
ARTICLE IN PRESS
1071-5819/$ - se

doi:10.1016/j.ijh

�Correspond
E-mail addr
Int. J. Human-Computer Studies 65 (2007) 992–1009

www.elsevier.com/locate/ijhcs
Debugging strategies and tactics in a multi-representation
software environment

Pablo Romero�, Benedict du Boulay, Richard Cox, Rudi Lutz, Sallyann Bryant

Department of Informatics, Sussex University, UK

Received 28 November 2005; received in revised form 25 January 2007; accepted 19 July 2007

Communicated by J. Domingue

Available online 6 August 2007
Abstract

This paper investigates the interplay between high level debugging strategies and low level tactics in the context of a multi-

representation software development environment (SDE). It investigates three questions. 1. How do programmers integrate debugging

strategies and tactics when working with SDEs? 2. What is the relationship between verbal ability, level of graphical literacy and

debugging (task) performance. 3. How do modality and perspective influence debugging strategy and deployment of tactics? The paper

extends the work of Katz and Anderson [1988. Debugging: an analysis of bug location strategies. Human-Computer Interaction 3,

359–399] and others in terms of identifying high level debugging strategies, in this case when working with SDEs. It also describes how

programmers of different backgrounds and degrees of experience make differential use of the multiple sources of information typically

available in a software debugging environment. Individual difference measures considered among the participants were their

programming experience and their knowledge of external representation formalisms. The debugging environment enabled the

participants, computer science students, to view the execution of a program in steps and provided them with concurrently displayed,

adjacent, multiple and linked programming representations. These representations comprised the program code, two visualisations of the

program and its output. The two visualisations of the program were available, in either a largely textual format or a largely graphical

format so as to track interactions between experience and low level mode-specific tactics, for example.

The results suggest that (i) additionally to deploying debugging strategies similar to those reported in the literature, participants also

employed a strategy specific to SDEs, following execution, (ii) verbal ability was not correlated with debugging performance,

(iii) knowledge of external representation formalisms was as important as programming experience to succeed in the debugging task, and

(iv) participants with greater experience of both programming and external representation formalisms, unlike the less experienced, were

able to modify their debugging strategies and tactics effectively when working under different format conditions (i.e. when working with

either largely graphical or largely textual visualisations) in order to maintain their high debugging accuracy level.

r 2007 Elsevier Ltd. All rights reserved.

Keywords: Multiple external representations; Graphical reasoning; Program debugging
1. Introduction

Much computer programming is performed via the use
of software development environments (SDEs) which
provide a variety of external representations and other
sophisticated functionality. These representations and
functionality enable programmers to treat programs not
just as code text, but also as a range of abstract entities
e front matter r 2007 Elsevier Ltd. All rights reserved.

cs.2007.07.005

ing author.

ess: pablor@sussex.ac.uk (P. Romero).
which can be visualised according to different criteria or
executed under a variety of conditions.
This means that the kinds of high level debugging

strategy identified by Katz and Anderson (1988) will now
be interwoven with low level tactics associated with
choosing which representations and functionality to exploit
as well as being extended at the high level by possibilities
opened up by the new functionality.
These representations help the programmer to visualise the

program through different perspectives or information types.
For example, some perspectives highlight the transformations

www.elsevier.com/locater/ijhcs
dx.doi.org/10.1016/j.ijhcs.2007.07.005
mailto:pablor@sussex.ac.uk


ARTICLE IN PRESS
P. Romero et al. / Int. J. Human-Computer Studies 65 (2007) 992–1009 993
which data elements undergo as they are processed, while
others show the sequence of actions that will occur when
the program is executed. Visualisations can be presented in
formats that range from mostly textual to mostly graphical
(Romero et al., 2003). Very frequently a number of these
visualisations contain links to one another and are displayed
concurrently and side by side.

In terms of debugging strategies and tactics, the step
facility is one of the most helpful pieces of functionality of
such environments. This facility allows programmers to
execute and pause the program at different points. At these
points they can inspect the visualisations provided to obtain
information about various aspects of the execution state.

Such program visualisation and debugging facilities
should, in principle, be especially helpful for novice
programmers because they have the potential to enable
them see the program not as a black box but as an abstract
machine containing a set of elements that moves between
states. However, their effective use requires strategic knowl-
edge about how to generate and test debugging hypotheses
from the evidence in the program’s output and visualisa-
tions, knowledge about how to decode and coordinate the
available representations as well as skill in operating the
SDE itself. It is often assumed that novices possess this
knowledge and these skills. Thus, novice programmers can
face a double challenge. As well as trying to learn abstract
concepts about programming, they have to master the
decoding, representation coordination and step-and-trace
skills required to use debugging environments.

This paper characterises the debugging strategies and
tactics of Java programmers in terms of step-and-trace
choices and representation usage in a multi-representation
debugging environment, relating these aspects of their
behaviour to debugging accuracy, experience and knowl-
edge of external representation (KER) formalisms.
Section 2 explores research on programming strategy
focusing on the way programmers manipulate the tools
and representations available. Section 3 describes the
experimental design and method. Section 4 presents the
results of this experiment and Section 5 discusses these
results. Finally, Section 6 presents conclusions and
describes further work.

2. External representation usage in programming

Good performance in programming tasks is as much
dependent on the strategies and tactics chosen to accom-
plish programming tasks as it is on the programmers’
knowledge about the syntax and semantics of the
programming language (Gilmore, 1990). In program
debugging, strategy is usually related to the high level,
systematic plan to identify program errors while tactics
have to do with lower-level actions performed to, for
example, coordinate and integrate multiple sources of
information when using an SDE. According to Katz and
Anderson (1988), bug finding strategies can be classified
broadly into forward reasoning and backward reasoning.
The first category comprises those strategies in which
programmers start searching for bugs from the program
code, while the second involves starting from the incorrect
behaviour of the program (typically its output) and
reasoning backwards to the origin of the problem in the
code. Examples of forward reasoning include comprehen-

sion, where bugs are found while the programmer is
building a mental representation of the program and hand

simulation, where programmers evaluate the code as if they
were the computer. Backward reasoning includes strategies
such as simple mapping and causal reasoning. In simple
mapping the program’s output points directly to the
incorrect line of code, while in causal reasoning the search
starts from the incorrect output going backwards towards
the code segment that caused the bug.
Related but lower-level tactics have to do with the

coordination of the available representations and the
operation the SDE itself (mainly of its step-and-trace
facility). These tactical aspects are particularly important
for novice programmers. An inability to cope with these
demands, frequently due to cognitive overload (van
Bruggen et al., 2002), means that multiple sources of
information, instead of improving performance and learn-
ing, can sometimes impede them (Bodemer et al., 2004).
The step-and-trace facility of the SDE is particularly

important as it can transform a continuous animation of
the program behaviour into a sequence of discrete steps.
Animations are ephemeral and sometimes too quick to be
accurately perceived; however, judicious use of interactivity
can help to avoid these difficulties (Tversky and Morrison,
2002).
When working with SDEs, high level debugging

strategies need to be supported by the low level tactics
used to coordinate the available representations and to
operate the SDE itself. Although there have been studies
that have looked at debugging strategies (Katz and
Anderson, 1988; Mulholland, 1997; Prabhakararao et al.,
2003; Chintakovid et al., 2006; Grigoreanu et al., 2006) and
tactics (Romero et al., 2002a, b; Bednarik and Tukiainen,
2004), it is not clear how programmers integrate them.

2.1. Factors affecting strategy and tactics

When using a SDE to debug a program, there are a
number of factors that can influence the quality of the
strategy and tactics deployed. Some of these are program-
ming experience (PE), the form and nature of the
visualisations employed and individual differences asso-
ciated with representational format.
Research on code generation has highlighted the reliance

of experienced programmers upon external aids and the
strategic knowledge required to make use of them. Davies
(1993a), for example, has shown that experienced pro-
grammers, unlike novices, are strongly affected by restric-
tions in their normal working environment because they
are forced to use their working memory to hold informa-
tion that otherwise would be stored and accessed through



ARTICLE IN PRESS
P. Romero et al. / Int. J. Human-Computer Studies 65 (2007) 992–1009994
the environment. Generally speaking, some forms of
strategy can be explained in terms of the properties of the
knowledge that programmers develop through experience,
and this experience and associated strategies are related to
improved performance (Davies, 1993b).

