the type of representationswhich areavail-
able[3] andthatgooddebuggingperformanceis associated
with a balanceduseof therepresentationsprovidedby the
environment[4].

Researchon theuseof multiple externalrepresentations
in otherareashasidentifieda setof functionsthatrepresen-
tationscanplay[1]. Representationscan,for example,play
complementaryroles either becausethey presentdiffer-

ent informationor becausethey supportdifferentcognitive
processes.An importantfactor whendealingwith multi-
representationalsystemsis their heterogeneityin termsof
modality. Here modality is usedto meanthe representa-
tional form usedto presentor display information,rather
thanin thepsychologicalsenseof asensorychannel.A typ-
ical modality distinctionis betweenpropositionalanddia-
grammaticrepresentations.Researchon this issuehassug-
gestedthat representationsof differentmodalitiescan ac-
tivatedifferentcognitiveprocesses,that textual representa-
tionsgenerallyrequiremoreactivesearch[2] andpermitthe
expressionof abstractionor indeterminacy while graphical
representationscompeltherepresentationof specificinfor-
mation[5].

2. Method

One of the aims of the work reportedherewas to re-
latedebuggingbehaviour, especiallywindow switchingpat-
terns, to visualisationmodality and debugging accuracy.
The aspectof the experiment reported here considered
oneindependent,within subjectsvariableandthreedepen-
dentvariables.The independentvariablewasvisualisation
modality (graphicalor textual). The threedependentvari-
ablesweredebuggingaccuracy, accumulatedfixation time
betweenthe available representations(total time partici-
pantsspentfocusingoneachrepresentation)andswitching
frequency betweenthe availablerepresentations(the num-
berof changesof focusbetweenthewindowsof thedebug-
gingenvironment).

The debugging environmentemployed(SDE) presents
imagestimuli in a blurred form and allows visual atten-
tion to be trackedasthe usermovesanunblurred‘foveal’
areaaroundthe screen.Useof the SDEenabledmoment-
by-momentrepresentationswitchingbetweentheavailable
representationsto becapturedfor lateranalysis.



Figure 1. Windo w switching frequency by vi-
sualisation modality

The SDE enabledparticipantsto view the executionof
a Java programandpresented,in additionto the code,its
outputandtwo visualisationsof its execution.

Theexperimentalparticipantswereforty two computing
undergraduatestudentsfrom the Schoolof Cognitive and
ComputingSciencesat Sussex University, U.K. All of the
participantshadtakena threemonthintroductorycoursein
Java,but their programmingexperiencevariedfrom having
takenonly this courseto a few extra monthsof experience
in Java andotherprogramminglanguages.

Participantsdebuggedfour buggyversionsof a program
of mediumsizeandcomplexity thatsimulatedthebehaviour
of a drink dispensingmachine.Eachof theseversionswas
seededwith a singleerror. Beforestartingthesedebugging
sessions,participantsspentapproximatelyonehourstudy-
ing the target program.Also, at thebeginning of eachde-
buggingsession,participantscomparedsamplesof bothde-
sired and actualprogramoutputsso that they were clear
abouttheeffectsof theerror.

In eachdebuggingsessionparticipantswereallowedup
to ten minutesto find the error. They were instructedto
think aloudandto identify theerror in theprogramreport-
ing it verballyby statingits location,descriptionanda pro-
posedfix for it.

3. Results and discussion

In orderto relatedebuggingperformanceto theotherex-
perimentalvariables,the42participantsweredividedpost-
hoc on the basisof quartile rangesaccordingto their de-
buggingaccuracy level. Group1 comprisedtheparticipants
with the lowestscoreswhile group4 comprisedthosewith
thehighestscores.

The resultsfor window switching frequency are illus-

Figure 2. Windo w fixation for suppor t repre-
sentations by visualisation modality

trated in Figure 1. There were main effects for group
(F(3,38)= 3.704,p � .01) but not for modality. Planned
contrastcomparisonsindicated that switching frequency
peakedfor group 3 (t(38) = 2.355,p � .05). Therewas
alsoan interactioneffect for modalityby group(F(3,38)=
5.10,p � .01).Plannedcontrastcomparisonsrevealedalin-
eartrendfor thetextualcondition(F(1,38)= 9.995,p � .01)
anda quadratictrendfor thegraphicalcondition(F(1,38)=
8.061,p � .01)which indicatesa linearincreasein switch-
ing frequency for the textual condition when going from
lessto moreaccurategroupsandquadratic(peakingin an
intermediategroup) for the graphicalcondition. Individ-
ual t-testsalso showed significantdifferencesin termsof
modalityfor groups3 (t(11) = 2.548,p � .05)and4 (t(10)
= -2.308,p � .05).

Theresultsfor window fixationtimesrevealmaineffects
for window (F(3,38)= 823.36,p � .01) andinteractionef-
fectsfor window andgroup(F(9,38)= 2.431,p � .05).The
codewindow wasthe mostfrequentlyused(about79%of
thetimeagainst9%for theobjectsandoutputwindowsand
only 3% for thecall sequencewindow). Regardingthe in-
teractioneffect, plannedcontrastcomparisonstaking into
accountthe sumof fixation timesfor the threesupporting
representations(thetwo visualisationsplustheoutputwin-
dow) indicatedthatfixation time for thesethreerepresenta-
tionspeakedfor group3 (t(38) = 2.117,p � .05). Figure2
illustratestheseinteractioneffect graphically. This figure
presentsthedatasplit into graphicalandtextual conditions
to provideapointof comparisonwith Figure1; however, as
therewereno interactionsfor the combinationof window,
modalityandgroup,thedifferencesbetweengraphicaland
textualsupportvisualisationsillustratedin thisgrapharenot
significant.