The form of the available visualisations can be an
important factor in multi-representational environments.
Here a common distinction is between propositional and
diagrammatic representations. Research in this area has
focused on the advantages and disadvantages of mixing
modalities in multi-representational environments. Accord-
ing to Ainsworth et al. (1996), in general, the more different
the degree of graphicality external representations exhibit,
the more difficult it is for students to coordinate them. On
the other hand, it might be that graphical representations,
by constraining the interpretation of textual ones because
of their weak expressiveness (Stenning and Oberlander,
1995), could promote improved understanding. Addition-
ally, it is not clear how modality influences task strategy.

While modality is concerned with form, perspective is
concerned with content. Perspective refers to the program-
ming information types that a representation highlights.
Computer programs are information structures that
comprise different types of information (Pennington,
1987), and programming notations usually highlight some
of these aspects at the cost of obscuring others (the
match–mismatch hypothesis Gilmore and Green, 1984).
Some of these different information types are: function,
data structure, operations, data-flow and control-flow.
Program visualisations usually highlight some of these
information types and knowing, for example, which
visualisation to use for which kind of error is part of the
programmer’s strategic knowledge.

In the context of debugging with SDEs, individual
differences associated with representational format prefer-
ence are potentially important. People differ in terms of their
preferences for particular forms of representation, their skill
at decoding them, and educational background among other
factors. As mentioned above, a typical distinction in
representational format is usually between propositional
and diagrammatic representations and a number of studies
have focused on comparing verbal and diagrammatic ability.
Individual differences in external representation use have
been studied extensively in various domains: logic reasoning
(Oberlander et al., 1999), mechanical systems (Kriz and
Hegarty, 2004) and HCI (Campagnoni and Ehrlich, 1989),
among others. Recently, the amount of background knowl-
edge that people have of external representation formalisms,
or ‘graphical literacy’, has been proposed as an important
type of individual difference (Cox, 1996), and one that might
have particular relevance for computer programming
(Cox et al., 2004). Although there seem to be advantages
in having a high level of graphical literacy (Cox, 1999), it is
not clear how this relates to task performance.

Although there has been some research into the
strategies employed to understand and debug programs
when working with computerised environments, this
research has focused mainly on debugging performance
(Mulholland, 1997; Patel et al., 1997) or has relied on
indirect accounts of the behaviour exhibited, for example
through questionnaires and post hoc interviews (Storey
et al., 2000). There is a need for studies that present a more
direct account of how people go about debugging using
computerised environments. Some important questions to
address with such studies are:
1.
 How do programmers integrate debugging strategies
and tactics when working with SDEs?
2.
 What is the relationship between verbal ability, level of
graphical literacy and debugging (task) performance.
3.
 How do modality and perspective influence debugging
strategy and deployment of tactics (an important aspect
of which is visual attention allocation in the SDE)?

The following sections describe an empirical study that
addresses these questions.
3. Method

3.1. Aims

This study had three main aims, each aligned with one of
the questions detailed above.
Regarding question 1, we aimed to investigate the

relationship between the debugging strategies employed
and the programmers’ tactical use of the representations
and facilities made available in the SDE. This was a
detailed, qualitative analysis of the fine-grained events that
took place in the recorded debugging sessions. We expected
the deployed tactics to support programmer’s debugging
strategies and these tactics and strategies to be similar to
those reported in the literature (Katz and Anderson, 1988;
Mulholland, 1997; Romero et al., 2002b; Prabhakararao
et al., 2003; Bednarik and Tukiainen, 2004).
Relating to question 2, our aim was to identify the key

relationships between graphical literacy, verbal ability and
debugging performance. This was a quantitative analysis
that looked for correlations between these individual
difference measures. Based on related previous studies
(Grawemeyer and Cox, 2003, 2004), we expected graphical
literacy and debugging accuracy to be positively correlated.
Finally, with reference to question 3, we aimed to

investigate the relationship between experience, modality,
perspective and debugging strategy and tactics. This was a
quantitative analysis on the data logged during the debug-
ging sessions. According to previous studies (Romero et al.,
2002a, b) we expected the choice of strategy and the tactics
deployed to be associated with PE, KERs and modality.

3.2. Design

The study was divided into three aspects, each related to
the questions detailed at the end of Section 2. A description



ARTICLE IN PRESS
P. Romero et al. / Int. J. Human-Computer Studies 65 (2007) 992–1009 995
of the design of each of the three aspects of the study
follows.

In order to address question 1, a detailed qualitative
analysis of the events in the debugging sessions was
performed. The events considered were participants verba-
lisations, the focus of their visual attention and their
interaction with the SDE.

In order to address question 2, the study investigated the
relationship between debugging accuracy and several
individual difference measures: Object-Oriented and pro-
cedural programming experience (PPE), verbal ability and
KERs. The analysis of this part of the study computed the
correlations between these performance and individual
difference measures.

Regarding question 3, the investigation into the relation-
ship between experience, modality, perspective and debug-
ging strategy and tactics, considered four independent
variables (two between subjects and two within subjects)
and five dependent variables. The independent between
subjects variables were PPE and KER formalisms. The
independent within subjects variables were type of error
(data structure or control-flow) and modality (graphical or
textual visualisations). The five dependent variables were
debugging accuracy, inspection time for the available
representations, switching frequency between these, inspec-
tion time at the different points of the program execution
(breakpoints) and switching frequency between these.
Inspection time for the available representations refers to
the time participants spent focusing on each window of the
SDE. Switching frequency between the available represen-
tations refers to the number of changes of focus between
the SDE windows. Inspection time at the different break-
points refers to the time participants spent focusing on each
one of the breakpoints at which they chose to view the
execution of the program. Finally, switching frequency
between these breakpoints is the number of times
participants changed from one breakpoint to another.

3.3. The experimental debugging environment

The SDE enabled participants to view the pre-computed
execution of a Java program and presented, in addition to
the code, its output and two visualisations of its execution.
Participants were able to view the execution of the program
by stepping between predefined breakpoints for a specific
sample input. The SDE did not provide students with tools
to edit, compile or re-execute the program with different
input values or to reset breakpoints to other places in the
code. The motivation to limit the functionality of the tool
in this way was to ensure, as much as possible, that all
participants saw the same information and to reduce the
complexity of operating the debugging environment.

Participants were able to see the program code, its
output for a sample execution, and two visualisations of
this execution. A screen shot of the system is shown in
Fig. 1. Participants were able to see the program class files
in the code window, one at a time, through the use of the
side-tabs. The objects and call sequence windows presented
visualisations of the program’s execution similar to those
found in Object-Oriented SDEs (Romero et al., 2003). The
objects window (top right) presented data structure aspects
while the call sequence window (bottom middle) showed
control-flow information.
The SDE is a modified version of the restricted focus

viewer (RFV), a visual attention tracking software
environment (Blackwell et al., 2000). The SDE presents
image stimuli in a blurred form. When the user clicks on an
image, a section of it around the mouse pointer becomes
focused. In this way, the program restricts how much of a
stimulus can be seen clearly and thus indirectly allows
visual attention to be tracked as the user moves an
unblurred area around the screen. Use of the SDE enabled
moment-by-moment representation switching between
different program breakpoints and between concurrently
displayed, adjacent representations to be captured for later
analysis. The system was also able to digitally record audio
and to replay sessions, showing what participants did as
well as what they said. In this way, the SDE can allow both
quantitative and qualitative analyses of the recorded data.
The user-computer interaction data (window and break-
point fixation time and switching) can be analysed in a
quantitative way (for example, writing programs to process
the logged data) to compare switching and fixation
behaviour among the different experimental conditions.
Observing replays of experimental sessions, on the other
hand, can be used to interpret intentions and behaviours of
participants. The main difference between this environment
and the one employed in our previous studies (Romero et
al., 2002a, b) is its capability to show the execution of the
program in steps. A previous version of the environment
presented users with visualisations comprising several static
screen snapshots of the program execution. Employing an
environment with dynamic visualisations enabled us to
study not only representation usage but also how
participants employed the step-and-trace facilities pro-
vided. More details about the system and methodology
employed can be found in Romero et al. (2007).
Previous studies (Romero et al., 2002a, b) suggested that

the restricted focus technology works best for program
comprehension and debugging purposes if the unblurred
area is of a size appropriate to cover entire representation
units. In the case of the code, for example, these units can
be equated to methods. The objects window represents an
extreme case because the representation unit is the main
object and therefore the unblurred spot covers the whole
window.
Studies that have validated the use of this technology

have found that it does not modify task performance
significantly (Romero et al., 2002a; Jansen et al., 2003).
Studies that have compared visual attention behaviour
using this technology and employing eye-tracking equip-
ment have, however, found differences in these two
conditions (Bednarik and Tukiainen, 2004). The central
issue concerns the validity of eye-tracking as unequivocal



ARTICLE IN PRESS

Fig. 1. The debugging environment used by participants.

P. Romero et al. / Int. J. Human-Computer Studies 65 (2007) 992–1009996
measure of visual attention. One issue is that the two
techniques work at different degrees of granularity, with
eye-tracking capturing many more fleeting changes of gaze
direction. Researchers have tended to interpret measure-
ment differences between the two techniques as reflecting
the superiority of eye tracking methods. However, recent
evidence from the visual attention, change blindness and
attention design literatures (Wood et al., 2006) raises some
questions in relation to this assumption.

3.4. Participants and procedure

The experimental participants were 42 computer science
undergraduate students from the School of Cognitive and
Computing Sciences at Sussex University, UK. All had
taken a three month introductory course in Java. Some of
them had previous PE, in most cases a few extra months of
academic PE.

Participants performed a verbal ability test, an external
representation (‘graphical literacy’) decision task (Cox
et al., 2004), a program modification exercise, a program
comprehension activity and six debugging sessions. The
experiment was divided into two sessions of about 1 h each
which took place on different days. The verbal ability test
was based on items from a commercial book of GRE
practice examples (Brownstein et al., 1990; Cox et al.,
1995). The items have a multiple-choice response format
and are designed to measure the respondent’s ability to, for
example, compare several passages in terms of the
similarity of their arguments, make valid inferences from
narratively presented information passages, assess the
relative strengths of arguments, judge whether alternative
passages strengthen or weaken particular arguments and
identify the assumptions underlying arguments.
The external representation decision task was a visual

recognition activity requiring decisions as to whether a
diagram was real or fake. A sequence of well-formed (real)
and chimeric (fake) diagrams was presented to participants
and they had to decide whether each one of these was real
or fake (Cox et al., 2004). Some of these diagrams are
shown in Figs. 2 and 3.
The program modification and comprehension tasks

were intended to familiarise participants with the program
they were going to debug and with the program visualisa-
tions that were going to be presented to them in the objects
and call sequence windows. In the program modification
task participants had to perform a simple modification to
the program while in the program comprehension exercise
participants had to answer a series of true/false questions
about this same program and its associated visualisations.
Following the familiarisation tasks participants pro-

ceeded to the debugging part of the experiment.

3.4.1. The debugging part of the experiment

In the six debugging sessions participants worked with
buggy versions of the same program. Each version was



ARTICLE IN PRESS

Fig. 2. Examples of fake diagrams.

Fig. 3. Examples of real diagrams.

P. Romero et al. / Int. J. Human-Computer Studies 65 (2007) 992–1009 997
seeded with one error and was also modified at a superficial
level (variable and method names changed) to control for
spotting errors by relying on memory alone.

The first debugging session was a warm-up exercise. The
five main debugging sessions followed. One of these five
sessions was used as a control and showed empty windows
for the objects and call sequence visualisations in order to
investigate how far the visualisations that would otherwise
have been present in these windows were helpful to
participants. The order of presentation of the four
experimental sessions with ‘normal’ SDE as well as the
single ‘empty visualisations’ control condition was rando-
mised, as well as the choice of which buggy program
version to use in the warm-up session.
Each debugging session consisted of two phases. In the
first phase participants were presented with samples of
program output, both desired and actual. When partici-
pants were clear about the difference between these two
sample outputs they moved on to the second phase of the
session.
In the second phase participants worked with the SDE.

They were allowed up to 10min to debug each program.
Following Ericsson and Simon (1984)’s recommendations,
participants were instructed to think aloud throughout the
session.
The target program simulated the behaviour of a drink

dispensing machine and was of medium size and complex-
ity. This program loads the drink machine with cans of



ARTICLE IN PRESS

Fig. 4. Segment of the program code for the Fridge class.

Fig. 5. Output from a sample execution session of the DrinkMachine

program.

P. Romero et al. / Int. J. Human-Computer Studies 65 (2007) 992–1009998
different drink types and also dispenses drinks after
allowing the user to enter strings representing coins. The
program is 201 lines long and comprises six classes linked
by inheritance and composition relations. A typical
execution of this program would create about 12 different
objects, some of which are array data structures.

Some of the code, output for a sample execution session
and objects visualisations for textual and graphical
conditions for one of the buggy versions are shown in
Figs. 4–7, respectively.

Each version of the program was seeded with one error.
This error was either data structure or control-flow related.
The data structure errors were most easily seen in the
objects view window, while the control-flow ones were
most salient in the call sequence visualisation.
There were four predefined breakpoint lines in the code
and different execution paths of the program generated
different numbers of debugging steps or pauses. The
average number of debugging steps for all the program
versions was 5.5 (they ranged from 4 to 7). These
predefined breakpoints were chosen because they were
points in the execution where the arrays of the DrinkMa-

chine object (the main data structure of the program) were
updated.
The audio recordings of the debugging sessions were

transcribed and analysed to score debugging accuracy. The
score for each error was calculated on the basis of whether
students reported the location, description and proposed
fix of the error correctly. A score of one was assigned for
each one of these aspects if it was correctly reported and
zero otherwise, thus giving each session a score between
zero and three for debugging accuracy.

4. Results

This section describes the experimental results and is
divided into sub-sections: (i) debugging accuracy and its
relation to individual difference measures; (ii) the results
related to debugging tactics (debugging behaviour in terms
of representation usage and controlling the execution of the
program) and (iii) a detailed analysis (combining qualita-
tive and quantitative methods) of debugging strategy
deployment and its relationship to tactics.



ARTICLE IN PRESS

Fig. 6. Textual objects view of the DrinkMachine program.

piles[0]

type: coke
n_elements: 7

piles[3]

type: 50p
n_elements: 1
value: 0.5

piles[2]

type: 20p
n_elements: 2
value: 0.2

piles[1]

type: 10p
n_elements: 1
value: 0.1

piles[0]

type: 5p
n_elements: 2
value: 0.05

My DrinkMachine

fridge

n_piles: 1

piles:

till

n_piles: 4

piles:

Fig. 7. Graphical objects view of the DrinkMachine program.

P. Romero et al. / Int. J. Human-Computer Studies 65 (2007) 992–1009 999
4.1. Debugging accuracy and individual difference measures

This section reports on the results of three analyses, the
first relating individual difference measures to debugging
accuracy, the second comparing the normal and empty
visualisations conditions and the third relating accuracy to
the experimental factors considered. The second and
third analyses were performed separately as some of
the experimental factors (representation modality, for
example) were not relevant in the empty visualisations
condition.