Theseresultssuggestthatdebuggingaccuracy is related



to a more balanceduse of the available representations.
While poor performersshow a low degreeof interaction
with the supportvisualisations,thosein the intermediate
andhighaccuracy groupsinteractmorewith theserepresen-
tations(the intermediatesevenmorethantheadvanced,as
bothswitchingfrequency andfixation time for the support
visualisationsreacha peakfor the third group). Thesere-
sultsseemto suggestthatparticipantsin differentaccuracy
groupsmight have chosendifferent debugging strategies.
Although all of them focusedpredominantlyon the code
window, participantsin thelowestperformancegroupchose
touseastrategy basedalmostexclusivelyonthecode,while
participantsin othergroupsseemedto usetheotherrepre-
sentationsto supporttheinferencesdrawn from thecode.

The fact that switching frequency peakedfor group 3
seemsto bein agreementwith thesuggestionin [6] that,at
leastfor professionalprogrammers,debuggingability was
inverselyrelatedto switchesof focusbetweenthe sources
of informationprovidedfor thetask.Theseresultswereex-
plainedin termsof theprogrammers’chunkingability (the
ability to detectmeaningful,hierarchicalunits in the code
duringproblemsolving).A high chunkingability is related
to a robustmentalrepresentationof theprogramandthere-
foreto a low needfor duplicatingreferencesto theavailable
representations.It is possiblethat thedebuggingability of
participantsin groups3 and4 hasreachedapoint for which
thisexplanationis valid.

Theresultsalsosuggestdifferenteffectsfor theadvanced
group in terms of modality. Participantsof this group
switchedmorefrequentlyin thegraphicalconditionthanin
thetextualonewhile for window fixation therewerenosig-
nificant differencesinvolving modality. This suggeststhat
participantsin thehighestaccuracy groupperformedlonger
fixationsin thegraphicalconditionthanin thetextual con-
dition. Thereforeit seemsthatthetextualvisualisationcon-
dition requiredmoreactive representationcoordinationfor
thisgroup.

Theseresultscanbeinterpretedin several,possiblycom-
plementary, ways. One is that the specificityof graphical
representations[5] helpsprogrammersto detectthemean-
ingful unitsor chunksof thecode,andin thiswaydecreases
theneedfor switchingconstantlybetweentheavailablerep-
resentations.Otherinterpretationis thatastextual represen-
tationsgenerallyrequiremoreactive search[2], this con-
dition might have employeda higher amountof working
memoryresources.This probablymeantthat participants
werenotableto holdasmuchinformationin workingmem-
ory about the programas in the graphicalcondition. As
a result,representationswitchingwasmorefrequentwhen
workingwith textual visualisations.

Another way to explain theseresults is that different
modality conditionspromotedthe deploymentof differ-
ent debuggingstrategiesfor peoplein the bestperforming

group. Dif ferentdebuggingstrategiesmight requirea dif-
ferenttypeof supportfrom specificinformationsources[3],
andtherefore,in this case,a differentfrequency of switch-
ing. Furtherresearchto clarify the causeof theseeffects
will examinetheverbalprotocolsdata.

4. Conclusions

This paper presentedresults of representationuse in
a multi-representationaldebugging environment and dis-
cussedthe effect of modality within this environment.
In general, good debugging performanceis associated
with a morebalanceduseof the availablerepresentations;
however, this investigationhas raisedthe questionabout
whethergraphicalvisualisationspromotea morejudicious
useof thevisualisationsfor successfulperformers.Further
analysis,possiblyof theverbalprotocolsdata,is neededto
clarify this issue.

Acknowledgments This work is supportedby the EP-
SRC grantGR/N64199. The supportfor RichardCox of
theLeverhulmeFoundation(LeverhulmeTrustFellowship
G/2/RFG/2001/0117)andtheBritish Academyis gratefully
acknowledged.Theauthorswould like to thankthepartici-
pantsfor takingpartin thestudy.

References

[1] S. Ainsworth. The functions of multiple representations.
Computers & Education, 33(2-3):131–152,1999.

[2] R. Cox. Representationconstruction,externalisedcognition
andindividual differences.Learning and Instruction, 9:343–
363,1999.

[3] D. J. Gilmore. An investigationof the utility of flowcharts
during computerprogramdebugging. International Journal
of Man-Machine Studies, 20(1):357–372,1984.

[4] P. Romero,R. Lutz, R. Cox,andB. du Boulay. Co-ordination
of multiple externalrepresentationsduring java programde-
bugging. In S.WiedenbeckandM. Petre,editors,2002 IEEE
Symposia on Human Centric Computing Languages and En-
vironments, pages207–214.IEEEpress,Airlington, Virginia,
USA, 2002.

[5] K. StenningandJ.Oberlander. A cognitive theoryof graphi-
calandlinguistic reasoning:logic andimplementation.Cog-
nitive Science, 19(1):97–140,1995.

[6] I. Vessey. Expertisein debuggingcomputerprograms:apro-
cessanalysis.International Journal of Man-Machine Studies,
23:459–494,1985.