4.1.1. Individual differences

Table 1 presents a summary of the results that relate
individual difference measures to debugging accuracy.
Debugging accuracy was positively correlated with both
experience in procedural programming languages
(C, Pascal, Basic, etc.) (s ¼ :36, po:05) and with the
external representation decision test score (s ¼ :32, po:05).
There were no significant correlations between these pre-
test scores and any of the other individual difference
measures.
The results of this analysis suggest that improved

debugging performance was associated with PE in proce-
dural languages and with knowledge about external
representation formalisms but not with Object-Oriented
PE and verbal ability. The lack of association between
debugging performance and Object-Oriented PE might
seem counter-intuitive at first. However, if we consider that
participants were novice Java programmers, with some of
them having additional academic PE, mostly in procedural
programming languages, then it makes sense that this extra
PPE could have made the difference when solving a
debugging problem. The analyses reported in the following
sections consider these two factors, PPE and KER
formalisms as independent, between subject variables.
The 42 participants were divided (post hoc) by a median
split on the basis of their scores for these two factors into
high and low groups. There were 21 participants in each
one of these groups and 10 or 11 in their intersection (10 in
low PPE–low KER, 11 in low PPE–high KER, 11 in high
PPE–low KER and 10 in high PPE–high KER).

4.1.2. Normal and empty visualisations conditions

comparison

The results of the experiment comparing debugging
performance for the normal and empty visualisations
conditions are illustrated in Fig. 8. A repeated measures
ANOVA with two between subjects variables (PPE and
KER), one within subjects (visualisation) and one depen-
dent variable (accuracy performance) was run. There were
main effects for the visualisation condition ðF ð1; 38Þ ¼
18:4; po:01Þ only and no interaction effects. This result
suggests that the visualisations were indeed helpful to
students, they obtained better debugging scores with them
regardless of their PE and their KERs. The rest of the
analyses will consider sessions in the normal condition only



ARTICLE IN PRESS

Table 1

Correlations between pre-tests scores and debugging performance

OO Progr. exp. Proc. progr. exp. Verbal ability ER knowledge Deb. accuracy

OO programming experience Pearson correlation 1 �.035 .224 �.131 �.112

Sig. (2-tailed) . .824 .154 .407 .481

Procedural programming experience Pearson correlation – 1 �.049 .068 .358*

Sig. (2-tailed) – . .760 .670 .020

Verbal ability Pearson correlation – – 1 .248 .167

Sig. (2-tailed) – – . .113 .290

ER knowledge Pearson correlation – – – 1 .321*

Sig. (2-tailed) – – – . .038

Debugging accuracy Pearson correlation – – – – 1

* indicates significance at the .05 level.

Fig. 8. Debugging performance for normal and empty visualisations

conditions.

Fig. 9. Debugging performance by PPE and KER.

P. Romero et al. / Int. J. Human-Computer Studies 65 (2007) 992–10091000
(those in which students had available visualisations in the
debugging environment).

4.1.3. Debugging performance and the experimental factors

The results of the experiment relating debugging
performance to the experimental factors considered are
illustrated in Fig. 9. A repeated measures ANOVA with
two between subjects variables (PPE and KER), two within
subjects (representation modality and error type) and one
dependent variable (accuracy performance) was run. There
were no significant main effects but a significant interaction
effect for PPE and KER ðF ð1; 38Þ ¼ 5:25; po:05Þ. Post
hoc comparisons revealed a significant effect when
comparing the group of high PPE and high KER with
the rest of the participants ðtð40Þ ¼ �2:8; po:01Þ. This
result suggests that superior debugging performance was
associated with a high level of both PE and external
representations knowledge. These two factors make
separate contributions to debugging performance as they
do not correlate to each other (see Table 1).
This part of the analysis revealed that visualisations were

helpful and that debugging accuracy was positively
correlated to individual difference measures such as PE
and graphical literacy. It makes sense that if visualisations
can indeed be helpful, knowledge about representation
formalisms is key to take advantage of them.

4.2. Debugging tactics

This part of the analysis focuses on debugging behaviour
in terms of representation usage and the way participants
controlled the view of the program execution. The
following subsections describe these two analyses.

4.2.1. Representation usage

The experimental variables considered in this analysis
relate to the way visual attention was allocated during the
debugging process. In particular, this analysis takes into
account switches of visual attention between the different
SDE windows and time spent inspecting each one of these
windows. Thus, this part of the analysis relates switching



ARTICLE IN PRESS

Fig. 10. Window switching frequency by type of switch.

Fig. 11. Window switching frequency by KER.

Fig. 12. Window switching frequency by PPE and KER.

Fig. 13. Window switching frequency by type of error and switch.

P. Romero et al. / Int. J. Human-Computer Studies 65 (2007) 992–1009 1001
frequency, accumulated fixation time and average fixation
time for the available representations to the experimental
factors (visualisation modality, type of error, PPE and
KER). Three separate ANOVAs were computed; one for
switching frequency between the available representations
(the code, the objects, the call sequence and the output
windows), another for accumulated fixation time within the
available representations and the third for average fixation
time within the available representations.
The results for window switching frequency are illu-

strated in Figs. 10–13. There were main effects for type of
switch (F ð5; 34Þ ¼ 36:41, po:01) and interaction effects for
type of error by type of switch (F ð5; 34Þ ¼ 6:31, po:01), for
modality and KER group (see Fig. 11) (F ð1; 38Þ ¼ 9:28,
po:01) and for modality, PPE and KER groups
(F ð1; 38Þ ¼ 4:34, po:05).
Planned comparisons revealed a significant effect when

comparing the frequency of switching involving the code
window against those between the other windows ðtð41Þ ¼
12:54; po:01Þ (see Fig. 10). In the case of the interaction
effect between modality, PPE and KER, planned contrast
comparisons revealed a significant contrast when compar-
ing the group of high knowledge in both PPE and KER
with the rest of the participants ðF ð1; 40Þ ¼ 16:98; po:01Þ
(see Fig. 12). Finally, in the case of the interaction effect
between type of error and type of switch, a planned test of
within subject contrasts for the type of error by type of
switch effect revealed a significant contrast when compar-
ing switches including the objects window (switching
between the objects and either the code or output windows)
to switches including the call sequence window (switching
between the call sequence and either the code or the output
windows) ðF ð1; 38Þ ¼ 30:65; po:01Þ (see Fig. 13). These
results suggest that switches involving the code window
were more frequent than those involving any of the other
windows, that differences in KER are associated with
differences in the amount of switching in different modality
conditions, that these differences are magnified when
considering the group of high KER and high PPE, and
that unsurprisingly, the frequency of switches involving the
objects and call sequence visualisations varies according to
the type of error at hand.
Regarding accumulated inspection time, there were main

effects for window ðF ð3; 36Þ ¼ 179:68; po:01Þ (see Fig. 14)
and interaction effects for modality and KER group
ðF ð1; 38Þ ¼ 5:35; po:05Þ and window, modality and KER
group ðF ð3; 36Þ ¼ 5:06; po:01Þ (see Figs. 15 and 16,



ARTICLE IN PRESS
P. Romero et al. / Int. J. Human-Computer Studies 65 (2007) 992–10091002
respectively). For the interaction effect between window,
modality and KER group, tests of within subjects contrasts
revealed significant effects when comparing the differences
Fig. 14. Accumulated inspection time for each window.

Fig. 15. Accumulated inspection time by KER and SDE mode.

Fig. 16. Accumulated inspection time
between the KER groups in their the total fixation times
for graphical and textual conditions, for the code window
and the other windows (the difference in fixation times
between the graphical and textual SDE modes of the KER
groups for the code window was significantly different to
those of the other windows) ðF ð1; 38Þ ¼ 8:65; po:01Þ.
These results suggest that participants looked at the code
much more than any other window (for about 80% of the
time) and that while those participants in the high KER
group inspected the code for a longer time when working in
the SDE graphical mode the opposite was true for those in
the low KER group (they looked at the code window for a
longer time when working in the SDE textual mode). This
difference seems to be responsible for the corresponding
global difference in SDE mode for these two groups (see
Fig. 15).
The results for average fixation time per visit to the

window are illustrated in Fig. 17. There were main effects
for window ðF ð3; 36Þ ¼ 22:43; po:01Þ only and no inter-
action effects. Participants made average fixations of about
1min for the code window and of less than 10 s for the
other windows. This result suggests that participants’
average fixations were considerably longer for the code
window but there were no significant differences for any of
the other factors considered.
The results for representation usage therefore suggest

that participants with both high KER and PPE had a high
window switching frequency when working with textual
visualisations and that there were dissimilar patterns for
the amount of time participants inspected the code window
for low and high KER groups under different SDE mode
conditions. The low KER group looked at the code
window longer when working under the SDE textual
condition while the high KER group looked at the code
window longer when working under the SDE graphical
mode (see Fig. 16). Regarding average fixation times,
by KER, window and SDE mode.



ARTICLE IN PRESS

Fig. 17. Average fixation time for each window.

Fig. 18. Breakpoint switching by types of switch (end/reset and

intermediate switches) and error (data-flow and control-flow errors).

Fig. 19. Breakpoint switching by PPE and KER.

P. Romero et al. / Int. J. Human-Computer Studies 65 (2007) 992–1009 1003
participants performed longer fixations when looking at
the code window. There were, however, no other significant
differences for this aspect either for KER, PPE, modality,
perspective or their interactions.

One way to explain the reason for participants with both
high KER and PPE switching more in the textual SDE
condition would be to say that they made shorter fixations
in this condition; however, average fixation times were
similar for different KER and PPE groups and for the
different modality and perspective conditions (according to
the results for average fixation times). Therefore if
participants with both high KER and PPE were doing
more switching it was not because they made shorter
fixations but may be because of differences in total
inspection times (differences in total time on task). The
dissimilar patterns observed for total inspection times for
low and high KER groups working under different SDE
modes could be considered as evidence; however, this result
did not involve PPE groups so we cannot be conclusive.

4.2.2. Breakpoint usage

This part of the analysis relates accumulated fixation
time and switching frequency for the program breakpoints
to the experimental factors (visualisation modality, type of
error, PPE and KER). Two separate ANOVAs were
computed; one for switching frequency between the
program breakpoints and another for fixation time within
the different program breakpoints.

The analysis for breakpoint switching frequency com-
pared switches between the beginning of the program
execution and the last breakpoint (end/reset switches) with
switches between intermediate breakpoints (intermediate
switches). This was to compare two typical debugging
tactics: following the program execution step by step or
analysing it ‘post-mortem’ by jumping from the beginning
of the program execution to the last breakpoint.

The results for breakpoint switching frequency are
illustrated in Figs. 18 and 19. There were main effects for
switch ðF ð1; 38Þ ¼ 52:58; po:01Þ and type of error
ðF ð1; 38Þ ¼ 6:23; po:05Þ and interaction effects for the
combination of these two factors ðF ð1; 38Þ ¼ 6:99; po:05Þ
(see Fig. 18), and type of error, PPE and KER ðF ð1; 38Þ ¼
4:35; po:05Þ (see Fig. 19). Planned contrast comparisons
failed to reveal significance for specific contrasts for the
latter interaction effect. These results suggest that inter-
mediate switches were more frequent than switches
between the first and last breakpoints, that data structure
errors promoted more switching than control-flow errors,
but also for intermediate breakpoints, participants
switched more for data structure than for control flow
errors. Additionally, breakpoint switching frequency varies
according to the type of error and differences in PPE and
KER.
The analysis for breakpoint fixation time compared the

relative time participants spent in the first, last and
intermediate breakpoints. The results for breakpoint
fixation are illustrated in Figs. 20 and 21. There were main
effects for breakpoint ðF ð2; 37Þ ¼ 3:7; po:05Þ (see Fig. 20)
and interaction effects for breakpoint and error types
ðF ð2; 37Þ ¼ 14:56; po:01Þ. Planned contrast comparisons
revealed a significant contrast in this interaction when



ARTICLE IN PRESS

Fig. 20. Fixation time by breakpoint type.

Fig. 21. Fixation time by breakpoint and error types.

1This detailed analysis was an extremely time consuming process which

took about 240 coder hours. It was not possible to involve multiple coders

but we tried to maximise the quality of the coding process with a thorough

training of the coder. First, the coder was briefed about the coding

scheme. Then, the authors as well as the coder coded one debugging

session. Codings were compared and discrepancies were resolved. This

process was repeated until there was a high level of agreement in the

codings. After this the coder coded the rest of the debugging sessions on

his own.

P. Romero et al. / Int. J. Human-Computer Studies 65 (2007) 992–10091004
comparing intermediate and last breakpoints ðF ð1; 38Þ ¼
29:54; po:01Þ (see Fig. 21). These results suggest that
participants spent the most time on the last breakpoint and
the least on the first in general but that this was also
dependent on error type (this was not the case for data
structure errors).

The global results for breakpoint usage suggest that
differences in the control of the program execution viewing
were related mainly to the type of error at hand. For data
structure errors, participants spent longer in intermediate
breakpoints, switching frequently between them. For
control-flow errors participants spent longer in the last
breakpoint (the end of the program execution).

4.3. Debugging strategy

This section analyses the debugging strategies deployed
by participants both in qualitative and quantitative ways.
These debugging strategies were identified by interpreting
detailed accounts of the behaviour of participants. These
detailed accounts were obtained by watching replays of the
debugging sessions and breaking them down into a
sequence of discrete debugging events by interpreting three
types of experimental data simultaneously. The three types
of data considered were trace of focus of attention, control
of the presentation of the program’s execution and
participants’ verbalisations. A new event was defined by a
change in the focus of attention, a command related to the
presentation of the program’s execution, participants’
verbalisations or a mixture of these. Therefore events were
bounded by pauses or changes of topic in programmers’
verbalisations (utterances), inter-window switches of visual
attention focus or breakpoint switches. A detailed descrip-
tion of this methodology can be found in Romero et al.
(2007).
This part of the analysis took into account only a subset

of the experimental data. The debugging sessions for only
one of the six target program versions were taken into
account.1 The program version chosen was not signifi-
cantly different to the other versions in terms of the use of
representations (code and visualisations) that participants
displayed and was the one that showed the widest spread of
debugging accuracy scores.
The following sections present qualitative and quantita-

tive analyses of these debugging events and associated
strategies.
4.3.1. Qualitative analysis

A detailed qualitative analysis of the debugging events
identified specific debugging strategies by categorising each
one of these events as the deployment of a specific strategy.
The debugging strategies identified are shown in Table 2.
Most of these debugging strategies correspond to those
described in Katz and Anderson (1988). The only different
strategy is following execution. There are not many
references to similar strategies in the debugging literature,
perhaps because only a few debugging studies have taken
into account the programmer’s interaction with compu-
terised debugging environments and in particular with the
visualisations provided by them. Following execution shares
similarities with forward reasoning strategies as the
programmer starts the search by trying to understand
what the program does, however, unlike forward reason-
ing, the comprehension process integrates visualisation and
code information.

Following execution is related to mapping (Mulholland,
1997), cross-referencing information between visualisation
and code. In following execution there are frequent visual



ARTICLE IN PRESS

Fig. 22. Frequency of debugging strategy deployment.

Table 2

Debugging strategies observed in the detailed qualitative analysis of the

debugging study

Debugging

behaviour

Description

Following

execution

Following the execution of the program for a specific

example to understand some aspect of it or to identify

the error. Utterances describe the behaviour of the

program in terms of the changes to its data structures or

real world objects

Causal

reasoning

Homing in on an area of code after having uttered a

debugging hypothesis. Participant is reading the code

searching for the place responsible for the observed

faulty behaviour

Comprehension High level browsing of the code to build up a more

complete picture of the program. Participant is reading

the code for program comprehension purposes

Hand

simulation

Talking about the program in terms of a dynamic view

of it, but without stepping through it. Participant focuses

on the code window commenting on dynamic aspects of

the program without actually executing the program in

steps

P. Romero et al. / Int. J. Human-Computer Studies 65 (2007) 992–1009 1005
attention switches between the code, the available visuali-
sations and the output of the program as well as break-
point switches.

In causal reasoning there are also visual attention and
breakpoint switching, although these are not as frequent as
in following execution. Occasionally, while trying to identify
the piece of code responsible for the error, programmers
might switch breakpoints or have a look at the output or
the visualisations.

Finally, comprehension and hand simulation typically
make no use of either visualisations or breakpoints. In
these two strategies programmers concentrate on the code
and do not try to execute the program in steps.

4.3.2. Quantitative analysis

This section analyses the debugging strategies identified
in Section 4.3.1 in a quantitative way. The frequencies of
the debugging events and associated strategies were
computed and an ANOVA relating debugging strategy to
the experimental factors (SDE mode, type of error, PPE
and KER) was performed.

There were main effects for strategy ðF ð1; 19Þ ¼
68:51; po:01Þ and interaction effects for strategy, modality
and PE ðF ð1; 19Þ ¼ 4:88; po:05Þ and for strategy, modality
and KERs ðF ð1; 19Þ ¼ 3:37; po:05Þ (see Figs. 22–24,
respectively). Regarding the main effect, tests of within
subjects contrasts revealed that comprehension and follow-

ing execution did not differ significantly but that compre-

hension and both causal reasoning and hand simulation did
ðF ð1; 21Þ ¼ 46:65; po:01Þ.

Regarding the interaction effect for strategy, modality
and PE, tests of within subjects contrasts revealed that the
only significant difference when comparing textual and
graphical SDE mode for the high experience group was for
following execution ðF ð1; 21Þ ¼ 20:03; po:01Þ. Regarding
the interaction effect for strategy, modality and KERs,
planned contrast comparisons failed to reveal significance
for specific contrasts. These results suggest that the most
frequently deployed strategies were following execution and
comprehension and that participants in the high and low
groups for PPE and KER employed debugging strategies
differently when working in different SDE modes. For the
case of PPE, this difference seem to be associated with the
low frequency of following execution performed by the high
experience level group when working with graphical
visualisations. For the case of KER it is not possible to
be more precise.

5. Discussion

The discussion on the findings of this study is structured
around the questions in Section 2.

5.1. Relationship between debugging strategies and tactics

The first question is about the way in which program-
mers integrate debugging strategies and tactics. However,
before discussing this it is important to compare the
strategies and tactics identified with those of previous
studies.
Both the strategies and tactics observed were similar to

those reported in studies looking at the use of visualisation
tools in debugging (Katz and Anderson, 1988; Mulholland,
1997; Bednarik and Tukiainen, 2004). One important
difference was that students employed, additionally to the
strategies reported by Katz and Anderson (1988) (causal

reasoning, comprehension, and hand simulation) a strategy
perhaps specific to SDEs, following execution. In this
strategy programmers try to comprehend the program or
identify the error by running the program in steps and
following its execution for a specific input example,
integrating information from the program code, its



ARTICLE IN PRESS

Fig. 23. Frequency of debugging strategy deployment by programming experience and SDE mode.

Fig. 24. Frequency of debugging strategy deployment by knowledge of ERs and SDE mode.

P. Romero et al. / Int. J. Human-Computer Studies 65 (2007) 992–10091006
visualisations and output. It can be categorised as a
forward reasoning strategy, however, unlike other strate-
gies in this category (such as comprehension or hand

simulation), the search for the error takes into account
information from sources other than the program code.

Tactics related to coordinating the available representa-
tions and operating the SDE step-and-trace facilities were
particularly important for the following execution strategy.
They were also employed, although to a lesser extent, in
causal reasoning.

When deploying a following execution strategy, partici-
pants viewed the execution of the program in steps and
made frequent visual attention switches between the code,
the available visualisations and the output of the program.
Frequently, once they had identified the program error in
this way, they would switch to a causal reasoning strategy,
concentrating on the program code but also making
occasional references to other representations.
The strategies more frequently deployed were compre-

hension and following execution while hand simulation was
only infrequently deployed. This suggests that students
made good use of the environment affordances and
specifically of the facilities for browsing through the code
text and of those for viewing the execution of the program
in steps.
The other two debugging strategies observed, compre-

hension and hand simulation consisted almost entirely of
reading the program code, switching between the different



ARTICLE IN PRESS
P. Romero et al. / Int. J. Human-Computer Studies 65 (2007) 992–1009 1007
class files but making practically no reference to the other
representations or to dynamic aspects of the program
execution.

5.2. Relationship between graphical literacy and debugging

performance

The second question refers to the relationship between
verbal ability, level of graphical literacy and debugging
performance.

The visualisations employed were helpful for students,
debugging without visualisations decreased performance.
However, in order to take advantage of the information in
the visualisations both relevant PE and a good knowledge
of representation formalisms is needed.

It seems counter-intuitive that relevant PE in this context
means experience in procedural programming languages.
However, if we consider that the participants’ Object-
Oriented PE was fairly homogeneous (mainly the under-
graduate courses they had taken), what might have
made the difference was the PPE they had accumulated
elsewhere.

Verbal ability was not correlated with debugging
performance. This result is in agreement with other studies
that have found no significant correlation between verbal
ability and programming performance (Mayer et al., 1986;
Tukiainen and Monkkonen, 2002). It may be that verbal
ability as measured by the pre-tests applied is different
from the skill required to read and interpret information in
propositional form about computer programs.

5.3. Relationship between experience, modality and

debugging behaviour

The last question refers to the way experience, modality
and perspective influence debugging strategy and tactics
deployment. An important finding here relates to the way
in which experienced participants were able to modify their
strategy and tactics according to changes in the format of
the visualisations without altering their performance.
Additionally, results also confirm the importance of the
type of error in the debugging task.

Regarding the first finding, experienced participants
(those who had both a high level of PPE and a high level
of KER) displayed a debugging behaviour different from
the rest of the participants when dealing with different SDE
modes. When working in a textual mode (with visualisa-
tions displayed in a textual format), experienced partici-
pants tended to switch their visual attention between the
windows of the environment more than when working in a
graphical mode. This difference implies that the reduced
memorability of textual as opposed to graphical represen-
tations of data structures and flow of control was
compensated for by more frequent visual cross-checks
between the code and those representations. This difference
seems related to corresponding differences in the debugging
strategies employed in these two conditions. The following
paragraphs elaborate on this point and offer a possible
explanation for the reduced memorability of textual
representations.
At least for participants with a high level of KER, there

is a corresponding difference in the amount of following

execution, a debugging strategy related to executing the
program in steps and following its execution for a specific
input example, integrating information from the program
code, its visualisations and output. Participants working in
textual mode tended to employ this debugging strategy
more than in graphical mode. One possible explanation for
these differences is that the textual condition imposed an
additional burden which required cross-referencing the
information in the different representations frequently,
therefore requiring participants to spend longer on debug-
ging strategies which rely on representation switching (such
as following execution).
A comparison between Figs. 6 and 7 illustrates the

difference between graphical and textual representations.
Both figures encode the same information. However, by
grouping certain elements in boxes, Fig. 7 helps to identify
meaningful structures in the visualisation (in this case the
objects of the program execution). Participants working in
the textual condition, on the other hand, had to perform
this grouping and then keep a mental reference to these
meaningful structures in working memory. These proces-
sing overheads can be crucial when dealing with dynamic
representations, as participants also had to detect patterns
of change through time in the visualisations. These results
seem to confirm the view that diagrams, unlike proposi-
tional representations, exploit perceptual processes by
grouping relevant information together and therefore make
the search and recognition of information easier (Larkin
and Simon, 1987).
Several studies have identified this grouping of relevant

information into meaningful structures (chunking) as a
crucial part of problem solving (Chase and Simon, 1973a,
b) and in particular of the programming skill (McKeithen
et al., 1981; Brooks, 1983). This study seems to exemplify
the way in which representation format can support
chunking for a population that is presumably developing
this programming skill. A graphical reference to the
program’s relevant structures gives better support as it
enables a more direct identification of these structures.
The additional cognitive effort required to interpret the

textual condition can be considered as an example of
extraneous cognitive load. According to van Bruggen et al.
(2002), extraneous cognitive load is the cognitive effort
produced by the characteristics of the learning environ-
ment. This contrasts with germane cognitive load, which is
the cognitive effort associated with storage and retrieval of
schemata in long term memory. According to Cognitive
Load Theory (van Bruggen et al., 2002), learning environ-
ments should attempt to decrease extraneous cognitive
load and increase germane cognitive load. It seems that the
graphical condition is closer than the textual condition to
this aim.



ARTICLE IN PRESS
P. Romero et al. / Int. J. Human-Computer Studies 65 (2007) 992–10091008
Other studies have also highlighted differences in
representation switching patterns between participants
with different levels of skill. Cox (1997) and Cox and Brna
(1995) reported that poor performers switched more
frequently than successful ones in analytical reasoning
tasks. However, there are several differences between those
studies and the one reported here. Although analytical
reasoning as a cognitive task might be remarkably similar
to program comprehension, the analytical reasoning
studies encouraged participants to build their own repre-
sentations. Therefore, switching representations repre-
sented ‘a strategic decision by the subject to abandon the
current external representation and construct a new one’
(Cox and Brna, 1995). In the present study, representations
were complementary (and pre-constructed) rather than
alternative, therefore, switching did not necessarily repre-
sent discarding one representation for another, but more
likely complementing the information of one with another.
The reason for switching in the present study had more to
do with an inefficient use of the visualisations or with
ineffective representations, rather than with giving up on
specific representations.

The main results of this study suggest that, at least for
the experimental conditions considered, graphical repre-
sentations enabled a more direct understanding of the
relevant structures in the problem space. However, this
does not mean that diagrams are superior to textual
representations for every situation, or that they will
provide a good level of support in all cases. One of the
main issues to consider is scalability. Programs, even for
small academic projects, very often involve dozens of
objects. Presenting all of them on the screen can create
layout difficulties for the designer of such a tool and
probably cognitive overload problems for its users. More
studies are needed to find out whether there are potential
problems in using diagrammatic representations in this
context and what their possible solutions might be.

6. Conclusions

This study has characterised the strategies and tactics
deployed by novice programmers working in multi-
representational software debugging environments. Addi-
tionally, it has investigated how factors such as program-
ming experience, knowledge of external representation
formalisms and the form and content of the representations
employed in the software debugging environment influence
both the choice of strategy and debugging performance.
Although there have been studies that have looked at
debugging strategies (Katz and Anderson, 1988; Mulhol-
land, 1997; Prabhakararao et al., 2003) and tactics
(Romero et al., 2002a, b; Bednarik and Tukiainen, 2004),
the value of the present study resides in the fact that it
offers an account of how programmers integrate them and
about how different factors interact to influence the choice
of these strategies and tactics and the accuracy of the
debugging effort.
This study suggests that, at least for novice programmers
working in multi-representational software debugging
environments, knowledge of external representation form-
alisms is as important as programming experience to
succeed in the debugging task. Visualisations of the
program execution are helpful but only when students
have enough programming knowledge to make sense of the
information in them and enough knowledge about
representation formalisms to decode this information.
Students with these characteristics are able to modify their
debugging strategies and tactics when working under
different format conditions in order to retain a high
accuracy level. Propositional representations are not as
helpful as graphical ones in grouping meaningful elements
of the representations and as a result these group of
students had to perform frequent information cross-
referencing between the available representations when
working in the textual mode.
The results of this study raise several questions and more

experimentation is needed, perhaps focusing on representa-
tional format and for students with a high level of both
programming experience and knowledge of external
representation formalisms.
Acknowledgements

This work was supported by the EPSRC Grant GR/
N64199 and the Nuffield Foundation Grant URB/01703/
G. The support for Richard Cox of the Leverhulme
Foundation (Leverhulme Trust Fellowship G/2/RFG/
2001/0117) and the British Academy is gratefully acknowl-
edged. The authors wish to thank Stephen Grant for
refining the coding categories of the detailed analysis of
representation usage and for coding them. Finally, the
authors would like to thank the referees for their helpful
comments and thorough review of earlier versions of the
paper.
References

Ainsworth, S., Wood, D., Bibby, P., 1996. Co-ordinating multiple

representations in computer based learning environments. In: Brna,

P., Paiva, A., Self, J., Proceedings of the 1996 European Conference on

Artificial Intelligence on Education, Lisbon, Portugal, pp. 336–342.

Bednarik, R., Tukiainen, M., 2004. Visual attention and representation

switching in Java program debugging: a study using eye-movement

tracking. In: Dunican, E., Green, T. (Eds.), Proceedings of the 16th

Annual Workshop of the Psychology of Programming Interest Group,

pp. 159–169.

Blackwell, A., Jansen, A., Marriott, K., 2000. Restricted focus viewer: a

tool for tracking visual attention. In: Anderson, M., Cheng, P.,

Haarslev, V. (Eds.), Theory and Application of Diagrams. Lecture

Notes in Artificial Intelligence, vol. 1889. Springer, Berlin,

pp. 162–177.

Bodemer, D., Ploetzner, R., Feuerlein, I., Spada, H., 2004. The active

integration of information during learning with dynamic interactive

visualizations. Learning and Instruction 14, 325–341.

Brooks, R., 1983. Towards a theory of the comprehension of computer

programs. International Journal of Man-Machine Studies 18, 543–554.



ARTICLE IN PRESS
P. Romero et al. / Int. J. Human-Computer Studies 65 (2007) 992–1009 1009
Brownstein, S., Weiner, M., Weiner-Green, S., 1990. How to Prepare for

the GRE. Barron’s Educational Series, New York.

Campagnoni, F.R., Ehrlich, K., 1989. Information retrieval using a

hypertext-based help system. ACM Transactions on Information

Systems 7, 271–291.

Chase, W., Simon, H., 1973a. Perception in chess. Cognitive Psychology 4,

55–81.

Chase, W.G., Simon, H.A., 1973b. The mind’s eye in chess. In: Chase, W.G.

(Ed.), Visual Information Processing. Academic Press, New York.

Chintakovid, T., Wiedenbeck, S., Burnett, M., Grigoreanu, V., 2006. Pair

collaboration in end-user debugging. In: Grundy, J., Howse, J. (Eds.),

2006 IEEE Symposium on Visual Languages and Human-Centric

Computing. IEEE Press, Brighton, UK, pp. 3–10.

Cox, R., 1996. Analytical reasoning with multiple external representations.

Ph.D. Thesis, University of Edinburgh, Edinburgh, Scotland, UK.

Cox, R., 1997. Representation interpretation versus representation

construction: a controlled study using switchERII. In: du Boulay, B.,

Mizoguchi, R. (Eds.), Artificial Intelligence in Education: Knowledge

and Media in Learning Systems, Proceedings of the Eighth World

Conference of the Artificial Intelligence in Education Society. IOS

Press, Amsterdam, pp. 434–444.

Cox, R., 1999. Representation construction, externalised cognition and

individual differences. Learning and Instruction 9, 343–363.

Cox, R., Brna, P., 1995. Supporting the use of external representations in

problem solving: the need for flexible learning environments. Journal

of Artificial Intelligence in Education 6 (2/3), 239–302.

Cox, R., Stenning, K., Oberlander, J., 1995. The effect of graphical and

sentential logic teaching on spontaneous external representation.

Cognitive Studies: Bulletin of the Japanese Cognitive Science Society

2 (4), 56–75.

Cox, R., Romero, P., du Boulay, B., Lutz, R., 2004. A cognitive

processing perspective on student programmers’ ‘graphicacy’. In:

Blackwell, A., Marriott, K., Shimojima, A. (Eds.), Diagrammatic

Representation and Inference. Lecture Notes in Computer Science,

vol. 2980. Springer, Berlin, pp. 344–346.

Davies, S.P., 1993a. Expertise and display-based strategies in computer

programming. In: Lalty, J.L., Diaper, D., Guest, D. (Eds.), Proceed-

ings of the Eighth Conference of the British Computer Society Human

Computer Interaction Specialist Group—People and Computers VIII,

Loughborough, UK, pp. 411–423.

Davies, S.P., 1993b. Models and theories of programming strategy.

International Journal of Man-Machine Studies 39, 237–267.

Ericsson, K.A., Simon, H.A., 1984. Protocol Analysis: Verbal Reports as

Data. MIT Press, Cambridge, MA.

Gilmore, D.J., 1990. Expert programming knowledge: a strategic

approach. In: Hoc, J., Green, T.R.G., Samurc-ay, R., Gilmore, D.J.

(Eds.), Psychology of Programming. Academic Press, London, UK,

pp. 223–234.

Gilmore, D.J., Green, T.R.G., 1984. Comprehension and recall of

miniature programs. International Journal of Man-Machine Studies

21 (1), 31–48.

Grawemeyer, B., Cox, R., 2003. The effects of knowledge of external

representations and display selection upon database query perfor-

mance. In: Second International Workshop on Interactive Graphical

Communication (IGC2003).

Grawemeyer, B., Cox, R., 2004. The effect of knowledge-of-external-

representations upon performance and representational choice in a

database query task. In: Blackwell, A., Marriott, K., Shimojima, A.

(Eds.), Diagrammatic Representation and Inference, Third Interna-

tional Conference, Diagrams 2004, pp. 351–354.

Grigoreanu, V., Beckwith, L., Fern, X., Yang, S., Komireddy, C.,

Narayanan, V., Cook, C., Burnett, M., 2006. Gender differences in

end-user debugging, revisited: What the miners found. In: Grundy, J.,

Howse, J. (Eds.), 2006 IEEE Symposium on Visual Languages and

Human-Centric Computing. IEEE Press, Brighton, UK, pp. 19–26.

Jansen, A.R., Blackwell, A.F., Marriott, K., 2003. A tool for tracking

visual attention: the restricted focus viewer. Behavior Research

Methods, Instruments & Computers 35 (4), 57–69.
Katz, I., Anderson, J.R., 1988. Debugging: an analysis of bug location

strategies. Human-Computer Interaction 3, 359–399.

Kriz, S., Hegarty, M., 2004. Constructing and revising mental models of a

mechanical system: the role of domain knowledge in understanding

external visualizations. In: Forbus, K., Gentner, D., Regier, T. (Eds.),

Proceedings of the 26th Annual Conference of the Cognitive Science

Society. Lawrence Erlbaum Associates, Mahwah, NJ, pp. 439–449.

Larkin, J.H., Simon, H.A., 1987. Why a diagram is (sometimes) worth ten

thousand words. Cognitive Science 11, 65–100.

Mayer, R.E., Dyck, J.L., Vilberg, W., 1986. Learning to program and

learning to think: What’s the connection? Communications of the

ACM 29 (7), 605–610.

McKeithen, K.B., Reitman, J.S., Rueter, H.H., Hirtle, S.C., 1981.

Knowledge organization and skill differences in computer program-

mers. Canadian Journal of Psychology 13, 307–325.

Mulholland, P., 1997. Using a fine-grained comparative evaluation

technique to understand and design software visualization tools. In:

Wiedenbeck, S., Scholtz, J. (Eds.), Empirical Studies of Programmers,

Seventh Workshop. ACM Press, New York, pp. 91–108.

Oberlander, J., Stenning, K., Cox, R., 1999. Hyperproof: abstraction,

visual preference and modality. In: Moss, L.S., Ginzburg, J., deRijke,

M. (Eds.), Logic, Language, and Computation, vol. II. CSLI

Publications, pp. 222–236.

Patel, M.J., du Boulay, B., Taylor, C., 1997. Comparison of contrasting

Prolog trace output formats. International Journal of Human

Computer Studies 47, 289–322.

Pennington, N., 1987. Stimulus structures and mental representations in

expert comprehension of computer programs. Cognitive Psychology

19, 295–341.

Prabhakararao, S., Cook, C.R., Ruthruff, J.R., Creswick, E., Main, M.,

Durham, M., 2003. Strategies and behaviors of end-user programmers

with interactive fault localization. In: HCC. IEEE Computer Society,

Silver Spring, MD, pp. 15–22.

Romero, P., Cox, R., du Boulay, B., Lutz, R., 2002a. Visual attention and

representation switching during java program debugging: a study using

the restricted focus viewer. In: Hegarty, M., Meyer, B., Narayanan,

N.H. (Eds.), Diagrammatic Representation and Inference. Second

International Conference, Diagrams 2002. Lecture Notes in Artificial

Intelligence, vol. 2317, pp. 221–235.

Romero, P., Lutz, R., Cox, R., du Boulay, B., 2002b. Co-ordination of

multiple external representations during Java program debugging. In:

Wiedenbeck, S., Petre, M. (Eds.), 2002 IEEE Symposia on Human

Centric Computing Languages and Environments. IEEE Press, Air-

lington, VA, USA, pp. 207–214.

Romero, P., Cox, R., du Boulay, B., Lutz, R., 2003. A survey of

representations employed in object-oriented programming environ-

ments. Journal of Visual Languages and Computing 14 (5),

387–419.

Romero, P., Cox, R., du Boulay, B., Lutz, R., Bryant, S., 2007. A method

for the capture and analysis of hybrid data: a case study of program

debugging. Behavior Research Methods 39 (2), 309–317.

Stenning, K., Oberlander, J., 1995. A cognitive theory of graphical and

linguistic reasoning: logic and implementation. Cognitive Science 19

(1), 97–140.

Storey, A.D., Wong, K., Muller, H.A., 2000. How do program

understanding tools affect how programmers understand programs?

Science of Computer Programming 36, 183–207.

Tukiainen, M., Monkkonen, E., 2002. Programming aptitude testing as a

prediction of learning to program. In: Kuljis, J., Baldwin, L., Scoble,

R. (Eds.), Psychology of Programming Interest Group 14th Work-

shop. Springer, Berlin, pp. 45–57.

Tversky, B., Morrison, J.B., 2002. Animation: Can it facilitate? Interna-

tional Journal of Human-Computer Studies 57, 247–262.

van Bruggen, J.M., Kirschner, P.A., Jochems, W., 2002. External

representation of argumentation in CSCL and the management of

cognitive load. Learning and Instruction 12, 121–138.

Wood, S., Cox, R., Cheng, P., 2006. Attention design: eight issues to

consider. Computers in Human Behavior 22 (1), 588–602.


	Debugging strategies and tactics in a multi-representation software environment
	Introduction
	External representation usage in programming
	Factors affecting strategy and tactics

	Method
	Aims
	Design
	The experimental debugging environment
	Participants and procedure
	The debugging part of the experiment


	Results
	Debugging accuracy and individual difference measures
	Individual differences
	Normal and empty visualisations conditions comparison
	Debugging performance and the experimental factors

	Debugging tactics
	Representation usage
	Breakpoint usage

	Debugging strategy
	Qualitative analysis
	Quantitative analysis


	Discussion
	Relationship between debugging strategies and tactics
	Relationship between graphical literacy and debugging performance
	Relationship between experience, modality and debugging behaviour

	Conclusions
	Acknowledgements
	References


